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Abstract

In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system 

in age-related episodic memory impairments in humans, with a particular focus on Alzheimer’s 

disease (AD). Well-established animal models have shown that GABA plays a central role in 

regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for 

episodic memory that undergoes early and significant morphologic and functional changes in the 

course of AD. Neuroimaging research in humans has documented hyperactivity in the 

hippocampus and losses of resting state functional connectivity in the Default Mode Network, a 

network that itself prominently includes the hippocampus—presaging episodic memory decline in 

individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated 

with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In 

combination, these findings suggest that GABA may be the linchpin in a complex system of 

factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, 

we will review the current state of literature supporting this hypothesis. First, we will focus on the 

molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, 

we report the evidence of GABA dysregulations in AD and normal aging, both in animal models 

and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of 

functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to 

episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that 

may modulate this association.
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1. Introduction

Dementia is a progressive and chronic syndrome in which there is a loss of cognitive 

functions—usually accompanied or preceded by a deterioration of emotional control and 

social behavior—that leads to disability and dependency [1]. Alzheimer’s disease (AD), 

among the most severe and burdensome medical conditions worldwide, is the most common 

cause of dementia, accounting for 43.5–62.8% in developed countries, followed by vascular 

dementia, which represents 14.5–30.9% of dementia cases [2-4].

There is consensus that AD pathology starts with a preclinical or prodromal phase, which is 

thought to begin 20 or more years before clinical symptoms become apparent, but during 

which time individuals may self-report the worsening of cognitive functions [5,6]. This 

preclinical phase is followed by a transitional state preceding dementia known as mild 

cognitive impairment (MCI), which is characterized by objective impairment of cognitive 

function but relatively spared independence in activities of daily living [7,8]. It is estimated 

that 10–20% of individuals over the age of 65 are diagnosed with MCI, and the annual 

conversion rate to dementia is 5–20% [9,10]. After MCI, dementia onset is characterized by 

an exacerbation of cognitive and behavioral symptoms, and the loss of independence.

Episodic memory impairment is widely recognized as the hallmark symptom of AD [11], 

and its assessment is one of the principal clinical tools used to determine the stage of AD, 

with memory recognition tasks frequently employed to diagnose amnesic patterns of 

neuropsychological alterations [12-14]. Changes to other cognitive domains—e.g., language, 

executive and visuospatial functions—may be also present depending on the AD subtype 

and the progression of the disease.

Pathologically, at the microscopic level AD is characterized by the formation of extracellular 

senile plaques due to the deposition of amyloid β (Aβ) peptides, and the accumulation of 

hyperphosphorylated tau in neurofibrillary tangles [15-17]. Recent work suggests that tau 

and Aβ are interconnected, and together trigger the neurodegeneration in the brain that 

ultimately results in AD [18-20]. At the macroscopic level, AD is characterized by the 

presence of cortical and subcortical atrophy, particularly in hippocampal and medial 

temporal lobe regions which are highly vulnerable to the progression of AD pathology 

[21-24]. There is also an accumulation of cerebrovascular lesions [25-27]—infarcts, cerebral 

microbleeds, white matter hyperintensities, among others—exacerbated by sustained 

exposure to vascular risk factors such as hypertension and diabetes, which cause damage to 

the small vessels of the brain and accelerate Aβ and tau pathology [28-30].

Despite decades of research investigating β-amyloid as the trigger for a cascade of neuro-

pathophysiological events that cause AD, the relationship between Aβ and cognition still 

remains weak: 20–30% of adults meet research criteria for preclinical AD based on levels of 

extracellular Aβ plaque deposition assessed by Pittsburgh Compound B (PiB) positron 

emission tomography (PET), yet are asymptomatic and cognitively normal on standard 

neuropsychological tests [31]. Moreover, the recent failures of several high profile late-stage 

clinical trials targeting Aβ highlights the urgent need to explore new mechanisms that could 

be involved in AD pathogenesis [32-34]. While both the cholinergic and glutamatergic 
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systems have received considerable interest, the role of the γ-aminobutyric acidergic 

(GABAergic) system in human studies of aging and AD has garnered far less attention 

[35-37].

Animal models, however, have provided strong evidence for a GABAergic mechanism of 

memory impairment. According to these models, GABA plays a central role in regulating, 

synchronizing and preventing excess neuronal signaling in the hippocampus [38,39], a brain 

area critical for episodic memory [40-42] that undergoes early and significant morphologic 

and functional changes in AD [43]. Moreover, studies in AD animal models have revealed 

that early losses of GABAergic interneurons result in hippocampal hyperactivity [44-46]. 

This process may be mediated or exacerbated by the presence of apolipoprotein ε4 (APOE 

ε4), the highest genetic risk factor for AD [46]. On the other hand, neuroimaging studies in 

patients with AD and MCI have reported hyperactivity in the hippocampus [47] and losses 

of resting state functional connectivity in the Default Mode Network (DMN), a network that 

itself prominently includes the hippocampus [48]—presaging atrophy and episodic memory 

decline in individuals at-risk for AD [49,50]. Hence, neural network hyperexcitability is now 

recognized as part of the spectrum of changes that occur in AD, and it is possible that 

GABA loss may be the trigger. Interestingly, from a clinical point of view, AD and MCI 

patients present an increased risk of developing seizures—one of the most common 

manifestations of aberrant neural activity—reinforcing the evidence of GABAergic 

dysfunction and neural disturbances during the dementia course [51,52].

In this review, we focus on recent research on GABAergic dysregulation, which we argue 

may be an early biomarker of AD-related episodic memory decline. As several groups have 

thoroughly reviewed the animal work surrounding this topic [53-61], the primarily focus 

here will be on human work [37,62,63]. We will describe the evidence for a GABAergic 

mechanism in age- and AD-related cognitive decline, first by outlining the molecular and 

cellular basis of the GABAergic system and its role in memory and cognition. Next, we 

report the evidence of GABA dysregulations in AD and normal aging, both in animal and 

human studies. Finally, we will review functional neuroimaging studies in humans that have 

shown hippocampal hyperactivity to episodic memory tasks concurrent with and preceding 

AD diagnosis, along with factors that may modulate this association.

