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Predicting critical state after COVID-19 diagnosis: model
development using a large US electronic health record dataset

Mike D. Rinderknecht'? and Yannick Klopfenstein {®'**

As the COVID-19 pandemic is challenging healthcare systems worldwide, early identification of patients with a high risk of
complication is crucial. We present a prognostic model predicting critical state within 28 days following COVID-19 diagnosis trained
on data from US electronic health records (IBM Explorys), including demographics, comorbidities, symptoms, and hospitalization.
Out of 15753 COVID-19 patients, 2050 went into critical state or deceased. Non-random train-test splits by time were repeated 100
times and led to a ROC AUC of 0.861 [0.838, 0.883] and a precision-recall AUC of 0.434 [0.414, 0.485] (median and interquartile
range). The interpretability analysis confirmed evidence on major risk factors (e.g., older age, higher BMI, male gender, diabetes, and
cardiovascular disease) in an efficient way compared to clinical studies, demonstrating the model validity. Such personalized
predictions could enable fine-graded risk stratification for optimized care management.
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INTRODUCTION

The coronavirus disease (COVID-19), caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)', has started to
spread since December 2019 from the province Hubei of the
People’s Republic of China to 188 countries, becoming a global
pandemic?. Despite having a lower case fatality rate than SARS in
2003 and MERS in 2012, the overall number of 24,007,049 cases
and 821,933 deaths from COVID-19° (status August 26, 2020) far
outweigh the other two epidemics. These high numbers have
forced governments to respond with severe containment
strategies to delay the spread of COVID-19 in order to avoid a
global health crisis and collapse of the healthcare systems*>.
Several countries have been facing shortages of intensive care
beds or medical equipment such as ventilators®. Given these
circumstances, appropriate prognostic tools for identifying high-
risk populations and helping triage are essential for informed
protection policies by policymakers and optimal resource alloca-
tion to ensure best possible and early care for the patients.

Today's availability of data enables the development of
different solutions using machine learning to address these
needs, as described in recent reviews”®, One type of proposed
solutions is prognostic prediction modeling, which consists in
predicting patient outcomes such as hospitalization, exacerbation
to a critical state, or mortality, using longitudinal data from
medical healthcare records of COVID-19 patients”'® or proxy
datasets based on other upper respiratory infections?®. To this
date, most studies include data exclusively from one or few
hospitals and therefore relatively small sample sizes of COVID-19
patients (i.e., below 1000 patients), with the exception of the
retrospective studies in New York City with 4103'® or with a total
of 3055 patients'’.

This is where combined electronic health records (EHRs) across
a large network of hospitals and care providers become valuable
to generate real-world evidence (RWE), such as for the develop-
ment of the 4C Mortality Score for COVID-19?". Machine learning
models based on such datasets can benefit from increased
amount of data and improved robustness and generalizability, as
data comes from various sources (e.g., different hospitals), and

may thus cover wider ranges of demographics and diverse
healthcare practices or systems. Having such data available, can
facilitate and accelerate insight generation, as such an approach
for retrospective data analyses is more cost effective and requires
less effort compared to setting up and running large-scale clinical
studies. The IBM® Explorys® database (IBM, Armonk, NY) is one
example for a large set of de-identified EHRs of 64 million patients
across the US including patient demographics, diagnoses,
procedures, prescribed drugs, vitals, and laboratory test results®%
However, it is not possible to predict mortality using this dataset,
as death is not reliably reported and the EHRs cannot be linked to
public death records due to de-identification.

