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Radiomics predicts risk of cachexia in advanced NSCLC
patients treated with immune checkpoint inhibitors
Wei Mu 1, Evangelia Katsoulakis2, Christopher J. Whelan 1, Kenneth L. Gage3, Matthew B. Schabath 4,5 and Robert J. Gillies 1

BACKGROUND: Approximately 50% of cancer patients eventually develop a syndrome of prolonged weight loss (cachexia), which
may contribute to primary resistance to immune checkpoint inhibitors (ICI). This study utilised radiomics analysis of 18F-FDG-PET/CT
images to predict risk of cachexia that can be subsequently associated with clinical outcomes among advanced non-small cell lung
cancer (NSCLC) patients treated with ICI.
METHODS: Baseline (pre-therapy) PET/CT images and clinical data were retrospectively curated from 210 ICI-treated NSCLC
patients from two institutions. A radiomics signature was developed to predict the cachexia with PET/CT images, which was further
used to predict durable clinical benefit (DCB), progression-free survival (PFS) and overall survival (OS) following ICI.
RESULTS: The radiomics signature predicted risk of cachexia with areas under receiver operating characteristics curves (AUCs) ≥
0.74 in the training, test, and external test cohorts. Further, the radiomics signature could identify patients with DCB from ICI with
AUCs≥0.66 in these three cohorts. PFS and OS were significantly shorter among patients with higher radiomics-based cachexia
probability in all three cohorts, especially among those potentially immunotherapy sensitive patients with PD-L1-positive status
(p < 0.05).
CONCLUSIONS: PET/CT radiomics analysis has the potential to predict the probability of developing cachexia before the start of ICI,
triggering aggressive monitoring to improve potential to achieve more clinical benefit.

British Journal of Cancer (2021) 125:229–239; https://doi.org/10.1038/s41416-021-01375-0

BACKGROUND
Cachexia, a syndrome that induces progressive functional impair-
ment,1 occurs in about 50% of all cancer patients2 and accounts
for 20% of cancer-related deaths.3 Cachexia is defined as more
than 5% weight loss over 6 months, or more than 2% weight loss
if body mass index (BMI) is less than 20 kg/m2 in absence of simple
starvation.4 Compared to breast cancer, thyroid cancer and
haematological malignancies, the development of cachexia is
higher in patients with lung cancer.5,6 Notably, chronic obstructive
pulmonary disease (COPD), is a very high risk factor for
development of cachexia,7,8 although the mechanisms triggering
this are unknown. Cancer cachexia not only increases patients’
mortality, but also impairs the response to first and second line
chemo- and radio-therapies.5 Additionally, cachexia promotes
primary resistance to immune checkpoint inhibitors (ICIs), which
otherwise significantly improves durable clinical benefit (DCB),
progression-free survival (PFS) and overall survival (OS) in non-
small cell lung cancer (NSCLC) patients.9,10 This resistance is
hypothesised to be caused by suboptimal drug exposure as
anorexia/cachexia-related metabolic wasting may accelerate anti-
body blood clearance.11,12 Therefore, early identification of
patients likely to develop cachexia could be used to initiate
interventions as early as possible to attenuate cachexia

progression.13 If successful, these interventions would improve
prognosis of response to ICIs.5

To identify patients at risk of developing cachexia at early stage,
prior studies have attempted to define criteria for pre-cachexia, a
stage when early clinical and metabolic signs such as anorexia and
inflammation were present, but substantial weight loss was not.4

Predictive criteria that have been investigated have included:
weight loss, body mass index (BMI),14 anorexia, systemic
inflammation,15 biochemistry, food intake, activities and functional
status.16 However, these studies were analysed based on overall
survival, and could not be used for predicting cachexia directly.
Cancer-associated cachexia is caused by tumour- and host-

derived factors that lead to inflammation, and systemic metabolic
modifications, including excess catabolism, increased energy
expenditure and progressive loss of muscle.11,17,18 Metabolic
alterations associated with malignant disease may alter lympho-
cyte function by limiting the availability of key nutrients.19 Besides
cancer-induced cachexia, some chemotherapies also induce
cachexia-like loss of muscle and adipose tissue. Fearon et al.
suggested that therapy-induced weight loss may be considered
an “integral part” of the syndrome.1 This perspective is borne out
by later studies that have shown that cancer-induced and therapy-
induced cachexia share some signalling pathways.20 These include
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pathways involved in muscle wasting21,22 and some that may
interfere with muscle anabolism.21,23 Therefore, we do not
attribute the manifestation of cachexia to one cause or the other,
hereafter referring to both cancer-induced and therapy-induced
cachexia simply as cachexia.
As a metabolic imaging technique, 18F-FDG PET/CT is sensitive

in reflecting metabolic changes. 18F-FDG uptake assessed by PET/
CT not only reports on the metabolic status of the tumour cells,
but it can also be associated inflammatory cellular and molecular
alterations,24 and to reflect not only the number of lymphocytes,
but also the activation state of the lymphocytes themselves.25

Further, the recently developed “radiomics” analyses, which
converts medical images into high-dimensional mineable data,26

can predict therapy response to ICI,27–29 as well as successfully
predict tumour gene mutations30 and protein expression31

status. However, the association between PET/CT-based radiomics
and cachexia has not been well investigated. Therefore, we
hypothesise that radiomics analysis of the primary tumour from
pre-treatment PET/CT images can reveal subtle effects on tumour
cell metabolism and predict the probability of developing
cachexia.
In this study, we develop and validate a radiomics model to

predict subsequent development of cachexia during the course of
ICI in NSCLC patients, and we demonstrate that the generated
radiomics signature has prognostic value.