2. Role of the GABAergic system in cognition and behavior

2.1. The GABAergic system

Since its discovery in 1950 [64], GABA has been considered to be the principal inhibitory 

neurotransmitter in the mammalian brain, playing a crucial role synchronizing the activity of 

human cortical networks [39]. About 10% of cells in the brain are GABAergic, and their 

receptors make up almost half of all receptors in the human brain, being one of the most 

ubiquitous neurotransmitter systems [53,65,66] and participating in a wide range of 

physiological and behavioral processes, including learning and memory [60,67,68].

GABA is synthesized by the decarboxylation of glutamate via the enzyme glutamic acid 

decarboxylase (GAD), and GABA-transaminase is responsible for its elimination and 

metabolism [69,70]. After synthesis, GABA is stored in synaptic vesicles by a vesicular 
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GABA transporter [71]. In the brain, GABA neurotransmission is primarily mediated by 

ionotropic (GABAA) and metabotropic (GABAB) receptors, which both can be found in 

presynaptic and postsynaptic terminals [65,72].

GABAA is the most common type of GABA receptor in the human brain. GABAA receptors 

are pentameric transmembrane receptors permeable to Cl−, and formed by an α-1 to 6, β-1 

to 4 and γ-1 to 4 subunits—a, δ-, ε-, π- or Θ- subunits may substitute the γ subunit [72,73]. 

This confers a wide spectrum of possible GABAA configurations, although most GABAA 

receptors are composed of two α-, two β- and one γ-subunits [74]. Of note, GABAA subunit 

configuration may vary depending on the brain area assayed, and in some neurological 

conditions [62,75]. Interestingly, 25% of GABAA receptors in the hippocampus contain an 

α5 subunit, as compared to 7–8% in the rest of the brain [62,75]. Pharmacologically, 

GABAA transmission may be modulated by full agonists (e.g., muscimol), positive allosteric 

modulators (e.g., benzodiazepines, binding at the interface between α- and γ-subunits [76]), 

competitive antagonists (e.g., bicuculline), non-competitive antagonists (e.g., picrotoxin) and 

negative allosteric modulators (inverse agonists) [77]. On the other hand, GABAB receptors 

are G-protein coupled heterodimer receptors consisting of a GABAB1 and a GABAB2 

subunit [60]. The principal agonist and antagonist substances of GABAB receptors are 

baclofen and saclofen, respectively [60]. Of import to the current review, 

immunohistochemical studies have reported a high expression of GABAB receptors in the 

hippocampus [78,79].

At the cellular level, in the neocortex most GABAergic neurons are interneurons. 

Interneurons are phenotypically diverse, and can be classified depending on their 

cytoarchitecture (e.g., basket, chandelier, stellate, neurogliaform cells, among other 

configurations), their molecular properties (parvalbumin (PV)-, calretinin-, calbindin-, 

somatostatin (SOM)-expressing, among others), the region that they innervate (local or long 

projecting interneurons), as well as the GABA synthesizing enzymes (GAD65- and GAD67-

positive cells) [65,66,80-82]. This confers to GABAergic cells a considerable morphological 

and physiological diversity, which may explain in part the wide spectrum of functions in 

which the GABA system is implicated [83].

GABAergic inhibition may be classified as either phasic or tonic [37, 84]. Phasic inhibition 

is produced by the release of GABA from the presynaptic membrane to the synaptic cleft, 

hyperpolarizing the postsynaptic neuron via opening the GABAA receptor ion-gated 

channels—the inhibitory post synaptic potential [84]. The principal characteristic of phasic 

inhibition is the short gap of time in which postsynaptic receptors are exposed to GABA, 

principally due to the rapid diffusion of GABA to the extrasynaptic location [85]. Phasic 

inhibition generates synchronized activity in different populations of neurons [81, 86,87]. 

Tonic inhibition, on the other hand, is produced by the sustained activation of GABA 

receptors at the extrasynaptic location after the release of GABA to the synaptic cleft, 

reducing the likelihood that a neuron firing over time and preventing neural network 

hyperactivity [84]. Interestingly, synaptic plasticity in the hippocampus may be regulated by 

tonic inhibition, which is thought to be principally mediated by GABAA receptors 

containing the α5 subunit [88,89].
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2.2. GABA in behavior and cognition

GABA is widely distributed in the brain and its receptors present a high diversity of 

conformations. As such, the GABAergic system has been associated with a wide range of 

behavioral and cognitive functions including the regulation of vigilance, anxiety, learned 

fear and memory [59,60,90,91]. Furthermore, GABA signaling has long been considered as 

a potential underlying mechanism in a number of diseases, including schizophrenia, anxiety 

disorders, depression, bipolar disorder, autism, and others [90,92-97].

The role of GABA in long term memory formation has been widely studied using animal 

models. Over two decades ago, the spatiotemporal activity of hippocampal GABAergic 

interneurons was found to be critical for the regulation of neural network activity involved in 

memory [67]. The GABAergic system in the hippocampus is responsible for maintaining the 

excitatory/inhibitory (E/I) balance and synchronizing the activity of several populations of 

pyramidal neurons within the hippocampus, as well as between remote regions of the brain 

[98]. GABAA mediated phasic inhibition from GABAergic interneurons has been shown to 

coordinate the neural activity between the hippocampus and the entorhinal cortex by 

generating and maintaining theta (4–12 Hz) and gamma (30–100 Hz) frequency oscillations, 

allowing for successful memory encoding and retrieval [99,100]. By contrast, GABAB 

mediated tonic inhibition is believed to terminate this coordinated activity, regulating its 

duration [101]. Moreover, GABAB activation may be implicated in the transition from theta 

and gamma oscillations, a process which may be related to the consolidation of memories 

[102,103].

It is also well known that GABA is involved in learned fear. Administration of GABAA 

agonists either before or after fear conditioning disrupts the acquisition of fear memories, 

while the administration of GABAA antagonists facilitates them [58,91]. These results 

indicate that GABAergic system is involved in both the formation and consolidation of 

conditioned fear stimuli. For this reason, GABAA modulation has been proposed as a target 

for intervention in the treatment of psychiatric conditions including posttraumatic stress 

disorder and social phobia disorder [104,105].

