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Many animals rely on long-form communication, in the form of songs, for
vital functions such as mate attraction and territorial defence. We explored
the prospect of improving automatic recognition performance by using the
temporal context inherent in song. The ability to accurately detect sequences
of calls has implications for conservation and biological studies. We show
that the performance of a convolutional neural network (CNN), designed to
detect song notes (calls) in short-duration audio segments, can be improved
by combining it with a recurrent network designed to process sequences of
learned representations from the CNN on a longer time scale. The combined
system of independently trained CNN and long short-term memory (LSTM)
network models exploits the temporal patterns between song notes.
We demonstrate the technique using recordings of fin whale (Balaenoptera
physalus) songs, which comprise patterned sequences of characteristic notes.
We evaluated several variants of the CNN+LSTM network. Relative to the
baseline CNN model, the CNN+LSTM models reduced performance
variance, offering a 9–17% increase in area under the precision–recall curve
and a 9–18% increase in peak F1-scores. These results show that the inclusion
of temporal information may offer a valuable pathway for improving the
automatic recognition and transcription of wildlife recordings.
1. Introduction
Manyanimals produce sounds for various purposes such as foraging, establishing
territories and attracting mates [1]. Passive acoustic monitoring (PAM) methods
are used for monitoring and studying a wide variety of soniferous species. The
use of automatic recognition techniques has largely underpinned the successes
of PAM undertakings by improving the efficiency and repeatability of big data
analytics. Most existing automatic recognition techniques, however, only exploit
the discriminatory characteristics inherent in the target signals. Consideration of
a signal’s context as ancillary data in the recognition system offers the potential
to improve its recognition performance [2, pp. 90–91]. A signal’s context may
include a variety of relevant measurements and observations such asmeteorologi-
cal data, time of day, spatial positioning (possibly estimated with directional
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receivers or receiver arrays) or records of events in the recent
past. In recordings obtained with single omni-directional
receivers, the temporal context inherent in species’ songs (as
patterns of temporal separation between note repetitions) may
be exploited to more accurately detect individual notes. In this
study, we explored the possibility of incorporating such
temporal context within the gamut of an artificial neural
network-based recognition system.

Improvements in the robustness of automatic recognition
system results offer several benefits. From a staffing perspec-
tive, automated systems reduce the workload of analysts and
facilitate the analysis of large datasets that would not be feas-
ible to annotate manually. Best practices require some level of
validation of automatic detections, and improvements in
detector reliability would reduce the time required to verify
detections (e.g. [3]), leaving more time for addressing scienti-
fic questions of interest. Such robust systems can facilitate a
suite of ecological studies, such as call- or cue-based density
estimation [4], stock identification [5] or cultural transmission
of song [6]. Incorporating temporal context could also help
separate concurrent singers (the cocktail party problem [7]).
Having better measurements of the variabilities in song
characteristics (e.g. number of calls, duration, patterns of rep-
etition) could better assist studies focused on understanding
the function of songs.

Increased computational power and an abundance of
labelled data have substantially bolstered research in machine
learning [8] across many fields of research. Artificial neural
networks, specifically deep neural networks (DNNs) [9],
have become the state of the art across a variety of problem
spaces such as computer vision (e.g. object detection, face
recognition, scene classification), human speech processing
(e.g. speech recognition, text to speech, speaker recognition)
and language processing (e.g. translation, auto-correct,
auto-suggest). Advances in machine learning research are
increasingly being adopted by researchers in the animal bio-
acoustics community. DNNs have been used in the
automatic recognition of vocalizations of birds [10], primates
(e.g. [11]), marine mammals (see [12] for a review), marsupials
(e.g. [13]), fishes (e.g. [14]) and insects (e.g. [15]). A class of
DNNs called convolutional neural networks (CNNs), which
leverage two-dimensional information and are used predomi-
nantly for processing image data [9], adapt well for the
processing of other two-dimensional image-like data, such as
spectrograms of audio data. In bioacoustics, CNNs are used
to recognize a wide variety of vocalizations (e.g. [3,16–18]).
For echolocation clicks, both one-dimensional (e.g. [19]) and
two-dimensional (e.g. [20]) CNNs have been used. Recurrent
neural networks (RNNs), another class of DNNs, contain
internal state (memory) and are capable of handling sequence
inputs. Long short-term memory (LSTM) [21] networks and
gated recurrent unit (GRU) [22] networks are popular flavours
of RNNs. In specific bioacoustic applications, the performance
of CNNs and RNNs have been compared. For example, Ibra-
him et al. [23] compared CNN and LSTM network models
for classifying species of groupers (Serranidae) and observed
similar performances between the two models. Shiu et al. [3]
compared a few architectures of CNNs, and a CNN+GRU
hybrid model for detecting North Atlantic right whale (Euba-
laena glacialis) calls and found that one of the CNN models
offered the best results.