The aim of this work was to create a prognostic prediction
model for critical state after COVID-19 diagnosis based on a
retrospective analysis of a large set of de-identified EHRs of
patients across the US using the IBM® Explorys® database (IBM,
Armonk, NY). Such a predictive model allows identifying patients
at risk based on predictive factors to support risk stratification and
enable early triage. The present work based on EHR data is
reported according to the RECORD and STROBE statements®3, and
reporting of model development followed TRIPOD statement
guidelines®*,

RESULTS

Cohort, descriptive statistics, and concurvity

The total number of identified patients diagnosed with COVID-19
based on International Classification of Diseases (ICD) codes and
entries for positive results of SARS-CoV-2 tests based on Logical
Observation Identifiers Names and Codes (LOINC) are reported in
Fig. 1. Patients without either age or gender information were
subsequently removed, and the remaining patients are referred to
as the cohort in the present manuscript. For the binary prediction,
patients were labeled either as not entering critical state (N=
13,703) or as entering critical state (N =2050). Entering critical
state encompassed patients with a reported ICD code for sepsis,
septic shock, or respiratory failure (e.g., acute respiratory distress
syndrome (ARDS)) within the 28 days after COVID-19 diagnosis
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Diagram of number of subjects. Cohort selection and number of patients not entering versus entering critical state based on the

definitions outlined in the according sections. To train and evaluate a model, the dataset was split using a non-random split by time. This
procedure was repeated 100 times using different time windows for the test sets to get a distribution of model performance.
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Fig.2 Time windows for prediction target and feature extraction.
Schematic illustration of time window definitions relative to the
COVID-19 diagnosis or to the critical state (time not to scale). The
brackets define the boundaries (included) in days.

(Fig. 2), or patients being flagged as deceased in the database
without having been in a critical state before COVID-19 diagnosis.
Moreover, the sizes of the partitions for training and testing are
also reported in Fig. 1. Among patients labeled as critical state, a
total of 545 patients were flagged as deceased in the Explorys
database. This corresponds to 3.5% of the entire cohort. There
were 11 cases of deceased patients without critical state after
COVID-19 diagnosis, which represent less than 0.1% of the cohort.
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The set of considered features consisted in demographics, “acute”
features (mostly symptoms potentially related to COVID-19), and
“chronic” features (mostly comorbidities or behaviors previously
acquired and not related to COVID-19), extracted according to Fig. 2.
Symptoms and comorbidities, in particular, were represented as
binary features (1: ICD code entry exists in database; 0: no entry
recorded for the specific patient). Details for ICD and LOINC codes
are listed in Table 1. Descriptive statistics for all features are reported
in Table 2. No features were removed due to a too high proportion
of missing data. Rank correlations across features are shown in the
heatmap in Fig. 3. As Caucasian and African American together
represent over 90% of the dataset, keeping both features race
(Caucasian) and race (African American) is unnecessary, as they
encode almost the identical information content, for which reason
the majority group (ie, race (Caucasian)) was removed from
the feature set and contributes to the baseline risk probability. No
other features were removed due to high feature collinearity. The
resulting feature set is later referred to as full feature set.