GABA activity may also be related to other cognitive processes, including working memory 

and thought suppression. Rao et al., (2000) showed that administration of bicuculline into 

the dorsolateral prefrontal cortex (DLPFC) of rhesus monkeys impairs working memory 

[106]. Likewise, other studies reported that DLPFC interneurons display activity specific for 

a working memory task in monkeys [107,108]. In humans, microarray postmortem studies 

showed downregulated genes encoding GABA-related proteins in the DLPFC of patients 

diagnosed with schizophrenia [108,109], who have been shown to have impairments in 

working memory as well as deficits in other cognitive functions [110-112]. Likewise, 

Schmitz et al., (2017) recently showed that GABA plays a key role in regulating a fronto-

hippocampal circuit which enables the voluntary control over intrusive thoughts [113].

Together, these studies suggest that GABA plays a key role in many aspects of both normal 

and abnormal cognitive function [92]. These findings have motivated the study of 

GABAergic disturbances in aging, especially in the context of AD. In the next section, we 
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review the evidence for alterations of GABAergic function in the aging brain, from animal to 

human studies.

3. Evidence of GABA dysregulations in Alzheimer’s disease and aging

3.1. Studies in animals

Changes in the GABAergic system in AD and normal aging have been widely studied using 

animal models. However, discordant results have made it challenging to disentangle the 

precise role of GABA in age-related cognitive decline. Several previous articles have 

thoroughly reviewed GABA dysregulations in animal models [53-61]. In this section, 

therefore, we will highlight and summarize the most important conclusions from these 

earlier reviews.

Pathological markers of AD are thought to be associated with altered GABA signaling. 

Traditionally, GABAergic neurons were considered to be more resistant to Aβ pathology as 

compared to cholinergic or glutamatergic neurons [114]. More recent in vitro experiments, 

however, have reported that Aβ neurotoxicity impairs GABAergic neuron activity and 

weakens inhibitory postsynaptic potentials by downregulating postsynaptic GABAA 

receptors [115,116]. Similarly, TgCRND8 mice, which exhibit early Aβ deposition, show a 

loss of GABAergic neurons starting at 6 months [115]. In line with these results, APP/PS1 

mice present a 50–60% reduction in the number of GABAergic interneurons coexpressing 

SOM and NPY at 6 months, preceding pyramidal cell loss, which suggests that GABAergic 

dysfunction may be an early sign of AD-related pathology [44]. SOM-positive cells are the 

principal population of interneurons innervating the dendritic arborization of pyramidal cells 

and may be involved in functions such as dendritic plasticity, synchronization of rhythmic 

activity, and the formation of new spatial memories [44,83,117,118]. On the other hand, 

APP/PS1 mice display other alterations in GABAergic function, including a significant 

reduction of GABAB receptors in the hippocampus and dentate gyrus starting at 6 months 

and increasing with age [119,120]. Regarding tau pathology, JNPL3(P301L) mice, which 

expresses human tau at twice endogenous levels, show a significant reduction in the number 

of GAD-, SOM- and PV-positive cells in the hippocampus [45]. Furthermore, tau markers 

co-localize with these populations of interneurons, suggesting that tau may be promoting a 

loss of GABA neurotransmission in the hippocampus [45,46].

Although animal models show that GABAergic dysfunction parallels AD-related pathology, 

it is less clear whether increasing GABA neurotransmission may be beneficial to prevent 

cognitive impairment in these models. For instance, administration of the GABAA receptor 

agonist muscimol in young Long Evans rats was shown to impair, not enhance, retrieval of 

learned spatial information in the Morris water maze task [121]. It is also well known that 

the administration of benzodiazepines produces anterograde amnesia and learning deficits in 

animal models [59,122]. Moreover, young male mice (3 months) that received chronic 

administration of methyl ß-carboline-3carboxylate (β-CCM)—a negative allosteric 

modulator, or inhibitor of the GABAA receptor—made fewer errors in the retention phase of 

a T-maze task as compared to controls or animals treated with benzodiazepines, suggesting 

that β-CCM improves, rather than hinders, spatial learning and memory [59,123]. These 
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findings indicate that increasing GABA activity—in young animals at least—may be 

disadvantageous, resulting in negative cognitive outcomes.

Several studies have focused on the modulation of the GABAA α5 receptor, which is indeed 

a promising therapeutic target due to its high expression in the hippocampus and its well-

established role in memory. Nonetheless, most studies testing the effect of inverse agonists 

of the GABAA α5 receptor, which have effects opposite to the agonists of that receptor, have 

been conducted in young animals [123], and when these drugs were tested in aged animals, 

no beneficial effects on memory were observed [124]. This discrepancy may be partially 

explained by the fact that GABA neurotransmission changes substantially across the 

lifespan, from an excitatory to an inhibitory neurotransmitter [65]. Interestingly, GABAA α5 

positive allosteric modulators show the opposite pattern: Koh et al. (2013) found that a novel 

positive allosteric modulator of the GABAA α5 receptor improved memory performance in 

aged male Long Evans rats (24–26 months), while having no effect in young (6 month old) 

rats [124]. The authors proposed that these results may be explained by the excess of 

activation that occurs with age in the hippocampus, especially in the CA3 area [124,125]. In 

line with this hypothesis, GABAA α5 receptors are especially involved in tonic inhibition, 

and their selective reduction has been shown to produce network hyperactivity in the 

hippocampus [126]. Similarly, novel benzodiazepine-like ligands, which act on GABAA α 
receptors, have been shown to reverse working memory deficits in aged (21–22 month old) 

C57BL/6 mice [127].