We propose to combine the ability of CNNs to detect calls
in spectrograms of isolated audio segments with the ability of
LSTMs to capture temporal patterns from a sequence of such
spectrograms. In prior studies, CNNs and RNNs were com-
bined into what was called a convolutional LSTM deep
neural network (CLDNN) by Sainath et al. [24] and as a convo-
lutional recurrent neural network (CRNN) by Çakır et al. [25].
At a conceptual level, a significant difference between our
approach and that of CLDNN and CRNN is that their recur-
rent components operate on a very short-term context (up to
a few seconds) whereas the LSTM component in the proposed
architecture operates on a relatively longer-term context
(approx. 2 min). With CLDNN and CRNN, the temporal con-
text captured in the inputs to the recurrent component is
limited to the confines of a single fixed-size time–frequency
input (e.g. spectrogram) processed by the preceding CNN
layers. In contrast, the recurrent component in our proposed
architecture operates on a sequence of scalars and feature
embeddings produced by a pre-trained CNN component
corresponding to a sequence of successive fixed-size spectro-
grams. The problem of vanishing gradients [26] that the
recurrent networks of CLDNN and CRNN could face in
processing long-duration spectrograms is avoided here by
having the recurrent network operate on reduced-dimension
representations extracted from successive, short-duration spec-
trograms. At an implementational level, our approach differs
from CLDNN and CRNN in that the CNN and LSTM com-
ponents in our architecture are independently trained. These
differences afford us the ability to handle many tens of seconds
of audio, thereby capturing sufficient near-term temporal con-
text without encountering computational resource limitations.

We chose fin whale (Balaenoptera physalus) vocalizations to
evaluate the effectiveness of the proposed approach, given the
highly vocal nature of the species and the ready availability of
annotated recordings from prior studies. Fin whales occur in
most oceans worldwide [27] and have been extensively
studied with PAM in the North Pacific [6,28,29], South Pacific
[30], Atlantic Ocean [31–33], Indian Ocean [34], Mediterranean
Sea [35,36] and Southern Ocean [37,38]. Their vocal repertoire
includes many loud, low-frequency calls, of which the stereo-
typed 20 Hz pulses are the most studied [39,40]. The 20 Hz
pulses are short (approx. 1 s), downswept calls with energy
centred around 20 Hz. Male fin whales produce songs contain-
ing patterned sequences of 20 Hz pulses (henceforth referred to
asnotes) [41,42]. The central frequencyof the notes varieswithin
a song [35,37]. Based on the inter-note intervals (INIs; temporal
separation between successive notes), three broad categories of
patterned sequences have been identified: singlets (having a
single distinct INI), doublets (having two distinct, alternating
INIs) and triplets (having two or more distinct INIs, with one
of the INIs repeated multiple times) [40,43,44]. Spectrogram
cross-correlation [45] based methods are commonly used to
detect fin whale notes [30,33,46]. Other approaches include
those based on energy and spectral band characteristics [47]
and matched filtering [48]. Garcia et al. [49] had limited success
in recognizing fin whale notes with independent CNN and
LSTM network models, and found that the performance of a
comparative decision tree classifier was better.