Performance

To obtain a distribution of prediction performance, 100 non-
random train-test splits by time of the dataset were created to
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Table 1. Feature definitions.
Extraction Feature Units Details
time window
Special features Age Years Computed at diagnosis date, based on birth year entry
Gender NA (0: male, 1:  No time window restrictions
female)
Ethnicity (Hispanic) NA (binary) No time window restrictions
Ethnicity (non-Hispanic) NA (binary) No time window restrictions
Race (African American) NA (binary) No time window restrictions
Race (Asian) NA (binary) No time window restrictions
Race (Caucasian) NA (binary) No time window restrictions
Race (Multiracial) NA (binary) No time window restrictions
Acute features Acute bronchitis NA (binary) ICD-10: J20.%, J40 and ICD-9: 466.0, 490
Anorexia NA (binary) ICD-10: R63.0, R63.8 and ICD-9: 783.0, 783.9
Body temperature °C LOINC: 8310-5
Confusion NA (binary) ICD-10: R41.0, R41.82 and ICD-9: 780.97
Cough NA (binary) ICD-10: RO5 and ICD-9: 786.2
Diarrhea NA (binary) ICD-10: R19.7 and ICD-9: 787.91
Fatigue NA (binary) ICD-10: R53.1, R53.81, R53.83 and ICD-9: 780.79
Fever NA (binary) ICD-10: R50.9 and ICD-9: 780.60
Headache NA (binary) ICD-10: R51 and ICD-9: 784.0
Hemoptysis NA (binary) ICD-10: R04.2 and ICD-9: 786.30
Hospitalization (inpatient) NA (binary) Considered if reported admission-discharge period overlapping with
extraction time window
Myalgia NA (binary) ICD-10: M79.1, M79.10, M79.11, M79.12, M79.18 and ICD-9 729.1
Pneumonia NA (binary) ICD-10: J12.%, J13, J14, J15.%, J16.%, J17, J18.% and ICD-9: 480.%, 481, 482.%,
483.*, 484.%, 485, 486, 487.0, 488.01, 488.11, 488.81
Rhinorrhea NA (binary) ICD-10: J34.89 and ICD-9: 478.19
Shortness of breath NA (binary) ICD-10: R06.02 and ICD-9: 786.05
Sore throat NA (binary) ICD-10: J02.9 and ICD-9: 462
Sputum NA (binary) ICD-10: R09.3 and ICD-9: 786.4
Vomiting NA (binary) ICD-10: R11.10 and ICD-9: 536.2, 787.03
Chronic features Active smoking NA (binary) Based on reported habit
Asthma NA (binary) ICD-10: J45.* and ICD-9: 493.*
BMI kg/m2 LOINC: 39156-5, or computed from weight (29463-7) and height (8302-2)
Cardiovascular disease NA (binary) ICD-10: 120.%, 121.%, 125.%, 148.%, 150.%, 163.%, 165.*, 167.*, 173.* and ICD-9: 410.%,
412.%, 413.%, 414.%, 427.%, 428.%, 429.%, 433.%, 434.%, 437 %, 443.*
Chronic kidney disease NA (binary) ICD-10: E10.21, E10.22, E10.29, E11.21, E11.22, E11.29, 112.0, 112.9, 113.0,
113.10,113.11, 113.2, NO4.*, NO5.%, NO8, N18.*¥, N19, N25.9 and ICD-9: 250.40,
250.41, 250.42, 250.43, 403.%, 404.*, 581.81, 581.9, 583.89, 585.*, 588.9
Chronic obstructive pulmonary  NA (binary) ICD-10: J44.* and ICD-9: 491.%, 493.2*
disease
Diabetes NA (binary) ICD-10: E10.*%, E11.%, E13.* and ICD-9: 250.*
Hypertension NA (binary) ICD-10: 110, 115.* and ICD-9: 401.%, 405.%
Immunodeficiency NA (binary) ICD-10: B20, D80.*, D81.*, D82.*%, D83.*, D84.*, D86.*%, D89.* and ICD-9: 042,
279.*
Nicotine dependence NA (binary) ICD-10: F17.* and ICD-9: 305.1
Obesity NA (binary) ICD-10: E66.0%, E66.1, E66.2, E66.8, E66.9 and ICD-9: 278.00, 278.01, 278.03
Paralytic syndromes NA (binary) ICD-10: G80.%, G81.*, G82.*, G83.* and ICD-9: 342.%, 343.*%, 344.%
Feature names, units and details (e.g., ICD and LOINC codes) grouped by extraction time window specifications. Binary features encode whether there is an
entry in the database for the specific item of interest or not. The symbol * represents a wildcard for ICD subcategory codes.

train and evaluate 100 individual XGBoost models. This
was done once on the full feature set (excluding features
removed in the data preparation step), and in a second step on
split-specific reduced feature sets keeping only the most
relevant features based on a feature importance analysis in
each split in order to simplify the models. The performances of
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the full and reduced models are summarized using different
metrics in Table 3. Figure 4a-d shows the receiver operating
characteristic (ROC) and the precision-recall (PR) curves together
with their distributions of their areas under the curve (AUC) as
well as the calibration of the models (e) for the 100 models after
feature reduction. In addition, the confusion matrix for the

npj Digital Medicine (2021) 113



npj

M.D. Rinderknecht and Y. Klopfenstein

Table 2. Descriptive statistics of the features.