Regarding the modulation of GABAB receptors, the administration of the GABA agonist 

baclofen impairs learning of spatial information in wild-type animals [128], while the 

administration of CGP35348—a GABAB receptor antagonist—improves it [129]. In line 

with these results, Bañuelos et al. reported that the medial prefrontal cortex of aged (22 

month) male Fischer rats showed a lower expression of GABAB R1a-b and R2, and a higher 

expression of the GABA synthesizing GAD67 than did younger (6 month) animals. Further, 

systemic administration of CGP35348 improved working memory in the aged group, while 

it had a detrimental effect in the young group [130]. Likewise, the GABAB receptors 

antagonist SGS742 improved memory performance in a two-way active avoidance task, an 

eight-arm radial maze, and a Morris water maze task in rodents and in non-human primates 

[131-133]. By contrast, Beas and colleagues(2017) reported that a lower expression of the 

GABAB1 receptor in the medial prefrontal cortex of aged rats was associated with a better 

performance on a set-shifting task, suggesting a role for GABAB1 receptors in cognitive 

flexibility [134]. Paradoxically, intra-cerebral administration of baclofen has been shown to 

improve cognitive flexibility in aged rats [134]. Hence, modulation of GABAB receptor may 

have different consequences depending on the studied brain area and the assessed cognitive 

function, such that increasing GABAB neurotransmission may improve cognitive flexibility 

but impair working memory.

Altogether, recent research suggests that GABAergic dysfunction may be an early sign of 

AD pathology in animal models. Nonetheless, the picture is complex, and it is not clear how 

to modulate GABA neurotransmission to prevent age-related cognitive impairment. The age 

of the animal may be a critical variable: while decreasing GABAergic function in early life 

appears to facilitate memory, downregulating this system in mid to late life appears to have 
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the opposite effect, leading to cognitive impairment. Moreover, modulation of GABAA and 

GABAB receptors may have different effects on cognition. Other variables that may mediate 

the relationship between GABA and cognitive performance are the brain area in which the 

GABAergic dysfunction is produced and the subpopulation of interneurons [135], among 

other parameters.

3.2. Studies in humans

3.2.1. Postmortem studies—Despite numerous neuropathological studies investigating 

alterations of GABA levels and function in postmortem samples of AD patients [37,63], no 

clear consensus has been reached [37], potentially due to heterogeneity of the brain regions 

assessed, differences in the post-mortem delay, differing sample sizes, and the control over 

confounding variables (e.g., sex, medication use, cause of death, etc.) [63]. Several 

investigations of the hippocampus [136,137], as well as other limbic areas such as the 

cingulate cortex [138,139] and amygdala [137, 139] have shown reduced GABA levels in 

the brains of AD patients. However, of note, the hippocampus is one of the regions that 

showed the most discordant results, and several reports did not confirm GABA 

downregulation in this area, although these studies had small sample sizes [138,139]. 

Similarly, reduced GABA levels in AD have been shown to occur in the temporal 

[138,140-143], frontal [136,138,141] and parietal [138,140,141] cortices. By contrast, the 

caudate, putamen and the globus pallidus were found to be spared [136-138,143]. These 

results suggest that GABA reduction may be present in brain regions that are more 

susceptible to AD neurodegeneration, including cortical and limbic regions, while 

subcortical structures may be spared.

Other changes in the GABAergic system reported in postmortem studies include reductions 

in GAD and GABA receptors. GAD-65, which is principally expressed in neurons at the 

synapse, is thought to be reduced in the hippocampus and temporal cortex of AD patients 

[144]. Likewise, a downregulation of GAD has been found in vascular and mixed dementia 

[145]. As summarized by Govindpani et al., (2017) differences in GABAA receptors in AD 

arise out of both the subunit composition of GABAA receptors, and the anatomical 

localization [37]. In the hippocampus, several authors have reported reduced concentration 

or expression of both GABAA α1 [146,147] and GABAA α5 [147, 148] subunits in AD 

individuals [37]. GABAA α1 and GABAA α5 receptor concentrations have been reported to 

be reduced in the temporal and entorhinal cortex, respectively [149,150]. Finally, Rissman et 

al. found a reduction in mRNA immunoreactivity of GABAA α1 (20–25% reduction) and 

α5 (32–35% reduction) receptors in both patients with MCI and probable dementia, which 

suggests that hippocampal GABAA receptor abnormalities may appear in the initial stages of 

AD [148]. However, although interesting, these results should be interpreted with caution 

because these reductions in mRNA may result only in small differences in the protein levels 

[147].

Taken together, although postmortem studies may present limitations due to the presence of 

noise in GABA levels produced by the agonal state [141], the majority of studies have 

reported GABA alterations in the AD brain, although the magnitude of these changes and 

the affected brain areas are still a subject of debate. Future research in these areas—for 
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example, postmortem studies of patients diagnosed with MCI or studies that aim to correlate 

Braak staging with GABA levels—are critically needed to achieve consensus regarding 

GABAergic changes that occur in AD.

3.2.2. Cerebrospinal fluid studies—Several groups have analyzed GABA 

concentration in the cerebrospinal fluid (CSF) of AD patients. While a number have reported 

lower CSF GABA levels for AD patients as compared to matched controls [151-155], others 

found no significant associations [156-158], and one group reported increased GABA levels 

in AD patients [159]. A recent meta-analysis by Manyevitch et al. using data from 12 studies 

(including 182 AD patients and 176 controls) revealed a 26% reduction of CSF GABA 

levels for AD-group relative to the control group (P-value=0.01). However, high 

heterogeneity between the studies included was also noted [160]. GABA downregulation has 

also been reported in patients with Biswanger’s disease [161]—a subcortical type of 

vascular dementia—and Parkinson’s disease [153], suggesting that GABA changes in the 

CSF may be not specific to AD.

As in the post-mortem studies, the current literature in this topic is also characterized by 

methodological diversity and limitations. First, many studies did not match AD and control 

groups by age or sex, and, as reported by Bareggi et al. (1982), GABA declines with age in 

the CSF [162]. Moreover, several studies included AD patients at different stages of the 

disease. Finally, most studies did not adjust their results for the use of benzodiazepines or 

other central nervous system medications that may impact GABA levels in the CSF.

Hence, more research is needed, particularly in light of the fact that CSF biomarkers 

(hyperphosphorylated tau, Aβ42, Aβ42/40 ratio, among others) are routinely collected and 

used in clinical practice [163]. Replications in larger cohort studies in which it will be easier 

to control for potential confounders and make use of additional clinical information, 

associating GABA and other biomarkers of AD-related pathology in the CSF, and 

longitudinal studies including patients with MCI, will help to establish how GABA levels 

are affected in and by AD.