Here, we first trained CNN models to define baseline
detection performance. Then, we trained the proposed
CNN+ LSTM hybrid models to capture the near-term tem-
poral context prevalent as INIs in songs. The reuse of a
base CNN model as the ‘CNN’ component in a hybrid
model allowed us to better attribute any performance
improvements solely to the added temporal context.
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Figure 1. Periods covered by the acoustic data used in the study, with dis-
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deployments and the numbers over the lines indicating the number of
days of data collected during the deployment.
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2. Material and methods
2.1. Acoustic data and annotations
The underwater recordings used in this study were collected as
part of prior research (e.g. [28,44]). Data were collected in the
Southern California Bight at 34° 190 N, 120° 480 W with high-fre-
quency acoustic recording packages (HARPs) [50] over multiple
deployments spanning a total of 1210 days (figure 1). The
HARPs were configured to record data at a sampling rate of
either 200 kHz or 320 kHz. Continuous recordings from the 13
deployments were made available for this study as sets of contig-
uous audio files. The recording durations covered by each file
varied between approximately 10 h and approximately 112 h.

Manual annotation of fin whale notes present in the record-
ings is detailed in Širovic ́ et al. [44]. The prior annotation effort
focused on labelling only those notes that formed clear song
sequences, and any stray notes occurring amidst an otherwise
well-structured temporal sequence were not labelled. In an
additional round of manual annotations, we labelled these
stray notes and added them to the ground truth set. In the
third round of manual annotations, we expanded the ground
truth set to include representative sections in the recordings
where fin whale notes were absent. We reviewed spectrograms
of the recordings in Raven Pro 1.6 (https://ravensoundsoft-
ware.com/), and noted the time spans of sections that did not
contain any notes. These non-note sections, amounting to an
average of 1.43 h per deployment, included periods of silence,
shipping noise, other confounding sounds and recording arte-
facts (equipment noise). These non-note sections constituted the
bulk of the negative class samples in the training set.

We downsampled all recordings to a fixed sampling rate of
500 Hz to allow consistent processing across different audio
files and, in general, to improve workflow efficiency. We ran-
domly partitioned the downsampled audio files from all
deployments into 10 disjoint subsets of similar sizes to facilitate
the assessment of the training process with a 10-fold leave-one-
out cross-validation approach. An arrangement of the 10 subsets
into a 9 : 1 grouping constituted a fold, where data from nine sub-
sets formed the training set, and data from the remaining subset
were earmarked for testing. The 10 possible ways of constructing
a 9 : 1 grouping yielded 10 distinct folds. The randomized parti-
tioning of the full dataset resulted in the assignment of files from
a deployment to different subsets, improving the coverage of
recording condition variations in the test split of each fold.
While it may be possible to lower any risks of producing
overly optimistic estimates of absolute model performance by
employing other partitioning strategies, the randomized parti-
tioning approach employed here suffices for assessing the
relative performance of different models. The distribution of
INIs in the training splits were largely bimodal (figure 2), with
peaks at approximately 16.9 s and approximately 21.5 s, high-
lighting the dominance of the short doublet song type in the
region [44]. Disparities in the recording durations covered by
individual files resulted in test splits of highly variable sizes. Fur-
thermore, the distribution of INIs in a test split did not always
resemble that of the respective training split, rendering the test
data more challenging.
2.2. Input preparation
Recordings in the audio files were split into 4 s segments with an
overlap of 3 s (75%) between successive segments. Segment dur-
ation and overlap amount were chosen to maximize coverage of
notes in the models’ inputs such that every note present in a
recording was fully contained within at least one segment
when processing audio as a continuous stream. Waveforms in
the resulting segments were normalized by scaling their ampli-
tudes to the range [−1.0, 1.0], and power spectral density
spectrograms (Hann window, 0.8 s frames with 80% overlap;
1.25 Hz frequency resolution) were computed. Spectrogram band-
width was trimmed to only retain frequencies in the range
10–54 Hz, resulting in two-dimensional surfaces having the shape
36 × 21 ( frequency × time; height×width). These band-limited
spectrograms formed inputs to the CNN model. Spectrograms
corresponding to segments that fully contained a ground-truthed
note constituted the set of positive class samples. All other spectro-
grams, including those that contained a note only partially,
constituted the negative class sample set.
2.3. Neural network architecture
The architecture of the base CNN model (figure 3) is based on
DenseNet [51]. Given that the detection target is a relatively
simple and stereotyped signal, we propose a few deviations to
the architecture to improve computational efficiency by reducing
model size and complexity. Two notable deviations from the
classical DenseNet architecture included (i) the use of a custom
pre-conditioning layer in place of the first convolution layer
and (ii) a reduction in the number of feed-forward connections
within a dense block (producing what we reference as a quasi-
dense block). The proposed pre-conditioning layer applies one-
dimensional Laplacian of Gaussian (LoG) operators at two
scales (σ = 2, 4) along the frequency axis of the input spectrogram
and is followed by the application of twelve 3 × 3 convolutions to
the responses at each scale. LoG operators enhance the signal-to-
noise ratio (SNR) of features in spectrograms, and the application
of multi-scale LoG operators allows spectrographic features of
different sizes to be captured in the responses at comparable
scales [52] (figure 4). The pre-conditioning layer’s outputs,
formed from the concatenation of the LoG operators’ outputs
and convolution outputs, comprised 26 channels (commonly
also referred to as feature maps). The quasi-DenseNet subnetwork
included four quasi-dense blocks with block sizes of 2, 2, 2 and 1
(in that order) and a fixed growth rate of 12. The Global AvgPool
layer [53] reduced spatial dimensions (height ×width) by aver-
aging the values in each channel. Two fully connected network
(FCN) layers were used before the final classification layer.

