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Abstract

Background—Birthweight is a strong predictor of normal growth, healthy development, and 

survival. Several studies have found associations between temperature, fine particulate matter 

(PM2.5), and birth weight. However, the relevant timing of exposures varies between studies and is 

yet unclear. Therefore, we assessed the difference in term birthweight (TBW) associated with 

weekly exposure to temperature and PM2.5 throughout 37 weeks of gestation.

Methods—We included all singleton live term births in Massachusetts, U.S between 2004 and 

2015 (n=712,438). Weekly PM2.5 and temperature predictions were estimated on a 1 km grid from 

satellite-based models. We utilized a distributed lag nonlinear model (DLNM) to estimate the 

difference in TBW associated with weekly exposures from the last menstrual period to 37 weeks 

of gestation.
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Results—We found a nonlinear association with prenatal temperature exposure. Larger effects 

were observed in warmer temperatures, where higher temperatures were negatively associated 

with TBW. Temperature effects were larger in the first and final weeks of gestation. We observed a 

negative difference in TBW associated with PM2.5 exposure. Overall, a 1 μg/m3 increase in 

prenatal exposure was associated with 3.9g lower TBW (95% CI −5.0g; −2.9g). PM2.5 effects 

were larger in the final weeks of gestation.

Conclusion—We found heat and PM2.5 exposure to be related to lower TBW. Our findings 

suggest that women are more susceptible to both exposures towards the end of pregnancy. 

Susceptibility to heat was higher in the initial weeks of pregnancy as well. These critical windows 

of susceptibility can be communicated to pregnant women during routine prenatal visits to 

increase awareness and target interventions to reduce exposures.
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1. Introduction

Birth weight is a marker for development in early life [1] with long-term health 

consequences in childhood and adulthood [2]. The World Health Organization has targeted 

the achievement of a 30% reduction in low birth weight deliveries as a sustainable 

developmental goal [3], emphasizing the importance of birth weight as a predictor of 

morbidity and mortality. Although birth weight is mostly determined by genetic factors and 

length of gestation [4], it is also affected by maternal health and exposures during pregnancy 

[5–11]. Several studies have found associations between temperature [12–16], particulate 

matter smaller than 2.5μm (PM2.5) [17–21], and birthweight. However, exposure assessment 

methods and the definition of the time windows of susceptibility vary across studies.

In most current studies, temperature and PM2.5 exposures are averaged over trimesters or the 

entire pregnancy [15, 21–25]. However, the true time windows of susceptibility are unlikely 

to follow the strict categorization of trimesters [12]. Another problem that can potentially 

arise from this approach is seasonality bias, as described by Wilson et al. Although this bias 

can be reduced by including all three trimester exposures in the model, it does not 

necessarily eliminate the bias [26].

Distributed lag models (DLMs) are a useful tool to address both limitations. DLMs can be 

used to identify critical windows of susceptibility in a flexible way [27]. They allow a joint 

assessment of multiple short intervals of exposure (i.e., the lag structure) throughout the 

gestation period [26]. This approach has been previously used to assess the effects of 

meteorological exposures or PM2.5 exposure during pregnancy on term birth weight (TBW) 

[12, 26].

As we know from previous studies, there is evidence of nonlinear associations between 

temperature exposure and birth outcomes [5, 25, 28]. In addition, we hypothesize that the lag 

structure of the associations throughout the pregnancy does not necessarily follow a linear 

trend, and exposures during some periods of gestation may be more critical to fetal growth 
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than others. Distributed lag nonlinear models (DLNM) are an extension of DLMs, which 

allow us to flexibly model both the nonlinear exposure-effects and the lag structure of the 

associations [27]. Although this approach was used to assess temperature and humidity 

effects on the rate of preterm births [29, 30], or TBW [12] to our knowledge, it has not been 

used to assess the simultaneous effects of temperature and PM2.5 exposure on TBW.

In this study, we investigate the complex lag structures and nonlinear temperature and PM2.5 

effects on TBW in a large population-based birth registry. We aim to identify critical 

windows of prenatal exposures using fine spatiotemporal models of temperature and PM2.5.