3.2.3. Magnetic resonance spectroscopy studies—Brain metabolites and 

biochemical processes can be measured in vivo via magnetic resonance spectroscopy 

(MRS). MRS classifies molecules according to their resonance and spectral patterns in a 

specific location of the brain, which is decided a priori [164]. GABA levels may be 

corrected by the resonance of other macromolecules. Without this correction, the GABA 

signal includes the resonance of other metabolites, and introduces bias in MRS experiments 

[164-166].

MRS has been extensively used to characterize the role of GABA and other metabolites in 

psychiatric conditions such as schizophrenia [92, 167] and more recently substance use 

disorder [168-172]. During the last 5 years, several authors have measured the GABA levels 

in healthy elderly subjects or patients diagnosed with AD or MCI. These studies have 

confirmed that GABA levels decline with age in frontal [173,174], parietal [173,174], and 

occipital [174,175] regions, as well as in the anterior cingulate cortex and right hippocampus 

[176]. Of note, sex may be one of the parameters that modulates this decline, as females 
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have been shown to present an increased GABA age-related decline in the frontal lobes 

[173].

Table 1 summarizes the characteristics of those studies published to date which have 

evaluated both GABA levels via MRS, and either cognitive performance or cognitive status 

in individuals starting in midlife. Several authors reported positive correlations between 

GABA levels and cognitive performance, especially executive functions [174,177,178]. On 

the other hand, Bai et al. reported lower GABA concentration in the medial parietal cortex of 

AD patients as compared to matched controls, while no differences were found in the frontal 

cortex [179]. Porges et al. found an association between global cognitive performance 

(evaluated using the MoCA screening test) and GABA in the medial frontal cortex, while 

finding no significant results regarding the medial parietal cortex [180]. Similarly, 

individuals diagnosed with MCI showed lower GABA levels in the anterior and posterior 

cingulate cortex [177, 181], and also had a positive PiB PET, which suggests that MCI 

subjects had cognitive impairment caused by AD pathology. While episodic memory has 

most clearly been linked to hippocampal function, this area represents a particularly 

challenging area to image using MRS, which may explain the dearth of published studies 

assessing hippocampal GABA in older adults. However, pilot data from our lab, in which we 

measured GABA in the right hippocampus using a Mescher–Garwood point-resolved 

spectroscopy (MEGA-PRESS) sequence in a small (N = 20) sample of male and female 

healthy adults aged 50–71, found that sex moderated the relationship between hippocampal 

GABA and episodic memory, such that women with lower GABA concentration (measured 

as the peak ratio of GABA+, which reflects the fact that the GABA signal additionally 

contains macromolecules and homocarnosine [166], to creatine) showed worse memory 

performance than both women with higher GABA concentration, and men, regardless of 

GABA concentration, suggesting that the effect of GABA in cognition may be modulated by 

sex. Moreover, this interaction was independent of hippocampal volume.

An important caveat is that reduced GABA concentration in MRS studies may be reflective 

of either a reduction in GABAergic neurons, or by GABAergic dysfunction (reduced GABA 

synthesis and neurotransmission) [179]. Future multimodal imaging approaches to 

complement MRS information, such as the use of PET techniques, may help to disentangle 

and specify the source of the reduced GABA signal.

4. Mechanisms linking GABA dysfunction and memory impairment in AD

The previous section focused on work investigating changes in the GABAergic system and 

cognitive impairment in aging. Here, we review the growing body of literature showing age- 

and AD-related neural hyperactivity during tasks that assess episodic memory.

The excessive neuronal activity which, in aging animal models, has been shown to reflect 

GABAergic dysfunction, is also present in aging humans. Numerous task-based functional 

MRI studies have identified clear neural disturbances in humans at risk for AD, in the early 

stages of AD, and in MCI, including excessive brain activity in the hippocampal and medial 

temporal lobe regions [182]. Notably, neuronal dysfunction precedes structural atrophy in 

AD, and includes greater activation in the hippocampus [183-185]. Further, MCI patients 
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show greater activation of the hippocampal formation during episodic memory tasks as 

compared to both healthy older adults and patients with AD, suggesting that hippocampal 

hyperactivity may be specific to the MCI stage [182, 186,187]. Moreover, MCI patients who 

showed greater task-related medial temporal lobe activity presented with a higher risk of 

clinical decline after a two year follow-up [188]. Similarly, increased hippocampal 

hyperactivation has been shown to correlate with cortical thinning in AD-signature regions 

in both cognitive healthy and MCI patients, suggesting that hippocampal hyperactivity is 

associated with other hallmarks of AD [189,190]. In line with these results, animal studies 

have demonstrated that both levels of Aβ and tau pathology are increased by neural activity 

[191]. This result has been replicated in humans, such that PiB distribution of Aβ 
accumulation overlaps with increased network activity in AD patients [192,193]. Hence, 

hippocampal hyperactivity may be contributing to trigger the hallmark AD-related pathology 

in the early stages of AD, rather than being just a correlate.

Traditionally, hyperactivity was thought to reflect a mechanism that compensates for 

memory deficits [188,194]. For example, Dickerson et al. proposed that it may reflect the 

need to recruit additional neural resources from the hippocampus or other brain regions to 

compensate for AD pathology [182]. In line with this hypothesis, efficiency in encoding 

information is positively correlated with hippocampal activity in MCI patients [187]. Yassa 

et al., (2010) exploring mnemonic control using a pattern separation task, found that 

hippocampal hyperactivity is specifically localized at the CA3/dentate gyrus subregion 

[185], in line with animal studies [125]. Interestingly, the activation in the CA3/dentate 

gyrus subregion was inversely correlated to participants’ performance, suggesting that 

hippocampal hyperactivity is a marker of network impairment [185,47,195]. It is thus 

possible that age-related reductions in GABA levels in these critical hippocampal regions 

[196] may cause the pathological hyperactivity and disturbances in neural network 

connectivity that have now been widely reported, and which have been shown to correlate 

with episodic memory impairment [47, 185].