METHODS
Study population
Retrospective patient cohorts were identified from two institu-
tions: H. Lee Moffitt Cancer Center & Research Institute (HLM) and
the James A. Haley Veterans’ Hospital (VA), both in Tampa, Florida.
Inclusion criteria included patients with histologically confirmed
advanced stage (IIIB and IV) NSCLC who were treated with anti-PD-
1 or anti-PD-L1 immune checkpoint blockade between June 2011
and August 2019. The detailed exclusion criteria are provided in
Supplementary Fig S1 and include: (a) PET/CT images not available
before the start of immunotherapy; (b) ≥3 months between the
PET/CT acquisition and the start of immunotherapy; (c) other
treatments that were performed between imaging acquisition and
start of treatment; (d) follow-up time of <6 months after the start
of treatment; (e) no weight record 6 months after the start of the
immunotherapy. Thus, 175 patients from HLM were randomly split
70:30 into training (N= 123) and test cohorts (N= 52) with the
condition that these two cohorts had the same cachexia incidence
rate. An additional 35 external test patients from the VA were used
to further test the radiomics signature to predict cachexia, and to
investigate the association of the radiomics signature on clinical
outcomes.
Clinical characteristics including age at diagnosis, sex, body

mass index (BMI), smoking status, history of COPD (chronic
obstructive pulmonary disease), Eastern Clinical Oncology Group
(ECOG) performance status (PS), distant metastasis (M), PD-L1
status, weight at diagnosis and 6 months later after ICI treatment
were obtained from the medical records. BMI was categorised
according to: below 20.0 kg/m2, underweight; 20.0–24.9 kg/m2,
normal weight; 25.0–29.9 kg/m2, overweight; and above 30.0 kg/
m2, obese.32 Development of cachexia after the initiation of ICI
was defined as patients with more than 5% weight loss over past
6 months, or more than 2% weight loss with body mass index
(BMI) less than 20 kg/m2. The level of PD-L1 expression was
presented as a tumour proportion score (TPS), which is the
percentage of viable tumour cells showing membrane PD-L1
staining relative to all viable tumour cells, and PD-L1 positivity was
defined as ≥1% of TPS. Progression-free survival (PFS) and overall
survival (OS) were the endpoints of the study and were assessed
from start date of immunotherapy to the date of an event or last
follow-up. For PFS, an event was progression defined according to

Response Evaluation Criteria in Solid Tumors (RECIST1.1), and for
OS, an event was death.
This study was approved by the Institutional Review

Boards at University of South Florida (USF) and the James A.
Haley Veterans Hospital and was conducted in accordance with
ethical standards of the 1964 Helsinki Declaration and its later
amendments.

PET/CT image analysis
The details of PET/CT imaging analysis are presented in
Supplementary section 1 and the pipeline of this study is provided
in Fig. 1. Briefly, all PET images were converted into SUV units by
normalising the activity concentration to the dosage of 18F-FDG
injected and the patient body weight after decay correction.
Muscles were identified in two to four adjacent axial images
within the CT series at the third lumbar vertebra slice by slice,
including rectus abdominus, abdominal (lateral and oblique),
psoas, and paraspinal (quadratus lumborum, erector spinae) by a
5-year experienced orthopaedist (Y. W.) who was blinded to the
clinical outcomes using ITK-SNAP software. These images were
refined with a Hounsfield unit (HU) range of −29 to 150 averaged
for each patient. The total muscle cross-sectional area (cm2) was
normalised for height in meters squared (m2) and reported as
lumbar Skeletal Muscle Index (SMI) in cm2/m2.32 The masks of the
lumbar skeletal muscle from CT images were applied to the PET
images, and basic metabolic features (SUVmax, SUVmean, SUV
Variance, SUVpeak and total lesion glycolysis (TLG=MTV ×
SUVmean) were calculated.
The primary lung tumours of PET and CT images were semi-

automatically segmented with an improved level-set method
based on the gradient fields and refined by a radiologist with 16
years of experience (J. Q) who was also blinded to the
outcome29,33 (Supplementary Fig S2), and 30 randomly selected
nodules in the training cohort were segmented twice. After spatial
registration using a rigid transformation by maximising the Dice
Similarity Coefficients on the condition that the maximal axial
cross sections of the tumour nodules were aligned, fusion images
were generated from the fused PET and CT images on a voxel-wise
basis. Additionally, on each tumour-restricted PET image, Otsu
thresholding34 was performed to automatically maximise inter-
class variance. Using the obtained threshold, the corresponding
tumour of PET images was divided into high and low metabolic
(SUV) regions, representing distinct habitats. The masks of these
two habitats were then mapped to the co-registered CT images,
and two CT sub-regions were subsequently obtained. Therefore,
four sub-regions regions of PET and CT images including PEThigh,
PETlow, CThigh and CTlow were included. Consequently, 1053
quantitative features (364 whole-tumour PET features, 364 whole-
tumour CT features, 65 fusion features and 260 habitat imaging-
based features) were extracted. The process of radiomics feature
extraction was performed in MATLAB 2020a (MathWorks) in
compliance with the Image-Biomarker-Standardization-Initiative
(IBSI) guidelines.35Details are provided in Supplementary
Section 2.