2. Materials and methods

2.1. Study population

We included all eligible singleton live births in the Massachusetts birth registry data 

(n=712,438 births) for years with available exposures data (2004–2015). The birth registry 

data included 834,886 records within the study years. This data includes the newborn’s 

information (date of birth, sex (male or female), birth weight in grams, gestational age at 

birth), maternal sociodemographic information (age at birth, race (White, Black, or other), 

parity (first delivery/ 2nd or more), whether the mother received government support for 

prenatal care (yes/no), smoking before or during pregnancy (yes/no), the highest level of 

education attained (no high school diploma, high school, some college, or college), chronic 

conditions (e.g. diabetes (yes/no) or hypertension (yes/no)), and geocoded residential 

address at birth. We excluded a total of 122,448 (14.6%) of the births according to the 

following exclusion criteria: preterm births (<37 weeks, n=57,557), records of gestational 

age >42 weeks (n=8,506), records of birthweight<400 grams (n=10) or over 6 kg (n=20), 

and records that had missing covariates, or residence information (n=93,527). Most of the 

missingness was driven by missing address information, and missing information on 

diabetes and hypertension. Since we only included term births, we a priori assumed linear 

relationship between gestational age and the outcomes. We observed stronger negative 

associations between maternal age and TBW among the youngest and eldest mothers and 

therefore used a penalized spline function to allow for a nonlinear association with maternal 

age at delivery.

This study was approved by the Massachusetts Department of Public Health and the human 

subjects committee at the Harvard T. H. Chan School of Public Health.

2.2. Exposures

PM2.5: Residential exposure to PM2.5 was estimated during pregnancy using a novel model 

[31]. We applied extreme gradient boosting (XGBoost) modeling to predict daily PM2.5 on a 

1-km resolution for a 13-state region in the Northeastern USA. We used satellite-derived 

aerosol optical depth (AOD) and implemented a recursive feature selection among land use 

covariates to develop a robust yet parsimonious model. The model performance was 

excellent, with a root mean square error (RMSE) of 3.11 μg/m3 in our spatial cross-

validation withholding nearby sites and a RMSE of 2.10 μg/m3 using a more conventional 

random ten-fold splitting of the dataset. For more in depth details on model methods and 
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performance please see Just 2020 [31]. Daily estimates were averaged to calculate weekly 

exposures for each week of gestation in each woman.

Temperature: Ambient temperature at the residential address was estimated during 

pregnancy using a second novel model [32]. We applied XGBoost to predict hourly air 

temperature on a 1-km resolution for the same 13-state region in the Northeastern USA. We 

used land surface temperature (LST) from two NASA satellites (up to four overpasses daily) 

as well as physiographic and land use covariates and inverse-distance weighted temperature 

surfaces from ~4,000 weather stations of the Integrated Mesonet. A rigorous spatial cross-

validation showed excellent performance with RMSEs around 1.6 K compared with standard 

deviations around 11.0 K. For comparison, the mean square error (MSE) was about 1/3 of 

the MSE of the widely used ~11 km by 14 km NASA NLDAS-2 forcing temperature. 

Hourly estimates were averaged to calculate weekly exposures for each week of gestation in 

each woman.

2.3. Statistical analysis

We assessed the association between weekly mean temperature and PM2.5 exposures during 

gestation and TBW using DLNMs [27]. We utilized a DLNM generalized additive model to 

estimate the difference in TBW associated with weekly exposures from the last menstrual 

period to 37 weeks of gestation. Both exposures were included in simultaneously in the 

multivariate model. The advantage of the DLNM framework is that it allows nonlinear 

exposure-response and time-response functions [27]. Associations between temperature 

exposure and birth outcomes are often nonlinear [5, 25, 28]. Therefore, we modeled the 

association between weekly mean temperature and TBW using a natural cubic spline with 

two degrees of freedom and modeled the lag function using a penalized spline. For PM2.5 

exposure, we assumed a linear association with TBW and modeled the lag function using a 

natural cubic spline with three degrees of freedom. Both for the association with temperature 

and for the lag function of PM2.5, we selected the number of degrees of freedom that 

minimizes the Akaike Information Criterion (AIC). We estimated the overall cumulative 

exposure-response curve of temperature and PM2.5 exposure effects on TBW. We 

additionally assessed the difference in TBW associated with increases in PM2.5 and low and 

high temperatures.