From a clinical point of view, seizures and epileptiform activity are likely one of the most 

common manifestations of aberrant neural activity. Interestingly, AD patients present a 10 

fold increased risk of developing seizures [197], with prevalence rates in AD of 10–22% 

according to epidemiological data [198]. Moreover, Vossel et al., (2013) reported that MCI 

patients with seizures presented with symptoms of cognitive decline 6.8 years earlier than 

did MCI patients without seizures [199]. Interestingly, a number of studies of levetiracetam 

(Keppra), an anti-epileptic drug that is thought to indirectly enhance the function of GABA 

and target hippocampal hyperexcitability [200], have reported reduced brain activity and 

improved cognitive functioning across a variety of species [46], including several different 

mouse models of AD [201,202], aged mice [203-205], and in humans with AD [206,207]. 

Two studies by Bakker et al., (2015) exploring levetiracetam in amnesic MCI patients found 

that it reduced hippocampal hyperactivity (as indicated by decreased fMRI measured BOLD 

activation) and mitigated memory impairments [208,209]. These studies suggest that 

seizures in AD may be a product of neural hyperactivity due to GABAergic dysfunction 

[210].
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On the other hand, neural disturbances in AD are not limited to the hippocampus. For 

instance, AD patients show increased activation in different regions of frontal and temporal 

cortices when performing different memory tasks [50,211]. Additionally, the DMN, a large-

scale network composed of functionally connected hubs in the brain that are active when the 

brain is “at rest” (i.e., not completing a particular task) and deactivate under cognitive load, 

has been implicated as a potential biomarker of AD. Patients with AD show reduced DMN 

functional connectivity and task-related deactivation, especially in the hippocampus 

[183,212,213]. Similarly, these changes in the DMN are also observed in early in the course 

of AD, including in asymptomatic patients with amyloid deposits [193], and they predict the 

conversion from MCI to dementia [214,215].

It is possible that GABA reduction, and the subsequent E/I imbalance that ensues, may be 

involved in these network disturbances in addition to those frequently reported in the 

hippocampus [216]. In line with this hypothesis, the majority of brain energy consumption 

during rest is attributable to neuronal firing and glutamate and GABA recycling [217]. 

Kapogiannis et al. reported that GABA concentration in the posteromedial and posterior 

cingulated/precuneus cortex were associated with greater DMN deactivation [218]. 

Likewise, higher GABA levels measured via MRS are associated with increased deactivation 

in different nodes of the DMN during a working memory task, while Glutamate played the 

opposite role, having a less significant role in brain activity [219,220].

Together, the studies reviewed provide compelling evidence for the hypothesis that 

GABAergic dysfunction underscores the patterns of neural network disturbances that are 

associated with the episodic memory deficits traditionally seen in AD and its early course. 

However, as reported in the previous section, GABA research is characterized by a wide 

diversity of results, and no study to date has directly tested this hypothesis in humans. In 

addition, the association between GABA and cognitive decline may be modulated by 

numerous factors. In the next section, we will discuss three such potential variables: the 

presence of APOE ε4, female sex, and vascular risk factors.

4.1. Contribution of apolipoprotein ε4 polymorphism

The APOE ε4 polymorphism is considered the strongest genetic risk factor for late onset 

AD. Prevalence of APOE ε4 in the general population is estimated to be ~15%, depending 

on ethnicity, while up to 50% of AD cases present this polymorphism [221-223]. Individuals 

with heterozygotic and homozygotic-ε4 present a 3- and 15-fold risk of developing AD, 

respectively [221,224]. Moreover, 91% of APOE ε4 homozygotes will develop AD in the 

course of their lives [225].

Previous articles have reviewed the relationship between APOE ε4 and neural network 

hyperactivity [46]. Briefly, in animal models, APOE ε4 knock-in mice show an age-

dependent decrease in hilar GABAergic interneurons, which play a crucial role 

synchronizing neuronal activity in the hippocampus [226]. This decrease in GABAergic 

interneurons observed in APOE ε4 animals might be a consequence of increased tau 

phosphorylation and levels of APOE neurotoxic fragments [227]. Moreover, reduction of 

GABAergic interneurons results in downregulated hippocampal neurogenesis, which might 

be restored by potentiating GABAergic neurotransmission [227]. As proposed by Najm et 
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al., (2019) early interneuron loss may lead to impaired phasic and tonic inhibition which 

ultimately results in those neural network disturbances observed in APOE ε4 and AD animal 

models [46,228,229]. However, importantly, Nuriel et al. found that hippocampal 

hyperactivity in APOE ε4 knock-in mice was produced by a lack of background inhibition, 

especially in the entorhinal cortex, caused by a reduced responsiveness of pyramidal 

neurons, suggesting that functional alterations in glutamatergic system may also participate 

in the E/I imbalance [216]. Interestingly, the memory loss in human APOE knock-in mice 

can be rescued via the deletion of APOE ε4 in GABAergic interneurons, confirming the link 

between APOE ε4 and GABAergic interneuron loss. Similarly, Tong et al. showed that 

normal memory function might be restored in APOE ε4 knock-in mice either by 

transplantation of inhibitory interneuron progenitor cells or by increasing GABAergic 

neurotransmission via pentobarbital administration during middle adulthood [230,231].

In humans, APOE ε4 carriers present a 5-fold risk of developing temporal lobe epilepsy 

[232]. Moreover, hippocampal hyperactivation has been consistently associated with APOE 

ε4 polymorphism. For example, during a memory task, asymptomatic ε4 carriers exhibit 

increased activation in the frontal lobes and hippocampus as compared to ε4 non-carriers 

[233,234]. Likewise, Bookheimer et al. found that APOE ε4 carriers had higher 

hippocampal activity than did homozygous APOE ε3 carriers when recalling unrelated pairs 

of words [235]. In this study, the degree of hippocampal activity correlated with cognitive 

decline after a 2 year follow-up. Interestingly, these disturbances in neural activity observed 

in APOE ε4 carriers may appear many years before the appearance of clinical symptoms. 