Development of the radiomics signature
To reduce the dimension of the radiomics features, a four-step
feature selection procedure was performed to obtain the key
radiomic features to predict cachexia. First, the inter-rater
agreement of the radiomics features were calculated by intraclass
correlation coefficient (ICC) between segmentations, and only the
features with ICC larger than 0.8 were retained. Then, a two-
sample t-test was used to pre-select the radiomics features that
were significantly (P < 0.05) different between the cachectic and
non-cachectic patients. Next, to reduce redundancy, the signifi-
cantly different features were grouped according to the absolute
value Pearson correlation coefficient of 0.9, and only the single
feature with the largest classification ability, based on area under
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the receiver operating characteristics curve (AUC), in each group
were selected to be representative (the “Avatar”) for that group.
Finally, a Least Absolute Shrinkage and Selection Operators
procedure (LASSO)-logistic regression analysis was used to select
the most useful predictive features with non-zero coefficients, and
generate the radiomics signature (RS) through a linear combina-
tion weighted by the corresponding coefficients.36 The penalty
parameter (λ) in LASSO was selected using 10-fold cross validation
by minimum mean cross-validated error. To assess the quality of
this radiomics study, the radiomic quality score (RQS) was
calculated according to Lambin et al.37

Statistical analysis
The Wilcoxon signed-rank test and Fisher’s exact test were used to
test the differences for continuous variables and categorical
variables, respectively. Pearson correlation coefficient was used to
test for correlations between continuous variables. The cut-offs of
RS and SMI used for the classification of high risk of cachexia were
determined by maximising Youden’s index based on the training
cohort. Univariable and multivariable logistical regression models
(backward step-down selection with Akaike information criterion
as the stopping rule),38 which were presented as radiomics
nomograms, were used to assess the predictive ability of RS, SMI,
clinical common used metrics including SUVmax, MTV (metabolic
tumour volume) and volume (from CT images), and other clinical
variables (categorised BMI, sex, age, smoke status, COPD, ECOG,
distant metastasis and histology). The area under the receiver
operating characteristics curve (AUC), accuracy, sensitivity, speci-
ficity and the 95% confidence interval (CI) by the Delong
method39 were used to assess the ability of different models in
discriminating between cachectic and non-cachectic patients. Z
test was applied to compare the differences between different
models. To demonstrate the significantly incremental value of
different models, total net reclassification improvement (NRI) was
calculated. For PFS and OS comparison, Kaplan–Meier analysis and
log-rank test were used. P-value less than 0.05 was regarded as
significant, and statistical analyses were conducted with R (version
3.5.1) and MATLAB (R2020a).

RESULTS
Clinical characteristics
The clinical characteristics of the patients used to train and test
the predictor for cachexia are presented in Table 1. Among these
175 patients (96 males, 79 females), the mean age was 66 ± 12
(±standard deviation, SD) years with a median PFS and OS of 8.40
and 27.6 months, respectively. Of these, 69 patients experienced
more than 5% weight loss (weight loss: 10.28 ± SD 4.63%) during
the first six months of immunotherapy and were regarded as
cachectic. All 35 of the external VA patients (Supplementary
Table S1) are male, with the mean age of 71.40 ± SD 7.19 years.
Ten patients had stage IIIB disease, while the remaining 25
patients were stage IV. The median PFS and OS were 8.13 months
and 13.10 months, respectively. Of the 29 patients who had their
weight recorded 6 months after the start of the immunotherapy,
14 of them suffered from cachexia with an accompanying weight
loss of 8.90 ± SD 3.04%.

Development of the radiomics signature
Within 949 features with ICC larger than 0.8, thirty features were
found to be significantly different between the cachexic and non-
cachexic patients in the training set. After eliminating redundancy,
twenty-seven non-redundant stable features were left and
entered into the LASSO analysis. Of these, nine features were
selected out of training to construct the radiomics signature, and
these were incorporated into the calculation formula as RS=
0.69 × CTZSN− 0.64 × CTEnergy− 0.30×CTmax+ 0.018 × CThighmean

− 0.70 × PETLD− 0.15 × PETSRHGE− 0.30×PEThighDD+ 0.35 ×
PETlowLZLGE+ 0.12×FUSEMHS+ 0.51 (Details shown Supplemen-
tary section 4). Representative images and radiomics signatures
(RS) of two patients from baseline PET/CT scan are shown in
Fig. 2a, b.

Diagnostic performance of the radiomics signature
The RS was significantly different between cachexic and non-
cachexic patients in the training cohort (p < 0.001), which was
validated in the test cohort (p= 0.003) and external test cohort
(p= 0.040). Although the RS was obtained based on the binarised
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histogram, textural and wavelet features. Next, after feature selection, the radiomics signature (RS) was obtained. For the second phase, this
signature was clinically evaluated through predictive validation and prognostic validation.
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Table 1. Demographic and clinical characteristics of patients.