We adjusted the model for the variables available in the birth records shown to be potential 

confounders of the associations between temperature, PM2.5, and birthweight: season and 

year of birth, a cyclic spline of day of the year, government support for prenatal care, race, 

age of mother at birth, parity, maternal smoking before or during pregnancy, the maternal 

highest level of education attained, chronic diabetes, chronic hypertension, and gestational 

age at birth [6, 10, 33]. We additionally adjusted the model for census block-group 

socioeconomic characteristics (i.e., population density and median household income).

We present the results of the cumulative exposure-response curves, defined as the net effect 

of PM2.5 or temperature across the entire lag period [27]. We additionally present the 

difference in birthweight, associated with 1 μg/m3 increase in PM2.5, and 1 °C increase in 

temperature in different weeks of gestation. Since the cumulative exposure-response curve 

suggested a nonlinear association with temperature exposure, we present the effect estimates 
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associated with a rise of 1 °C in the 5th (−4 °C) and the 95th (23 °C) percentiles of the 

temperature distribution.

2.3.1. Secondary analyses—To identify a potential modification of the associations by 

maternal race and income, and by newborn sex, we repeated our model separately among 

White versus non-White mothers, among mothers who receive governmental support for 

prenatal care versus mothers who do not receive governmental support, and among male 

versus female newborns. We treat eligibility to governmental support as a proxy for 

socioeconomic status.

Additionally, to capture the effects of the studied exposures on extreme abnormal fetal 

growth, we have assessed the effects of temperature and PM2.5 exposures in pregnancy on 

newborns small for gestational age (SGA). We calculate the newborn size for gestational age 

(SGA, appropriate for gestational age (AGA) or large for gestational age (LGA)) using the 

Fenton sex-specific reference growth curves [34].

2.3.2. Sensitivity analysis—The DLNM requires identical length exposure periods 

across the study population. This poses a challenge in defining the exposure period when 

studying pregnancy outcomes where the intrauterine exposures differ in length and depend 

on the gestational age at birth. To overcome this limitation, we defined the exposure period 

in our main analysis as the first 37 weeks of gestation, starting at date of last menstrual 

period (LMP), and limited our data to term births. For women who gave birth after the start 

of 37 weeks of gestation, exposures following the 37th week were unaccounted for in our 

main model. We, therefore, added a sensitivity analysis aimed to examine the robustness of 

our findings. We created a subcohort of women who delivered at 39 weeks of gestation. 

Among this population, we compared the results obtained when assessing the weekly effects 

of temperature and PM2.5 exposure at the first 37 weeks of gestation versus the entire 

pregnancy (39 weeks of gestation).

3. Theory

Multiple factors determine birthweight; some are not fully understood. It is, therefore, hard 

to identify a single etiology of lower birth weight. Maternal exposure to high temperatures 

during pregnancy can affect birthweight through different mechanisms. The first trimester of 

pregnancy is crucial for the correct implantation of the placenta [35]. Maternal exposure to 

heat in the early stages of pregnancy can reduce placental weight and umbilical cord flow 

[5]. The final stages of pregnancy are characterized by the fastest somatic growth of the fetus 

[35]. Therefore, high-temperature exposures in late gestation can also affect birth weight. 

Higher heat production during pregnancy, alongside weight gain and the burden of the fetus, 

limit the maternal ability to tolerate heat stress [13]. Heat stress and dehydration during 

pregnancy can cause uterine constriction and impair the uterine blood flow [36].

The PM2.5 effect on intrauterine growth can be attributed to the limited placental ability to 

filter environmental chemicals [37]. Maternal exposure to air pollution during pregnancy 

may cause oxidative stress and endocrine disruption in the placenta, impair the transport of 

oxygen and nutrients to the fetus, and adversely affect the intrauterine growth [35, 38]. 
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PM2.5 has also been shown to impair vascular development in the placenta [39], decrease 

placental methylation in the leptin gene promotor [40], and decrease mitochondrial DNA 

content and increase mitochondrial DNA methylation in the placenta [41].