For instance, two manuscripts reported that increased hippocampal activity during the 

encoding phase of an episodic memory task was evident in 20–35 year old APOE ε4 carriers 

[236,237]. Dennis et al., who followed a sample of young adults (~23 years) longitudinally, 

reported reduced functional connectivity in the medial temporal lobe in the ε4-carrying 

participants [237]. These results support the idea that neural network disturbances may be an 

early marker of APOE ε4-related cognitive impairment, although no study to date has 

directly tested whether the GABAergic system mediates this relationship. Indeed, to our 

knowledge, only one study to date has measured both GABA in vivo and APOE 

polymorphism, and in this study, no differences in GABA concentration in the brain region 

measured (the posterior cingulated cortex) was found between APOE ε4 carriers and non-

carriers [181]. Finally, other alterations in brain activity observed in AD patients are also 

exacerbated by APOE ε4 polymorphism. For instance, subjects with AD having the APOE 

ε4 polymorphism present lower DMN deactivation than do AD patients without APOE ε4 

[238,239].

In summary, APOE ε4 carriers show both an early loss of inhibitory interneurons as well as 

hippocampal hyperactivity, starting before prodromal AD. Increasing GABAergic 

neurotransmission may help to halt cognitive decline according to animal models, although 

no study has yet evaluated this possibility in humans. Human studies have, on the other 

hand, revealed episodic memory related hippocampal hyperactivity in APOE ε4 carriers. 

Hence, future studies that assess both GABA and functional brain activity in the 

hippocampus as a function of APOE ε4 status will be of great interest.
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4.2. Contribution of female sex

It is well-established that the prevalence of AD is greater in women than in men, potentially 

due to the fact that age is the highest risk factor for AD, and women typically live longer 

[240,241]. Mielke reported that although the lifetime risk of developing AD is higher for 

women than men, the overall incidence is not higher for women relative to men [242]. 

However, others consider female sex to be one of the principal risk factors for developing 

AD, behind only age and APOE ε4 carrier status [221,243]. Carroll et al., (2010) for 

example, showed that hippocampal Aβ pathology was greater, and hippocampal-dependent 

cognitive performance as measured using a spontaneous alternation behavior task was 

worse, in female relative to male 3xTg-AD mice, but that neonatal hormone manipulations 

could alter these effects [244]. Whereas 3xTg-AD male mice who received flutamide, an 

androgen receptor antagonist that blocks testosterone, showed an increase in Aβ 
accumulation, 3xTg-AD female mice who were defeminized using transient testosterone 

treatment showed a decrease in Aβ accumulation. In line with this transgenic animal work 

showing that sexually dimorphic characteristics may arise from differences in the prenatal 

hormone milieu, Luo et al., (2020) recently reported that older women who were part of an 

opposite-sex twin pair (F–M) were shown to have a lower risk of dementia than were women 

who were part of a same-sex (F–F) pair [245]. These results suggest that the organizational 

effects of sex steroids in early (prenatal) development may have a profound effect cognitive 

impairment in old age, particularly for females. Indeed, female patients diagnosed with MCI 

present steeper declines in cognitive function than males [246]. Similarly, neuropathological 

studies have reported that women present an increased AD-related pathology, especially 

neurofibrillary tangles [247]. Moreover, female sex is also known to modulate other risk 

factors of AD, such as the effect of APOE ε4 on the conference of AD and symptomology. 

The risk for AD is significantly greater for, and the likelihood of occurrence markedly 

earlier in APOE ε4 carrying women relative to APOE ε4carrying men [221,248]. Further, 

female APOE ε4 carriers are more likely to progress from MCI to dementia than male 

carriers [249]. In line with these results, the consequences of APOE ε4 on brain connectivity 

may be modulated by sex, such that female APOE ε4 carriers have been shown to have 

significantly reduced DMN connectivity relative to male carriers [250]. However, Corona-

Long et al. found no sex-related differences in task induced hippocampal hyperactivity in 

amnesic MCI patients, although it is unknown whether these differences may appear in the 

preclinical stages of AD [251].

Differences between men and women have been reported in the few studies to date that have 

investigated the relationship between GABAergic function and sex in humans. In animal 

models, female Tg2576 mice showed increased GABA levels in the hippocampus at 12 

months relative to males [252], but also showed a steeper rate decline in GABA and GABA/

glutamate ratio between 12 and 18 months as compared to males [252,253]. Similarly, 

Leung et al. (2012) reported an exacerbated age-related loss of hilar GABAergic 

interneurons in female APOE ε4 knock-in mice [254]. Pathological studies in humans have 

shown lower expression of GABAA α1,α2, α5, β3 in healthy older females in the superior 

temporal gyrus [255]. Regarding in vivo studies, Gao et al. found that females present a 

stronger negative correlation between GABA levels and age than males in the frontal region, 

in line with animal studies [173]. As mentioned previously, in human pilot data from our lab, 
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older women presented higher hippocampal GABA levels than did men, although GABA 

concentration in females was inversely correlated with episodic memory performance.

Altogether, these results suggest a potential sexual dimorphism in the GABAergic system in 

aging. Several mechanisms may contribute to these sex-related differences. Estrogen has 

been shown to increase spontaneous GABA release [256]. Moreover, GABA levels may vary 

across the menstrual cycle, suggesting that the GABAergic system may be modulated by 

endocrine system in females [257]. Changes in the female hormonal system during the 

lifespan may also affect GABAergic system, as GABA levels decrease after menopause 

[258]. Importantly, estrogen deficiency has been associated with an increased risk for 

dementia, and replacement therapy may be useful to reduce this risk [259]. On the other 

hand, the effect of gonadal hormones in the GABAergic system is considered a relevant 

neurobiological mechanism in depression in women [260] and, in turn, depression is both a 

well-established risk factor for cognitive impairment, and has a higher prevalence rate in 

women [261,262].

Altogether, these findings suggest that sex may be an important modulating factor in the 

relationship between GABA disturbances and age-related cognitive decline. Hormonal levels 

and depression may account for these differences, and both factors should be considered in 

future research.

4.3. Contribution of vascular risk factors

Vascular cognitive impairment (VCI) is the second leading cause of dementia [2,3]. 