Characteristic Training cohort Pa Test cohort Pa Pb

Cachexia (N= 48) No-Cachexia (N= 75) Cachexia (N= 21) No-Cachexia (N= 31)

Age (y) 0.21 0.33 0.62

Mean ± SD 64.40 ± 11.31 67.35 ± 9.71 62.33 ± 17.04 66.06 ± 15.15

Sex, NO. (%) 0.85 1.00 0.41

Male 28 (58.33) 42 (56) 10 (47.62) 16 (51.61)

Female 20 (41.67) 33 (44) 11 (52.38) 15 (48.39)

BMI (kg/m2) 0.016c 0.30 0.62

Mean ± SD 25.1 ± 5.55 26.97 ± 4.43 25.53 ± 3.47 26.41 ± 5.89

BMI category (kg/m2) 0.018c 0.066 0.81

<20.0 6 (12.5) 3 (4) 2 (9.52) 0 (0)

20.0–24.9 21 (43.75) 25 (33.33) 7 (33.33) 14 (45.16)

25.0–29.9 15 (31.25) 29 (38.67) 10 (47.62) 10 (32.26)

≥30 6 (12.5) 18 (24) 2 (9.52) 7 (22.58)

Skeletal muscle index (SMI) (cm2/m2) 0.46 0.17 0.50

Mean ± SD 41.52 ± 14.61 42.57 ± 13.35 37.65 ± 11.98 44.74 ± 16.79

ECOG PS 0.050c 0.18 0.83

0 6 (12.5) 23 (30.67) 2 (9.52) 8 (25.81)

1 40 (83.33) 51 (68) 18 (85.71) 23 (74.19)

≥2 2 (4.17) 1 (1.33) 1 (4.76) 0 (0)

Distant metastasis 0.017c 0.64 0.45

M0 9 (18.75) 25 (33.33) 4 (19.05) 9 (29.03)

M1a 6 (12.5) 18 (24) 3 (14.29) 7 (22.58)

M1b 21 (43.75) 20 (26.67) 11 (52.38) 12 (38.71)

M1c 12 (25) 12 (16) 3 (14.29) 3 (9.68)

Histology, NO. (%) 0.077 0.58 0.09

Adenocarcinoma 27 (56.25) 55 (73.33) 12 (57.14) 15 (48.39)

Squamous cell carcinoma 21 (43.75) 20 (26.67) 9 (42.86) 16 (51.61)

Weight change within 6 months (%) <.001c <.001c 0.96

Mean ± SD −10.54 ± 4.65 0.86 ± 5.21 −9.69 ± 4.63 0.5 ± 3.98

Smoke, NO. (%) 0.84 0.87 0.16

Non-smoker 18 (37.5) 31 (41.33) 5 (23.81) 9 (29.03)

Former smoker 28 (58.33) 42 (56) 14 (66.67) 20 (64.52)

Current smoker 2 (4.17) 2 (2.67) 2 (9.52) 2 (6.45)

COPD 0.14 0.72 0.66

NO. (%) 11 (22.92) 9 (12) 3 (14.29) 7 (22.58)

PD-L1 status 1.00 0.62 1.00

Positive 11 (22.92) 18 (24.00) 7 (33.33) 2 (6.45)

Negative 11 (22.92) 17 (22.67) 12 (57.14) 4 (12.90)

Unknown 26 (54.17) 40 (53.33) 2 (9.52) 25 (80.65)

Best response 0.050c <0.001c 0.67

PR/CR/SD 13 (27.08) 9 (12) 10 (47.62) 1 (3.23)

PD 35 (72.92) 66 (88) 11 (52.38) 30 (96.77)

Progression-free survival 0.001c 0.005c 0.84

Median (IQR) 5.37 (2.60–13.77) 11.93 (7.43–NR) 3 (1.77–9.63) 16 (6.17–50.20)

Overall survival 0.011c 0.009c 0.30

Mean(95%CI) 30.99 (5.18–20.84) 38.75 (31.12–46.37) 24.19 (11.90–36.47) 38.72 (28.03-49.40)

RS <.001c .003c 0.77

Median (IQR) 0.51 (0.40, 0.62) 0.31 (0.22,0.43) 0.49 (0.39,0.60) 0.32 (0.22,0.43)

Data are patient numbers, with percentages in parentheses. IQR is short for interquartile range; The demographic and clinical characteristics of external VA
patients were provided in Supplementary Table S1.
SD standard deviation.
aP-value is derived between Cachexia and non-Cachexia.
bP is derived training and test cohorts.
cmeans P-value < .05.
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cachexia vs. non-cachexia, the RS was also found to be weakly but
significantly correlated with the actual weight change within
6 months since the start of the immunotherapy in both training
(Pearson rho=−0.35, p < 0.001) and test cohorts (Pearson rho=
−0.34, p= 0.013) as shown in Fig. 2c, d, indicating that a larger RS
corresponds to a larger weight loss. This RS yielded an AUC of 0.77
(95% CI: 0.70–0.84) and 0.75 (95% CI: 0.64–0.85) in the training and
test cohorts, respectively, and an accuracy of 72.36% (95% CI:
64.23–80.49) and 71.15% (95% CI: 59.62–82.69) in the training and
test cohorts, respectively. Detailed information of radiomics
signature performance is shown in Table 2, and the corresponding
ROC curves are shown in Fig. 2f, g. Additionally, this signature was
also found to be weakly but significantly correlated with the actual
weight change within 6 months since the start of the
immunotherapy (Pearson rho=−0.38, p= 0.045), and had a good
performance in the external VA cohort with an AUC of 0.74 (95%
CI: 0.55–0.93), accuracy of 72.41% (95% CI: 55.17–86.21%),
sensitivity of 71.43% (95% CI:42.86–92.86%) and specificity of
73.33% (95% CI:46.67–93.33%) (Fig. 2e, h).
Although quantitative index of skeletal muscle mass (SMI) has