4. Results

We included 712,438 births; 71.9% were of White mothers. The mean maternal age at 

delivery was 30 years, 6.8% reported smoking during pregnancy, 0.9% had diabetes 

mellitus, and 1.3% had chronic hypertension. Half of the newborns were males, the mean 

gestational age at birth was 39.3 weeks, and the mean TBW was 3.4 kg (Table 1). The 

median household income at the maternal block group of residences was $51,700 on 

average.

During the study period, the mean temperature exposure was 10.2 °C, and mean PM2.5 

exposure was 8.9 μg/m3 (Figure 1 and Table 2). Weekly temperature exposures ranged from 

−16.7 °C to 30.2 °C with a standard deviation of 9.2 °C. The births were distributed evenly 

throughout the year, with slightly more births in the summer months (Table 2). The 

correlation between weekly temperature and PM2.5 exposures was low (r=0.15, p<0.001).

We observed significant associations between temperature and TBW, independent of PM2.5 

exposure. The cumulative temperature exposure-response curves over 37 weeks of gestation 

are presented in Figure 2. In temperatures below zero, we observed a positive difference in 

TBW associated with higher temperatures. The associations in colder temperatures were 

mostly non-significant. In warmer temperatures, we observed a negative difference in TBW 

associated with higher temperatures. For example, we observed a positive non-significant 

difference in TBW for a rise in 1 °C in temperature exposure from −4 °C to −3 °C (2.4g, 

95% CI −0.1g; 4.9g). However, a rise in 1 °C in temperature exposure from 23 °C to 24 °C 

was associated with 7.9g lower TBW (95% CI −11.2g; −4.6g) (Figure 2.a). We observed a 

negative cumulative difference in TBW associated with PM2.5 exposure, independent of 

temperature exposure. A 1 μg/m3 increase was associated with 3.9g lower TBW (95% CI 

−5.0g; −2.9g) (Figure 2.b).

Figure 3 shows the difference in TBW associated with a unit increase in exposures across 

the 37 lags of exposures. In the 5th percentile of temperature (−4 °C), we observed positive 

associations with TBW, that were similar across different weeks of gestation (Figure 3.a). In 

the 95th percentile of temperature (23 °C), we observed larger TBW reductions associated 

with temperature exposure at the first and final weeks of gestation. We found smaller TBW 

reductions associated with weekly temperature exposure around the second trimester of 

pregnancy (Figure 3.b). Finally, we observed larger TBW reductions associated with PM2.5 

exposure in the final weeks of gestation (Figure 3.c). Figure 4 shows the odds ratio of SGA 

associated with a unit increase in exposures across the 37 lags of exposures. We did not find 

a statically significant association between temperature exposure and SGA. A 1 μg/m3 

increase in cumulative PM2.5 exposure across the pregnancy was associated with a 3% (odds 

ratio 95%CI 1.02; 1.04) higher odds of SGA. The effects were similar across the different 

weeks of gestation. For example, the odds of SGA were 0.008% higher for each 1 μg/m3 
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increase in PM2.5 exposure in the 37th week of gestation, and 0.01% higher for each 1 μg/m3 

increase in PM2.5 exposure in the first week of gestation.

Thirty-one percent of the women in our analytic dataset gave birth at 39 weeks of gestation. 

We repeated our model among this subcohort and compared the results for 37 weeks of 

exposure and complete gestational exposure (39 weeks) in this population. The cumulative 

effects of temperature and PM2.5 were similar, regardless of the exposure period 

(Supplementary Figure 1).

Supplementary Figures 2–4 shows the cumulative differences in TBW by race, maternal 

governmental support for prenatal care visits, and newborn sex. The differences in TBW 

associated with temperature at the 5th and 95th percentiles and PM2.5 in each sub cohort are 

presented in Supplementary Table 1. We observed stronger temperature effects among 

mothers who received governmental support, and among female newborns. Additionally, we 

observed stronger effects of hotter temperatures among White mothers. The effects of colder 

temperatures did not differ by race. The effects of PM2.5 exposure were similar in all sub 

cohorts.

5. Discussion

5.1. Main findings

Our findings show that the first and final weeks of gestation are the critical windows of 

exposure to heat. We observed a nonlinear temperature effect, with higher temperatures 

associated with lower TBW in warmer temperatures. We found a significant decrease in 

TBW and a significant increase in the odds of SGA associated with PM2.5 exposure. The 

negative association of PM2.5 exposure with TBW was larger towards the end of pregnancy.