We considered three variants of LSTM networks for proces-
sing temporal context (figure 5). Each variant consisted of a
sequence of two LSTM layers with 32 and 16 units (in that
order) followed by an FCN layer and sigmoid activation. The
first variant, LSTMscore, operated on the final output (positive
class score) of the base CNN model. The second variant,
LSTMfeature, made predictions based on the 32-dimensional
feature embedding resulting from the first fully connected net-
work (FCN-1) layer. The final network, LSTMs+f (s + f read as
‘score + feature’), concatenated the score and feature embedding
to form a 33-dimensional input vector.

https://ravensoundsoftware.com/
https://ravensoundsoftware.com/
https://ravensoundsoftware.com/
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2.4. Neural network training
For the base CNN model, the supervised-learning task involved
optimizing model parameters to maximize the respective per-
class scores (in the range 0–1) produced for input spectrograms
from the corresponding classes. Negative class samples that par-
tially contained a ground-truthed note were excluded from the
training set while training the CNN model. The base CNN
model was trained first, and the same trained model formed
part of all the three hybrid variants. Fixed-length sequences of
contiguous, overlapping (3 s overlap) spectrograms constituted
training inputs for the hybrid CNN+ LSTM models. The
sequences did not exclude spectrograms with partially contained
notes. The length of the input sequence (number of time-steps)
quantified the amount of temporal context available to the
hybrid models (figure 6). Our choice of 108 time-steps
(corresponding to 111 s of audio) ensured coverage of at least
three notes within the confines of a song, even for songs
having the largest INIs. The learning task for the hybrid
models involved optimizing parameters to produce scores close
to the binary value (0 for negative class, 1 for positive class)
associated with a specific spectrogram in the input sequence of
spectrograms. We refer to the spectrogram of interest as the pre-
diction point (PP). In typical detection or classification
applications, the PP usually occurs at the end of the input
sequence (i.e. at 100% of the considered context) and only cap-
tures past events. Shifting of PP to an earlier position in the
input sequence allows for incorporating some future context
and the position of the PP within the input sequence defines
the ratio of past-to-future contexts captured by the input
sequence. Our experiments included training hybrid models
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with the PP set at 100%, 75%, 67% and 50% of the length of the
input sequence. The 10-fold cross-validation approach employed
resulted in a total of 10 base CNN models and 120 (3 variants × 4
PP settings × 10 folds) corresponding hybrid models.