been significantly associated with cachexia in other studies,32 it
was not significant in our study, achieving an AUC of 0.54 (95% CI:
0.43–0.65, p= 0.46) and 0.61 (95% CI: 0.46–0.77, p= 0.17) in the
training and test cohorts, respectively. Through multivariable
logistical regression analysis, SMI was also not identified as

independently significant in the training cohort (p= 0.19),
although it was significant in the test cohort (p= 0.047). The
combination of RS and SMI did not improve the prediction
performance compared to the RS alone with AUCs of 0.76 (95%
CI:0.67–0.84, p= 0.77, Delong test) and 0.74 (95% CI:0.61–0.88,
p= 0.99, Delong test) in both the training and test cohorts,
respectively. A secondary stratified analysis was performed that
only analysed the patients without history of cachexia (n= 57). For
these patients, the SMI was found to be predictive, with an AUC of
0.82 (98% CI: 0.68–0.95, p= 0.001), which is similar to the AUC of
0.76 (95% CI:0.60–0.92, p= 0.009) for RS in this same cohort (p=
0.57, Delong test). The AUC for the combination of RS and SMI was
not significantly higher compared to SMI or RS alone (p= 0.55,
p= 0.15, respectively).

Clinical prediction model and decision curve analyses
Univariable logistic regression analysis of the clinical variables
showed that categorised BMI, ECOG PS and distant metastasis
were all identified as strong predictors for cachexia with p= 0.018,
p= 0.017 and p= 0.015, respectively (Supplementary Table S2).
None of the basic metabolic features of the skeletal muscle was
significantly different between cachectic and non-cachectic
patients (Supplementary Table S3). A clinical prediction model
was thus trained by incorporating these three clinical variables
using multivariable logistic regression analysis, and this achieved
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Volume = 92.69 cm3 Radiomic signature = 0.25
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Fig. 2 Radiomics signatures of NSCLC patients and their diagnostic performance in various cohorts. a, b The CT, PET and fusion images for
a patient with NSCLC, together with the corresponding clinical variables and radiomics signatures. c–e The Pearson correlation between RS
and the weight loss within 6 months since the start of the immunotherapy in the training, test and external test cohorts, respectively. P-value
indicates two-sided Pearson correlation test. f–h The ROC curves of RS, radiomics nomogram and clinical models in the training, test and
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an AUC of 0.70 (95% CI: 0.62–0.79), 0.65 (95% CI: 0.49–0.80) and
0.63 (95% CI: 0.43–0.83) in the training, test and external test
cohorts, respectively (Details are shown in Table 2).
We then incorporated the RS into the clinical prediction model

using further multivariate logistic regression analysis (Supplemen-
tary Table S2), and this is presented as radiomics nomogram
shown in Fig. 3a. There was significant difference of the
nomogram-estimated probability between cachexic and non-
cachexic patients in both training (p < 0.001), test (p= 0.001) and
external test (p= 0.031) cohorts (Fig. 3b). Addition of the RS to the
clinical model improved the prediction ability with AUCs of 0.78
(95% CI: 0.69–0.86, p= 0.03, Delong test), 0.76 (95% CI: 0.61–0.89,
p= 0.047, Delong test) and 0.70 (95% CI: 0.52–0.89, p= 0.61) in
the training, test and external test cohorts, respectively (Details are
shown in Table 2). Further, the inclusion of RS yielded a total net
reclassification improvement (NRI) of 0.91 (95% CI: 0.59–1.23, p <
0.001), 0.91 (95% CI: 0.43–1.39, p < 0.001) and 0.42 (95% CI:−001 to
0.86, p= 0.05) in the training, test and external test cohorts,
respectively, which further showed significantly improved classi-
fication accuracy for cachexia prediction over clinical variables
alone.
Qualitatively, calibration curves (Fig. 3c) indicate the agreement

between the estimated probability and the actual cachexia rate
based on the training (p= 0.85), test (p= 0.85) and external test
(p= 0.20) cohorts, respectively. Decision curve analyses (Fig. 3d)
show the performance of the RS, clinical model, and radiomics
nomogram model in clinical application in both training and test
cohorts. These show that the combined nomogram model has
significant advantages compared to schema wherein either all or
no patients are assumed to have cachexia. When comparing the
three models, the radiomics nomogram model had the highest
overall net clinical benefit across the threshold probabilities within
the range of 0.30–0.60 in both cohorts.
Although addition of RS significantly improves predictive value

of the clinical data (vide supra), the inverse was not true. There
were no significant differences in predictive ability in both training
(p= 0.58), and test (p= 0.79) and external test (p= 0.62) cohorts
when comparing the RS alone with the combined nomogram.
Even for the 57 patients without a history of cachexia, the
combined nomogram achieved higher but also not significant
AUC of 0.86 (95% CI: 0.74–0.97, p < 0.001), compared to the RS
alone (p= 0.071, Delong test). Therefore, only RS alone was used
as the final cachexia prediction biomarker and used for the
following prognostic investigation.