5.2. Critical windows of exposure

This study confirms evidence from previous studies that found decreases in TBW associated 

with maternal exposure to heat during pregnancy. A recent review investigating the effects of 

prenatal exposure to air pollution and heat on birth outcomes in the U.S. has found three 

studies that evaluated the association between maternal exposure to heat and low birth 

weight [42]. In each of these studies, temperature exposure was associated with low birth 

weight [15, 43, 44]. Basu et al. have concluded that the observed effects of apparent 

temperature on low birth weight over the entire pregnancy are driven largely by exposure in 

the third trimester of pregnancy [43]. Similarly, Ha et al. [15] and Kloog et al. [45] have 

found an increased risk for low birth weight associated with heat exposure during the whole 

pregnancy, and the third trimester specifically. To date, there is no consensus regarding the 

critical windows of exposure to heat during pregnancy [46]. As pointed in the examples 

above, most studies identify the third trimester as the important window of susceptibility. 

However, our findings show that the first trimester of pregnancy is critical as well. We found 

that newborns are more susceptible to maternal heat exposure in the initial and final weeks 

of pregnancy, adjusting for the exposure across all other weeks of gestation. With the 

progression of pregnancy towards the 19th week of gestation, the observed effects gradually 

became smaller. After remaining constant in mid-pregnancy, following the 25th week of 
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gestation, the effects gradually became larger. The early pregnancy exposure-effect might 

not be captured in studies averaging the exposures over trimesters or the whole pregnancy. 

The added value of our study is the finer isolation of the critical windows of susceptibility.

Unlike temperature exposure, the lag-structure of the PM2.5 effect on TBW followed a linear 

trend with larger effects in later weeks of gestation. The increased odds of SGA, associated 

with PM2.5 exposures were very similar across the different weeks of gestation. Similar to 

our analysis, numerous studies have found significant associations between PM2.5 and low 

birth weight, TBW [42] or SGA [20]. However, the critical windows of susceptibility for 

PM2.5 are inconsistent across studies. For example, Kumar et al. [47] have identified the 

highest PM2.5 effect on birth weight in the first trimester of pregnancy. Ha et al. [15] have 

found associations with PM2.5 exposure in the second trimester, and Savitz et al. [48] have 

found significant effects of PM2.5 exposures in all three trimesters of pregnancy. In a 

previous analysis done by our group, we have found significant effects of PM2.5 exposures 

in all three trimesters of pregnancy. These effects were attenuated when we included 

exposures to greenspace, noise, and walkability in the model [49]. Studies that investigated 

the effects of extreme pollution events on obstetric outcomes have found exposure to PM2.5 

originating in wildfire smoke in first [50, 51], second and third trimesters [51] of pregnancy 

to be associated with lower birthweight.

5.3. Nonlinear association with temperature exposure

Another important finding of this study is the nonlinear relationship between temperature 

and TBW. The same exposure response curve was reported in animal studies which found 

extremely high and low temperatures to be associated with maternal stress, lower 

birthweight, placental weight and diameter. We observed an inverted U-shaped exposure-

response curve, which suggested that both temperature extremes were associated with lower 

TBW. The effects were stronger in warmer temperatures, where higher exposure was 

associated with lower TBW. These findings are in line with current evidence, suggesting that 

the adverse neonatal effects of temperature exposure are stronger for heat than for cold [52].

5.4. Susceptible groups

The results of our sub cohort analyses varied by exposure. We found similar associations for 

PM2.5 regardless of sex, socioeconomic and racial groups. Similarly, Bell et al also found 

similar air pollution effects on birthweight among male and female newborns [53]. Unlike 

our findings, other studies have found racial minorities and lower socioeconomic groups to 

be more susceptible to air pollution effects [54, 55]. This may be related to higher exposure 

concentrations, higher frequency of psychological stressors, or limited access to health care 

[56]. In accordance with the literature, we did find mothers of lower socioeconomic status to 

be more susceptible to both colder and hotter temperatures [57]. This may be related to 

limited access to air conditioning, and residence in densely populated neighborhoods. 