Training of a hybrid model involved an optimization of just its
LSTM subnetwork parameters. This approach is, in essence, a form
of transfer learning [54] where the weights of the already-trained
base CNN model were frozen (no longer trainable), and the
weights of the connected LSTM variant were subsequently initia-
lized and trained independently. As such, training a hybrid
model with sequences of spectrograms is the same as training its
LSTM subnetwork with equivalent sequences of outputs (scores,
feature embeddings or both) from a base CNN model. Further-
more, given that a single base CNN model forms part of 12
corresponding hybrid models, the overall training workflow can
be sped up considerably by avoiding repeated execution of the
base CNN models. To this end, we applied the trained base
CNN model corresponding to each fold to the respective training
split and recorded the outputs (scores and feature embeddings).
These stored pre-computed outputs were subsequently used to
form equivalent input sequences for training the LSTM subnet-
works of the hybrid models.

In additional experiments, we assessed the influence of the
granularity of time-steps on classification. We reduced the seg-
ment overlap amount (see §2.2) from 3 s to 2.75 s. To retain a
similar quantity of temporal context, we reduced the number of
time-steps from 108 to 88 (which corresponds to 112.75 s of
audio). Reducing the number of time-steps not only reduced the
number of training samples, but also altered the class prior (the
ratio of the number of positive class samples to the number of
negative class samples). In addressing this change, we repeated
the prior experiments in their entirety, producing another set of
10 base CNN models and 120 corresponding hybrid models.

The training process minimized categorical cross-entropy
loss for the base CNN models and binary cross-entropy loss
for the LSTM variants using the Adam optimizer [55]. For each
fold and model type, the training data were restricted to a maxi-
mum of 20 000 samples per class. In all folds, the number of
positive class training samples was below this limit (averaging
14 411 for 108 time-steps and 11 412 for 88 time-steps), and the
class imbalance was addressed by appropriately weighting the
losses during training. Models were trained for 60 epochs (iter-
ations over the full training set), with a randomly chosen 15%
of the training spectrograms (spectrogram sequences for LSTM
variants) set aside for quick evaluation during the training
process. The process of weight initialization and training of
models was repeated independently for each of the 260 models.

Models were implemented using TensorFlow 2.0 framework
(https://www.tensorflow.org/). They were trained on a Dell Pre-
cision 7520 laptop with an Intel Core i7 processor, 32 GB of
random-access memory (RAM) and an NVIDIA Quadro M2200
graphics processing unit with 4 GB video RAM. The average
per-fold model training durations are presented in table 1.

2.5. Performance assessment
Recognition performance was quantified with the metrics pre-
cision, recall and derived composites, namely precision–recall
curve, F1-score and area under the precision–recall curve (AUC-
PR). To simplify comparisons, the range of classification scores
produced by each model was scaled to the range 0–1 before com-
puting the metrics. The class priors varied among the folds’ test
splits and differed from those of the full dataset (all 10 subsets
considered together). The effects of these variations on perceived
performance were suppressed by calibrating [56] the assessments
to correspond to the class prior of the full dataset. Calibrated
results corresponding to the 10 folds for each model type were
aggregated to facilitate making meaningful comparisons between
the performance assessments of the different types of models.
3. Results
The 32-dimensional feature embeddings output by the base
CNN models’ FCN-1 layers encapsulated necessary discrimi-
natory traits of positive and negative class inputs. This was
evident in their ability to form ad rem clusters in a projected
two-dimensional feature space (e.g. figure 7). The outcome of
applying the trained detectors on soundscape recordings is
demonstrated with a sample section of test data in figure 8.

https://www.tensorflow.org/
https://www.tensorflow.org/
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Table 1. Average time (min.s) to train the considered models.

time-steps CNN LSTMscore LSTMfeature LSTMs+f

108 25.37 3.22 3.50 3.51

88 23.26 2.39 2.58 3.04
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royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210297

6

As can be noticed, the base CNN model produced very low
scores for the notes at approximately 42.05 and approximately
43.45 (min.s), effectively missing them. Higher scores in the
outputs of the hybrid models at these times are indicative of
the benefits of incorporating temporal context. Among the
hybrid models, the relatively higher scores in the outputs of
LSTMfeature and LSTMs+f are indicative of higher confidence
in their ability to detect such low-SNR notes.