Prognostic value of the radiomics signature in immunotherapy
The cachexia prediction RSs of the patients who experienced
durable clinical benefit (DCB, PFS > 6 months) were significantly

lower compared to those who did not in both the training (0.32 vs.
0.46, p < 0.001) and test (0.37 vs. 0.43, p= 0.060) cohorts. Similar
results could be found in the external VA test patients (0.38 vs
0.47, p= 0.048). The AUCs of the RS to identify the DCB patients
were 0.71 (95% CI: 0.61–0.80, p < 0.001), 0.66 (95% CI: 0.51–0.81,
p= 0.045) and 0.70 (95% CI: 0.51–0.88, p= 0.047) in the training,
test and external VA test cohorts, respectively.
For the training patients, the PFS and OS were significantly

longer among patients with a RS below median value of 0.40
compared to patients with high (>0.40) RS (PFS: hazard ratio
[HR]:1.73, 95% CI: 1.10–2.73, p= 0.018; OS: HR: 2.32, 95%
CI:1.17–4.63, p= 0.017). Among patients with low RS, the median
PFS was 11.00 months compared to 5.90 months or patients with
high RS (PFS: P= 0.016, Fig. 4a). Median OS was not reached in the
low RS group and was 19.77 months in the high RS group (p=
0.014, Fig. 4b). For the test patients, similar results could also be
observed in training cohort with HR of 2.18 (95% CI: 1.09–4.38,
p= 0.028) and 2.62 (95% CI: 1.05–6.56, p= 0.040) for PFS and OS
estimation, respectively. Median PFS of the patients with low RS
was significantly longer with 17.00 months versus 4.17 months
(p= 0.024, Fig. 4c), and the median OS was also not reached in the
low RS group and was 19.77 months in the high RS group (p=
0.014, Fig. 4d). Through log-rank test, there was no significant
difference between RS and real occurrence of cachexia. The
external VA test patients further validate the prognostic value of
RS with HRs of 3.84 (95% CI: 1.56–9.43, p= 0.049) and 2.63 (95% CI:
1.02–6.83, p= 0.046) for PFS (4.77 vs 12.97 months, p= 0.002,
Fig. 4e) and OS (8.37 vs 22.17 months, p= 0.039, Fig. 4f),
respectively.

Complementary prognostic value of the radiomics signature on
potentially sensitive patients
Of 106 patients with known PD-L1 status, 63 were positive (TPS ≥
1%) and 43 were negative for PD-L1 expression. In the PD-L1
positive cohort, the median PFS and OS were significantly longer
in the low RS group compared to the high RS group. The median
PFS was not reached in the low RS group versus 4.87 months in
the high RS group (Log-rank p < 0.01, Fig. 4g). The median OS was
not reached in the low RS group versus 13.03 months in the high
RS group (p= 0.035, Fig. 4i). In contrast, in PD-L1-negative
patients, there were no significant differences between low and
high RS scores in their PFS (p= 0.30, Fig. 4h) or OS (p= 0.19,
Fig. 4j). However, it is worth noting that the K–M curve for PFS of
PD-L1-negative patients (Fig. 4i) shows significant differences
between low and high RS scores for the first 9 months, but then
evened out and became insignificant. This is notable because a
PFS > 6 months is considered a DCB and thus, in this case, the RS
was able to distinguish among PD-L1 patients with and without a

Table 2. Performance of different models in cachexia prediction.

AUC (95% CI) ACC (95% CI) SEN (95% CI) SPEC (95% CI) PPV (95% CI) NPV (95% CI) AIC

Radiomics signature

Training 0.77 (0.68–0.85) 72.36 (64.23–80.49) 75.00 (62.5–87.50) 70.67 (60.00–81.33) 62.07 (52.86–71.84) 81.54 (73.85–89.60) 140.4

Test 0.75 (0.60–0.86) 71.15 (59.62–82.69) 80.95 (61.9–95.24) 64.52 (48.39–80.65) 60.71 (48.57–74.07) 83.33 (79.37–95.91) 65.29

External 0.74 (0.55–0.93) 72.41 (55.17–89.66) 71.43 (50–92.86) 73.33 (53.33–93.33) 71.43 (54.44–92.31) 73.33 (57.89–92.86) 40.55

Radiomics Nomogram

Training 0.78 (0.69–0.86) 73.17 (64.23–80.49) 77.08 (64.58–87.5) 70.67 (60.00–80.63) 62.71 (54.03–72.31) 82.81 (74.64–90.84) 142.9

Test 0.76 (0.61–0.89) 75.00 (61.54–86.54) 80.95 (61.9–95.24) 70.97 (54.84–87.1) 65.38 (52.00–80.00) 84.62 (72.41–96.00) 62.78

External 0.70 (0.52–0.89) 75.86 (62.07–87.66) 71.43 (50–92.86) 80.00 (53.33–100) 76.92 (61.22–100) 75.00 (61.90–91.33) 39.78

Clinical nomogram

Training 0.70 (0.62–0.79) 67.48 (59.35–75.61) 68.75 (56.25–81.25) 66.67 (56.00–77.33) 56.90 (48.31–65.95) 76.92 (69.23–84.75) 156.9

Test 0.65 (0.49–0.8) 61.54 (48.08–75.00) 61.90 (42.86–80.95) 61.29 (45.16–77.42) 52.00 (37.50–66.67) 70.37 (57.14–84.40) 69.83

External 0.63 (0.43–0.83) 44.83 (24.14–65.52) 42.86 (14.29–71.43) 46.67 (20.00–73.33) 42.86 (20.75–62.50) 46.67 (26.98–65.79) 43.49
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DCB (p < 0.05, Fig. 4k, l). These results further indicated the
complementary prognostic value of RS on the ICI treatment
among PD-L1-positive patients, that is, those that are potentially
sensitive to ICI. The multivariable Cox analysis identified RS and
PD-L1 as independent prognostic predictors of PFS (RS: hazard
ratio (HR)= 2.25, 95% confidence interval (CI): 1.39–3.63; p=
0.001; PD-L1: HR: 0.51, 95% CI: 0.32–0.81, p= 0.004) and OS (RS:
HR= 2.18, 95% CI: 1.12–4.23; p= 0.021; PD-L1: HR: 0.48, 95% CI:
0.26–0.90, p= 0.022).