Unexpectedly, White mothers were more susceptible to hotter temperatures compared to 

non-White mothers. With 80% White population in Massachusetts, it is possible that our 

findings were not robust due to a small sample size among minority groups.
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Finally, we found larger TBW reductions associated with temperature among females, 

especially in hotter temperatures. Boys and girls are different in terms of fetal growth 

patterns, placental efficiency, and susceptibility to various prenatal exposures [12]. The 

underlying mechanisms of susceptibility are unclear and only a few studies have investigated 

potential modification by sex. Jakpor et al have found higher temperature variability to be 

associated with lower birthweight. Unlike our findings, they have found males to be more 

vulnerable to temperature variability [12]. Additional studies are required to investigate the 

differential vulnerability to prenatal temperature exposure among males and females.

5.5. Clinical implications

The current guidelines of the American College of Obstetricians and Gynecologists for 

prenatal care cover a wide range of maternal risk factors during pregnancy. Health care 

providers advise pregnant women on topics related to immunizations, infections, nutrition, 

exposure to violence, food, and medication consumption during pregnancy, and more. 

Although the guidelines address teratogenic environmental exposures, they do not include 

specific recommendations regarding heat and air pollution exposure during pregnancy.

Health care providers can communicate these critical windows of susceptibility to prenatal 

temperature and air pollution exposure to pregnant women during routine prenatal visits. 

This information will increase awareness and hopefully motivate the mothers to reduce 

exposure as much as possible, especially during the critical gestation weeks. For example, 

women can be advised to limit their exposure to traffic (e.g., avoid exercising near main 

roads, maintain proper ventilation indoors) – especially during the final weeks of pregnancy.

5.6. Strengths and limitations

This is a statewide analysis incorporating time-varying exposures to PM2.5 and temperature 

throughout the pregnancy. The large sample size and the use of fine spatiotemporally 

resolved exposure models are the major strengths of this analysis. Another strength is the 

use of DLNM, which allowed us to flexibly investigate exposure-effects in different stages 

of gestation. Our study had several limitations. Since we did not collect the data for this 

analysis but used routinely collected data, 12% of the records had missing covariates data. 

This problem is common in retrospective studies. Second, since we assigned exposure based 

on maternal place of residence at birth, we might have had misclassified exposure for 

women who changed addresses during pregnancy. However, since the new residence choice 

is unlikely to be based on air pollution or temperature exposure and unlikely to differ greatly 

in terms of the socioeconomic environment, we expect the exposure measurement error to be 

non-differential [58, 59]. Moreover, since we assign ambient exposures, and do not have 

information on indoor exposures or air conditioning use, we might have misclassified the 

exposure. If the true exposure of women during heat events tends to be much lower than the 

ambient temperature exposure due to use of air conditioning, this may have attenuated our 

results. If the misclassification was non differential, the results may be biased either toward 

or away from the null. Third, since we could not control for all potential confounders (such 

as maternal weight), residual confounding may still be present although the specific 

temporal pattern of associations decreases the likelihood to non-time varying confounding 

factors. In addition, since our study population is restricted to live births, we do not have 
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information on spontaneous abortions. Therefore, our findings do not reflect the exposure 

effects on pregnancies which ended in an early stage. Finally, since most of our study 

population were White mothers, we might have not had enough representation of minority 

groups to allow the investigation of modification by racial group.

6. Conclusions

We found heat and PM2.5 exposure to be related to lower birth weight among term singleton 

births. Our findings suggest that women are more susceptible to both exposures towards the 

end of pregnancy. Susceptibility to heat was higher in the initial weeks of pregnancy as well. 

These critical windows of susceptibility can be communicated to pregnant women during 

routine prenatal visits to increase awareness and motivate them to reduce exposure.
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• Heat and PM2.5 exposure were independently associated with lower TBW.

• Women are more susceptible to both exposures towards the end of pregnancy.

• Susceptibility to heat was higher in the initial weeks of pregnancy as well.
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Figure 1. The distribution of mean temperature and PM2.5 exposures over gestation.
Figure 1 shows the distribution of weekly temperature and PM2.5 exposures. Each woman 

contributed 37 weeks of weekly averaged exposures.