The precision–recall curves indicate that all the LSTM var-
iants offered notable performance improvements over the
base CNN model (figure 9; see electronic supplementary
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material, temporal_context_ESM1.pdf for full results). At
moderate-to-high detection thresholds, the hybrid models
produced fewer false-positive detections per hour than the
base CNN models. Within each experiment, the performance
of LSTMfeature and LSTMs+f were similar. For easier compari-
sons, the performance assessments are summarized using
peak F1-score and AUC-PR as proxies (figure 10 and
table 2). At detection thresholds corresponding to peak F1-
scores, LSTMfeature and LSTMs+f produced an average of
20.76 false-positive detections per hour of input audio.

Much of the observable performance differences (between
the base model and the corresponding hybrid models; between
LSTMscore and the other two hybrid variants) manifested under
conditions of low and variable SNR (see electronic supplemen-
tary material, temporal_context_ESM2.pdf for a systematic
assessment). A representative example (figure 11) shows the
base CNN model failing to produce high scores for a bout
of low-SNR notes following the first note. Consequently,
LSTMscore failed to produce high scores beyond the second
note, as the causal benefits of learned context continued to
fade. Since the intermediate feature embeddings (outputs of
the FCN-1 layer) encapsulate more information than the
scalar scores output by the CNN model, the cascaded attenu-
ation of the benefits was markedly lower in the case of
LSTMfeature and LSTMs+f.

The performance at PP = 67% and PP = 75% was relatively
lower than that at other PPs. This was driven predominantly
by a reduced precision in the models’ detections. A representa-
tive example demonstrates the contrasting abilities of
LSTMfeature and LSTMs+f at different PPs to avoid producing
false positives for missing notes within a song (at approx. 17.14
in figure 12). Such missing notes could be either real (behaviour
of the singing whale) or apparent (caused by variable SNR).

Performances for folds with atypical distribution of INIs
in the test splits (e.g. folds 1, 3 and 6; figure 2) were compar-
able to the general overall performance. Furthermore, we
assessed the hybrid models’ recall as a function of the
ground-truthed notes’ INIs (figure 13; electronic supplemen-
tary material, temporal_context_ESM3.pdf). For notes with
INIs close to the dominant INIs at approximately 16.9 s or
approximately 21.5 s (figure 2), recall remained high at mod-
erate-to-high thresholds across all experiments. This is
indicative of the influence of dominant INIs (in the training
data) on learning. Recalls at non-dominant INIs were



Table 2. Area under the precision–recall curve (AUC-PR) and peak F1-score as indicators of the performance of the base CNN model and the LSTM variants.
Values are means and standard deviations (µ ± σ) of the respective per-fold quantities from each experiment.

segment overlap = 3 s segment overlap = 2.75 s

PP = 50% PP = 67% PP = 75% PP = 100% PP = 50% PP = 67% PP = 75% PP = 100%

AUC-PR

CNN 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.81 ± 0.05 0.81 ± 0.05 0.81 ± 0.05 0.81 ± 0.05

LSTMscore 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.88 ± 0.03 0.89 ± 0.03 0.89 ± 0.03 0.88 ± 0.03

LSTMfeature 0.95 ± 0.02 0.91 ± 0.03 0.93 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.91 ± 0.03 0.92 ± 0.02 0.94 ± 0.02

LSTMs+f 0.94 ± 0.02 0.91 ± 0.03 0.93 ± 0.02 0.95 ± 0.02 0.94 ± 0.02 0.90 ± 0.03 0.92 ± 0.02 0.94 ± 0.02

peak F1-score

CNN 0.79 ± 0.03 0.79 ± 0.03 0.79 ± 0.03 0.79 ± 0.03 0.77 ± 0.04 0.77 ± 0.04 0.77 ± 0.04 0.77 ± 0.04

LSTMscore 0.87 ± 0.02 0.87 ± 0.03 0.87 ± 0.02 0.87 ± 0.02 0.84 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.84 ± 0.03

LSTMfeature 0.91 ± 0.02 0.87 ± 0.03 0.90 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.87 ± 0.03 0.89 ± 0.02 0.90 ± 0.02

LSTMs+f 0.91 ± 0.02 0.87 ± 0.03 0.90 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.87 ± 0.03 0.89 ± 0.02 0.90 ± 0.02
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markedly lower for LSTMscore. By contrast, LSTMfeature and
LSTMs+f demonstrated a better ability to detect notes at non-
dominant INIs, offering high recall even at high thresholds.
This difference can also be attributed to the higher degree of
information encapsulation in feature embeddings.