Radiomic quality score
Radiomics is a rapidly maturing field in machine learning. To
rigorously assess the quality of study design, a 36-point “Radio-
mics Quality Score” (RQS) metric that evaluates 16 different key
components was used. The full list of criteria and the correspond-
ing score are described in Supplementary Table S4, which shows
that the current study had an RQS of 17. According to a recent
meta-analysis40 that analysed 77 radiomics publications and
documented that the mean ± S.D. RQS across all studies was 9.4
± 5.6, the current study is in the upper 20 percentage of radiomics

study designs. Finally, a TRIPOD Checklist following reporting
guidelines for prediction model development and validation has
also been provided in Supplementary Table S5, which further
validated the integrity of the work.

DISCUSSION
In this study we conducted a rigorous radiomics analyses to
develop a pre-treatment radiomics model to predict development
of cachexia after the initiation of ICI. Cancer cachexia is a
multifactorial wasting syndrome defined by involuntary progres-
sive weight loss41 that may be induced by cancer or by cancer
therapy.1 Regardless of the cause, both cancer-induced and
therapy-induced cachexia promote resistance to ICI, so we did not
attempt to distinguish the underlying cause in this study. Overall,
we found that BMI, distant metastasis, ECOG and the radiomics
signature (RS) of diagnostic PET/CT images, were significant and
independent predictors of cachexia in patients with advanced
stage NSCLC treated with immunotherapy. Importantly, these data
can be routinely captured during patient workup as standard-of-

a b
Boxplots for the group of  patients with non-cachexia
and cachexia groups for the radioimics nomogram  

c Calibration curve of the radiomics nomogram 
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Fig. 3 Radiomics Nomograms. a The nomogram constructed with RS and clinical variables to estimate the risk of cachexia. b The box plot of
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the test cohort, and the orange points represent the external test cohort. P-value shows two-sided Wilcoxon signed-rank test. c The
assessment of the model calibration in the training, test and external test cohorts. d The decision curves of RS, radiomics nomogram and
clinical model in the training and test cohorts.
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Fig. 4 Prognostic ability of RS in various cohorts. a, b The Kaplan–Meier survival curves of PFS and OS relative to the RS, and the real
cachexia status in the training cohort, respectively. c, d The Kaplan–Meier survival curves of PFS and OS relative to the RS, and the real
cachexia status in the test cohort, respectively. e, f The Kaplan–Meier survival curves of PFS and OS relative to the RS in the external VA cohort,
respectively. g, h The Kaplan–Meier survival curves of PFS relative to the RS in the sub cohort with PD-L1 positive status, and PD-L1 negative
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care. The radiomics signature developed in this work further
showed significant prognostic value, especially among those
potentially immunotherapy sensitive patients with PD-L1-positive
status. Therefore, this approach has the potential to be used to
optimise patient management and treatment planning with early
interventions prior to the start of immunotherapy pending on a
further multi-institution prospective validation with larger cohorts.
Many previous studies have attempted to identify predictive

biomarkers of cachexia. Given that cachexia is defined primarily by
unintended weight loss, several studies have investigated and
shown the cachexia-indicative value of initial weight loss.14–16,42

Additionally, BMI,14 ECOG PS, biochemistry (high C-reactive
protein, leukocytes, hypoalbuminemia or anaemia),16 cancer type
and COPD42 have also been used to construct cachexia prediction
models. Further, CT-based SMI was shown to be predictive of
cachexia and survival of patients with cancer.32 However, none of
these variables characterised the metabolic changes, characteristic
of cancer-associated cachexia. Recently, Interleukin (IL)-8
was demonstrated to induce myotube atrophy, which indicated
the potential of IL-8 to define the cachectic state in NSCLC
patients.43 Additionally, de Jong et al. found longitudinal
differences in CT-based radiomic features that were related to
cachexia with an AUC of 0.68.44 To the best of our knowledge, this
study is the first to predict development of cachexia directly using
baseline PET/CT images before the start of the immunotherapy,
with AUCs of the combined model approaching 0.76 in
independent testing.
Determination of the regions of interest (ROI) to perform

analysis is challenging. For example, since sarcopenia is a hallmark
of cachexia, it could be that the skeletal muscles are the most
strongly affected, but it is also likely that the triggering signals
arise from the tumour itself. Skeletal muscle CT radiomic features
were investigated by de Jong et al, but the baseline features could
not predict future muscle loss in NSCLC patients, and follow-up
PET/CT images were not always available.44 Additionally, media-
tors released from cancer cells and cells within the tumour
microenvironment have been considered to be associated with
cachexia in lung cancers.43 Given our assumption that the primary
nodule provides pertinent genetic and microenvironmental
information,45,46 our radiomic analysis was confined to the primary
nodule.
When investigating the informative components of RS formula,

we found the longest diameter of the tumour (PETLD) was
negatively correlated with risk of cachexia, suggesting that
tumours with smaller diameter may have higher risk of cachexia.
This is consistent with previous studies saying patients with small
tumour volumes are often diagnosed with cachexia, whereas this
syndrome may never develop in patients with large tumour
burdens.47,48 In term of the negative correlation of CTmax and
positive correlation of PETlowLZLGE with the risk of cachexia,
tumours with low intensity had a higher probability of cachexia,
since low intensity lesions often include oedema and necrosis,
which is capable of inducing cachexia.49 The remaining informa-
tive features are texture features (CTZSN, CTenergy), suggesting that
heterogeneity increases the risk of cachexia, which is consistent
with the observation that more heterogeneous tumours are
usually more aggressive.50