Yitshak-Sade et al. Page 15

Environ Int. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The cumulative exposure-response curves for differences in birth weight, associated 
with weekly (a) temperature and (b) PM2.5 exposures in weeks 0–37 of pregnancy.
Figure 2 presents the cumulative exposure-response curves for the association between 

temperature, PM2.5, and term birth weight, defined as the net effects of the exposures across 

the entire lag period (weeks 0–37 of pregnancy). The model is adjusted for: season and year 

of birth, a cyclic spline of day of the year, government support for prenatal care, race, age of 

mother at birth, parity, maternal smoking before or during pregnancy, the maternal highest 

level of education attained, chronic diabetes, chronic hypertension, gestational age at birth, 

and census block-group socioeconomic characteristics (i.e., population density and median 

household income).
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Figure 3. The difference in birth weight for temperature at the 5th percentile (−4 °C) (a), 
temperature at the 95th percentile (23 °C) (b), and PM2.5 exposure (c) across the different weeks 
of gestation.
The model is adjusted for: season and year of birth, a cyclic spline of day of the year, 

government support for prenatal care, race, age of mother at birth, parity, maternal smoking 

before or during pregnancy, the maternal highest level of education attained, chronic 

diabetes, chronic hypertension, gestational age at birth, and census block-group 

socioeconomic characteristics (i.e., population density and median household income).
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Figure 4. The cumulative exposure-response curves for the odds ratio of SGA, associated with 
weekly (a) temperature and (b) PM2.5 exposures in weeks 0–37 of pregnancy.
Figure 2 presents the cumulative exposure-response curves for the association between 

temperature, PM2.5, and newborns small for gestational age (SGA), defined as the net effects 

of the exposures across the entire lag period (weeks 0–37 of pregnancy). The model is 

adjusted for: season and year of birth, a cyclic spline of day of the year, government support 

for prenatal care, race, age of mother at birth, parity, maternal smoking before or during 

pregnancy, the maternal highest level of education attained, chronic diabetes, chronic 
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hypertension, gestational age at birth, and census block-group socioeconomic characteristics 

(i.e., population density and median household income).

Yitshak-Sade et al. Page 19

Environ Int. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yitshak-Sade et al. Page 20

Table 1.

Population characteristics.

Population characteristics N=712,438

Maternal age, Mean (SD) 30.08 (5.92)

Maternal race, n (%)

 White 512,355 (71.9)

 Black 67,435 (9.5)

 Other 132,648 (18.6)

Maternal education, n (%)

 Less than high school 75,511 (10.6)

 High school 158,733 (22.3)

 Some college 162,002 (22.7)

 College or more 316,192 (44.4)

Governmental support for prenatal care, n (%) 251,633 (35.3)

Chronic hypertension, n (%) 9,073 (1.3)

Diabetes mellitus, n (%) 6,280 (0.9)

Smoking in pregnancy, n (%) 48,405 (6.8)

Gestational age in weeks, Mean (SD) 39.31 (1.18)

Parity>1, n (%) 387,393 (54.4)

Newborn sex, female, n (%) 349,086 (49.0)

Birthweight in g, Mean (SD)) 3428.90 (464.14)

Birthweight for gestational age, n (%)

 AGA 590,715 (82.9)

 LGA 81,300 (11.4)

 SGA 40,423 (5.7)

Term low birthweight (<2500 g), n (%) 15,510 (2.1)

Median household income, Mean (SD) 51,700 (21,099)

SD=standard deviation; AGA= appropriate for gestational age; LGA=large for gestational age; SGA= small for gestational age.

Newborn size for gestational age was calculated using the Fenton sex-specific reference growth curves.
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Table 2.

Summary statistics of exposures.

Exposure metrics Summary statistics

mean temperature over gestation, °C

Mean (SD) 10.2 (9.2)

25th percentile 2.3

50th percentile 10.4

75th percentile 18.5

mean PM2.5 over gestation, μg/m3

Mean (SD) 8.9 (3.5)

25th percentile 6.4

50th percentile 8.2

75th percentile 10.8

Season of birth, n (%)

 Winter 167,435 (23.5)

 Spring 180,110 (25.3)

 Summer 188,097 (26.4)

 Fall 176,796 (24.8)

SD=standard deviation, PM2.5=fine particulate matter.
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