Overall, average improvements in AUC-PR, relative to the
base CNN model, varied in the range 9–13% for LSTMscore

and 11–17% for the other two hybrid variants. Peak
F1-score improvements averaged 9–11% for LSTMscore and
11–18% for the other two hybrid variants. At the respective
peak F1-scores, the average number of false-positive detec-
tions per hour were (relative to the base CNN model)
56–76% lower for LSTMscore and 59–85% lower for the other
two hybrid variants. Inter-fold variance in the performance
of LSTMfeature and LSTMs+f decreased notably when PP
was either 100% or 50%, and these models produced the
best overall results with average peak F1-scores of 0.91 and
average AUC-PRs of 0.95.
4. Discussion
We considered the role that temporal context could play in
increasing the reliability of annotating bioacoustic signals in
soundscape recordings. We extended the ability of a convolu-
tional model to perform classification on isolated audio
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segments by feeding its outputs into recurrent networks that
exploited temporal patterns. The proposed hybrid framework,
composed of independently trained CNN and LSTM subnet-
works, offered a flexible workflow and processing efficiency.
The performance assessments showed that call recognition in
isolated audio segments (by a CNN model) improved with
the addition of temporal context (by way of attaching a recur-
rent network to the CNN). Among the hybrid models, those
operating on feature embeddings offered better performance
than the model that considered only baseline scores. The
precision–recall curves of all the hybrid variants dominated
that of the base model (figure 9). The hybrid models offered
F1-scores higher than the peak F1-score of the base CNN
model across a considerable range of detection thresholds.
The nature of the observable improvements implied that
incorporating temporal context improved the ability both
to successfully reject audio segments without a note and to
detect notes that a standalone CNN model could miss. The
ensuing higher precision and a lower rate of false positives
help reduce the burden of downstream validation efforts (in
applications such as presence/absence monitoring, density
estimation, etc.) [3]. Performance improvements remained
consistent across experiments involving different ways of alter-
ing models’ inputs, demonstrating the effectiveness of the
proposed methodology and framework, and validating our
hypothesis that the use of temporal context improves detection
of call sequences.

Among the proposed deviations to the DenseNet architec-
ture, the substitution of the initial conventional convolutional
layer with the custom pre-conditioning unit was aimed at
improving the discriminatory characteristics in the early-to-
intermediate features generated within the network. High
accuracies attained during training (and validation) may, in
part, be attributed to the pre-conditioning unit. The base
CNN model and the hybrid models were all subject to
similar training schemes (optimizer type, number of epochs,
etc.), and no explicit data augmentation techniques were
considered. While it may be possible to achieve further per-
formance improvements with architecture-specific tuning of
training parameters, the restrictions we considered ensured
that the hybrid models’ performance gains over the base
CNN model could be firmly attributed to the added temporal
context. The multi-fold approach allowed us to assess the
effects of different initializations of the models’ weights on
recognition performance. Consistency in performance across
different folds suggested that overfitting and biases from
weight initialization were unlikely.

The multi-year acoustic data considered in the study are
expected to have captured any seasonal variations in fin
whale singing behaviour. Randomized partitioning of the
recordings across folds ensured representation of the vari-
ations in the training and test splits of each fold. The
annotated dataset contained several instances of fin whale
songs where the patterned INIs were readily discernible. The
additional round of manual labelling to annotate stray notes
ensured that detections corresponding to such notes were
not considered false positives and that the reported precision
values more closely reflected the true performance of the
models. The dataset also contained instances of concurrent
songs, ranging from cases where individual notes and INIs
were distinguishable to cases where songs from many distant
individuals made discerning individual notes (and, hence, the
INIs) difficult. The latter case is common during winter breed-
ing seasons [42,58]. Where concurrent songs were present, the
annotations only had notes from the dominant foreground
song labelled. As such, detector precision appeared to suffer
under these conditions (e.g. figure 14). Inclusion of annotations
for concurrent songs’ notes in the training data could offer
further performance improvements. Automated separation of
concurrent song tracks may warrant additional elements in
the model architecture.