However, AD and VCI tend to coexist, and mixed forms of dementia are often under-

diagnosed [29]. Beyond stroke, VCI is produced by the accumulation of subclinical 

cerebrovascular lesions on brain parenchyma, which are a consequence of microvascular 

disease due to the continuous exposure to vascular risk factors [263]. Interestingly, AD-

related pathology correlates with cerebrovascular lesions, especially in APOE ε4 carriers 

[264]. Moreover, homozygous APOE ε4 carriers present a 3-fold risk of displaying white 

matter hyperintensities, the principal pathological hallmark of microvascular disease. 

Finally, both AD and VCI may share common risk factors such as hypertension and diabetes 

[28,30].

However, little research has investigated the association between vascular risk factors and 

GABA disturbances [265]. Interestingly, the presence of early-life white matter 

hyperintensities predicts the incidence of late-onset epilepsy, suggesting a link between 

cerebrovascular disease and neural network disturbances [266]. Moreover, 

hyperhomocysteinemia, a shared risk factor for AD and cerebrovascular disease, is known to 

reduce GABAA mediated neurotransmission—as homocysteine antagonizes GABAA 

receptors [267]. This effect of homocysteine on GABAA receptors may produce several 

changes at the cellular level that lead to an increase in matrix metalloproteinases and, thus, 

to an increase in blood brain barrier (BBB) permeability [267]. Moreover, experimental 

BBB disruption has been shown to downregulate GABA related genes and increase 

excitatory synaptogenesis [268-271]. Finally, several reports have confirmed reduced GABA 

levels in postmortem and CSF samples of patients with VCI [145,161].
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Hence, GABA downregulation and microvascular disease may be linked by common shared 

risk factors and BBB dysfunction. However, the relationship is complex, and MRS studies 

have shown increased, rather than decreased, GABA levels in the occipital and medial 

prefrontal cortex of diabetic patients as compared to controls (Table 1), as well as negative 

correlations between GABA+ levels and cognition, such that higher GABA levels in these 

regions were associated with worse cognitive function in diabetic patients [272,273]. 

However, the balance between glutamate and GABA may be affected in diabetes due to the 

alteration in brain glucose metabolism, which results in the reduction of brain glycogen 

levels [274]. Interestingly, Sickmann et al. observed an increase in GABA levels after 

inhibiting glycogen in Type 2 diabetic rats, confirming the role of glycogen in maintaining 

the E/I balance [275]. Hence, glucose homeostasis and diabetes may be relevant factors to 

consider in future research in this topic.

5. Conclusion

Alzheimer’s disease is among the most severe and burdensome medical conditions 

worldwide. Despite decades of research, there are still no treatments available to either slow 

or halt its progression. In the current review, we explored evidence for GABAergic 

dysfunction as a harbinger for neural abnormalities and subsequent episodic memory 

impairments that characterize AD. According to the current literature, GABA levels show a 

decrease over the normal course of aging. This decline has been shown to be more 

pronounced in patients with AD and MCI, specifically in the cingulate cortex [177,181] and 

medial parietal lobe [179]. However, it is unknown whether these alterations predict the 

incidence of dementia when observed in healthy older adults. Neural network disturbances 

have also been reported to begin in the preclinical and mild stages of AD [189]. While 

animal models provide strong evidence that dysregulated GABAergic signaling, potentially 

moderated APOE ε4, causes this hippocampal hyperactivity and subsequent memory 

failures in aged-animals, this mechanism has not been directly tested in humans, either 

cross-sectionally or longitudinally. Future multimodal imaging approaches that combine 

MRS, PET, and fMRI techniques in humans at risk for developing AD or who have already 

begun the clinical course may help to clarify the interplay between GABAergic alterations, 

Aβ and tau accumulation, neural network hyperexcitation and memory loss, and help to 

determine the sequence of pathological events that trigger AD.

A schematic representation of our working model is illustrated in Fig. 1. We hypothesize 

that the effect of age on GABAergic levels may be modulated by female sex, APOE ε4 and 

cerebrovascular disease, which impair GABAergic function either independently or in 

interaction. These factors may decrease GABA levels by damaging interneurons or 

impairing GABAergic function (reduced GABA turnover, downregulation of GABAA 

receptors or GAD, among other mechanisms) resulting in circuit hyperexcitability in the 

hippocampus. Sustained exposition to hippocampal hyperactivity may lead to episodic 

memory loss, Aβ/tau accumulation, and atrophy, culminating in an increased likelihood of 

incident dementia.

Therefore, according to our hypothesis, GABAergic dysfunction might precede both the 

clinical symptoms of dementia, and tau and Aβ accumulation, playing a pivotal role between 
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risk factors and episodic memory impairment. Further study of the GABAergic system in 

aging may help to achieve a better understanding of AD and age-related cognitive decline. 

Moreover, GABA may represent a potential pharmacological target as suggested by previous 

clinical trials reporting positive benefits of levetiracetam on cognitive decline [206,209]. 

Importantly, previous research highlighted that hippocampal hyperactivity is specific to MCI 

and the preclinical stages of AD [182,189], and thus the therapeutic window to target GABA 

in pharmacological interventions may be in those stages preceding dementia (e.g., in 

individuals with subjective cognitive complaints). Considering that, due to the increase in 

life expectancy, there will be ~80 million dementia cases by 2040 [276], future work aimed 

at solving these questions is urgently need, and will help to reduce the devastating impact of 

dementia on both individuals, and society at large.
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Fig. 1. 
Figure representing the role of the GABAergic system in memory impairment during the 

prodromal or preclinical stages of AD. GABAergic dysfunction results from a combination 

of factors working independently, and in interaction, including an increase in age, female 

sex, the presence of APOE ε4 polymorphism, and vascular risk factors. The reduction of 

GABA levels precipitates hippocampal hyperactivity, which in turn contributes to episodic 

memory impairments that are concomitant with or precede the incidence of dementia. 

Dashed lines represent those relationships that need further research to be confirmed. Note: 

Aβ, amyloid β; APOE ε4, apolipoprotein ε4 polymorphism; BBB, Blood brain barrier.
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