When investigating the relationship between clinical character-
istics and cachexia, BMI, ECOG PS, and distant metastasis were
highly correlated with cachexia, which are consistent with most
other studies. For the investigation of initial weight loss, though
the weight loss of the past 6 months and 2 months were also
significant factors with OR of 0.85 (95% CI: 0.71–1.01, p= 0.056)
and 0.78 (95% CI: 0.61–1.00, p= 0.049) in the patients who have
history weight loss record before the start of the immunotherapy
in our study, this factor was not included in the multivariable
analysis in our study due to its unavailability for most of the
patients.

For the comparison between RS and SMI,32 SMI was not
significantly predictive in the whole cohort (training: p= 0.28, test:
p= 0.24). Although SMI was found predictive in further stratified
analysis performed on the patients without a history of cachexia,
its predictive ability was similar to RS (p= 0.57, Delong test).
Notably, RS was significantly predictive regardless the historical
cachexia status, indicating that the RS may have more clinical
significance.
Through the prognostic analysis, we observed that cachexia is

significantly correlated with a short PFS and OS in response to ICI,
which is consistent with literature.19 Compared to the presence of
cachexia, our predicted RS based on the baseline PET/CT images
obtain the similar separation of the Kaplan–Meier PFS and OS
survival curves prior to the start of weight loss associated with ICI
treatment. Therefore, the cachexia prediction RS could also be
regarded a prognostic biomarker for immunotherapy and may
help to identify patients who are more likely to achieve a durable
clinical benefit. According to the stratified analysis based on PD-L1
status and RS, within the PD-L1 positive group that is more
sensitive for immunotherapy, patients with low RS, i.e. low risk of
cachexia had significantly longer OS and PFS compared to high RS
patients, while there was no difference within the PD-L1-negative
group. One potential explanation of this may be the down-
regulation of PD-1 or PD-L1 receptors due to the cachexia,51,52

which may indicate that cachexia induced PD-L1 downregulation
may be one of the reasons for the resistance of immunotherapy
during the treatment. It’s also notable that, within the PD-L1
negative group, significant differences in PFS in the early 9 months
(especially for the first 6 months, DCB) were found, but these
eventually evened out and became insignificant. The possible
reason could be cachexia is significantly correlated with shorter
PFS before the emergence of resistance of ICI, as median duration
of response for PD-L1 negative advanced NSCLC patients treated
with ICI is 8.5 months.53 Beyond this median response time, all
patients tend to have poor prognosis regardless of the cachexia
status.
The present study does possess some limitations. First, the

sample size of patients with recorded weight loss was small
relative to the entire cohort, which means the predictive value of
initial weight loss for the whole cohort could not be incorporated
into the prediction model. However, initial weight loss was
unavailable for many patients, especially for those who received
first-line immunotherapy after the diagnosis, which means the
clinical use of a model with initial weight loss may be limited.
Second, the patient cohorts were heterogeneous in terms of PET/
CT image acquisition. However, this also be viewed as a strength of
the current approach, and the prognostic value in the external test
cohort showed that the developed radiomics signature is robust
and transportable. Third, follow-up PET/CT images were not
available for most of the patients and hence, longitudinal
differences in skeletal muscle and tumour radiomics features
could not be analysed and compared. Lastly, our study was
performed on PET/CT images, wherein the CT is not contrast-
enhanced and lacks much of the peritumoural info. Hence, we
focused on the primary tumour in this study without extracting the
features from peritumoural regions, even though these may reflect
the tumour immune microenvironment.54 A parallel study using
contrast-enhanced computed tomography (CE-CT) images for the
prediction will be performed with the addition of peritumoural
image features. Despite these deficiencies, the predictive value of
the RS and/or combined nomogram was high and clinically
actionable. If patients have a high probability of developing
cachexia and hence poor outcome, it is recommended that their
nutritional status be rigorously monitored throughout the initial
phase of therapy. Besides lung cancer, oesophageal cancer, head
and neck cancer, gastric cancer and pancreatic cancer are also
major cachexia-causing cancers. Among these, oesophageal as well
as head and neck cancer are often monitored with FDG PET/CT,
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while contrast-enhanced computed tomography (CE-CT) or MRI are
more commonly used in the staging of gastric and pancreatic
cancer. Thus, it is possible that the current trained model could be
directly applied to oesophageal or head and neck cancer, but to
extend these approaches to gastric and pancreatic cancer would
require construction of novel models with the analysis of both
tumour and host factors to identify cachexia.

CONCLUSION
In conclusion, a novel radiomics signature from pre-treatment PET/
CT images has been identified and may serve as a potential
predictive biomarker to identify both patients who at risk of
developing cachexia after the start of the immunotherapy, and
patients most likely to benefit from immunotherapy especially from
those potentially immunotherapy sensitive patients with PD-L1
positive status. Due to the advantage of being based on routinely
acquired patient information and its non-invasive characteristic, this
signature could be used for optimising the treatment plan pending
on multi-institution, larger and prospective trials.
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