The experiments with different segment overlap amounts
were aimed at assessing the impacts of input granularity. Lower-
ingof the segment overlap amount from3 s to 2.75 s reflected in a
marginal reduction in the performance of the base CNNmodels.
Consequently, there were notable reductions in the recognition
performance of LSTMscore. By contrast, the recognition perform-
ance of LSTMfeature and LSTMs+f remained largely unchanged,
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hinting at the prospect of improving computational efficiency by
increasing input granularity.

The experiments with a shifting of PP were aimed at
assessing the impacts of altering the ratio of the quantity of
past-to-future contexts. It could be argued that, at PP = 100%,
the leading (most recent) features in an input sequence exert
greater influence on the models’ outputs. While shifting PP
backwardswould lower this influence, we, however, anticipated
that the availability of both past and future contexts would
further improve a model’s ability to make accurate detections.
However, given that the dataset was not perfect (for example,
see the ground truth at approx. 46.40 in figure 11) and that, at
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PP = 100%, the performance was already quite high (in figure 9,
precision–recall curves for LSTMfeature andLSTMs+f lie very close
to the desired ideal at the top-right corner), therewas little scope
for further performance improvements. As such, the perform-
ance at PP = 50% was only marginally better than that at PP =
100%. On the other hand, performance at PP = 75% and PP =
67% deviated significantly from the trajectory between the per-
formance at PP = 100% and PP = 50%. The durations of future
contexts at PP = 100% and PP = 50% (0 s and approx. 55 s,
respectively)werewell beyond the range of known INIs possible
in finwhale songswhereas the durations of future contexts avail-
able at PP = 75% (approx. 37 s) and at PP = 67% (approx. 28 s)
were within the range of maximum possible INIs in the dataset
(figure 2). Skipped notes (approx. 17.14; figure 12) and missed
annotations (approx. 46.40; figure 11) occurring around these
INIs not only affected performance assessments directly but
may have also impacted learning during training, thereby
producing theaforementionedperformance trajectorydeviation.

The high computational complexity involved in training
(and using) models that operate on long-duration audio seg-
ments (capturing temporal context) was successfully tackled
here with a divide-and-conquer approach that combined
the abilities of independently trained CNNs and LSTM net-
works. Handling inputs of approximately 111 s (36 ×
approx. 690) would be problematic with other composite
architectures such as CLDNN and CRNN. Among the pro-
posed deviations to the DenseNet architecture, replacing
dense blocks with quasi-dense blocks resulted in a 27%
reduction in overall model size (approx. 54 000 parameters
total). Given their inherent ability to process audio in stream-
ing mode, these lightweight models are conducive for
application in real-time monitoring on resource-constrained
PAM equipment.

The parameter settings for input preparation (such as seg-
ment duration and bandwidth) and the model architectures
(such as depth and width, and PP) were chosen to fit the con-
sidered problem domain, i.e. detection of notes in fin whale
songs. However, the proposed hybrid architecture and the
associated workflow are quite generic. On one hand, the
modular characteristic allows one to replace our custom
DenseNet with a different type of pre-trained CNN model
or to replace the LSTM network with a GRU network. On
the other hand, the proposed hybrid scheme and the associ-
ated training workflow may be adapted for detecting notes
of other singing animals, such as birds, with apposite modi-
fications to audio pre-processing and model construction.
One must, however, ensure that the base CNN model is
trained well before going on to train a hybrid model. The
assessment of the base CNN model may employ an empirical
approach (figure 7), a systematic approach or both (as per-
formed in this study). While the problem domain
considered in this study was limited to songs containing a
single type of note, the note itself exhibited notable spectro-
temporal variations. We expect the proposed scheme to
offer similar benefits in problem domains that have small to
medium-sized note repertoires as well.
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