Feature Missing Mean Std Min 25% 50% 75% Max
Age NA 48.6 19.4 1 32 49 63 90
BMI 16.7% 316 841 10.4 25.7 30.1 36 93
Body temperature 69.3% 371 0.617 32 36.7 37 374 40.8
Feature Missing Female (1) Male (0)
Gender NA 56.9% 43.1%
Feature Present (1) Absent (0)

Active smoking 16.0% 84.0%

Acute bronchitis 1.5% 98.5%

Anorexia 0.9% 99.1%

Asthma 11.4% 88.6%

Cardiovascular disease 23.4% 76.6%

Chronic kidney disease 10.0% 90.0%

Chronic obstructive pulmonary disease 5.6% 94.4%

Confusion 1.8% 98.2%

Cough 29.9% 70.1%

Diabetes 18.8% 81.2%

Diarrhea 4.1% 95.9%

Ethnicity (Hispanic) 11.6% 88.4%

Ethnicity (non-Hispanic) 29.3% 70.7%

Fatigue 7.4% 92.6%

Fever 22.2% 77.8%

Headache 4.9% 95.1%

Hemoptysis 0.1% 99.9%

Hospitalization (inpatient) 4.2% 95.8%

Hypertension 38.0% 62.0%

Immunodeficiency 2.3% 97.7%

Myalgia 0.2% 99.8%

Nicotine dependence 8.6% 91.4%

Obesity 25.0% 75.0%

Paralytic syndromes 1.2% 98.8%

Pneumonia 12.2% 87.8%

Race (African American) 44.2% 55.8%

Race (Asian) 1.2% 98.8%

Race (Caucasian) 48.5% 51.5%

Race (multi-racial) 2.3% 97.7%

Rhinorrhea 1.7% 98.3%

Shortness of breath 15.4% 84.6%

Sore throat 3.7% 96.3%

Sputum 0.0% 100.0%

Vomitting 0.6% 99.4%

the rate of missing data is not reported for these features.

The descriptive statistics are reported for all features (prior to feature exclusion in feature set pre-processing). The percentages 25, 50, and 75% refer to the first
(Q1), second (median), and third quartiles (Q3). Note that as part of Explorys’ de-identification process the feature age has a ceiling effect at 90 years, and the
age of all patients born in the last 365 days is reported as zero. The features age and gender were mandatory based on a previous data preparation step, hence

identified optimal classification threshold (0.131 [0.105, 0.146]) is
shown in Fig. 5. The sensitivity of the models for the optimal
threshold was 0.829 [0.805, 0.852] and the specificity 0.754
[0.713, 0.785].

Feature reduction and model interpretability

Figure 6 shows the results of the feature reduction process
in terms of frequency of a feature being selected across the
100 splits based on its mean absolute SHAP (SHapley Additive
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exPlanations®®) value. Most features were either always or never
selected, demonstrating high homogeneity across different splits.
Figure 7 shows the results of the model interpretability analysis
based on Tree SHAP? for the final model fitted using the same
methodology as for the 100 models after feature reduction, but
trained on all patient records to maximize the use of information.
Older age and pneumonia are by far the principal predictors for
critical state. The features contributing to a higher probability of
critical state in case of high feature values or presence are (in
decreasing order of global feature importance): older age,

Published in partnership with Seoul National University Bundang Hospital
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Fig. 3 Feature concurvity. Kendall's T was used to evaluate correlation between each feature combination (prior to feature exclusion in

feature set pre-processing).

Table 3. Performance comparison.

Performance metric

Full feature set

Reduced feature set

ROC AUC 0.863 [0.838, 0.885] 0.861 [0.838, 0.883]
PR AUC 0.443 [0.405, 0.489] 0.434 [0.414, 0.485]
Brier score 0.081 [0.050, 0.095] 0.082 [0.050, 0.095]
Log loss 0.265 [0.177, 0.305] 0.269 [0.178, 0.306]
Sensitivity 0.828 [0.805, 0.855] 0.829 [0.805, 0.852]
Specificity 0.749 [0.702, 0.786] 0.754 [0.713, 0.785]
F1-score 0.439 [0.374, 0.475] 0.439 [0.368, 0.478]

Different test set performance metric distributions across splits for the
models before and after feature reduction based on feature importance.
Numbers are reported as median and interquartile range.

pneumonia, higher BMI, diabetes, male gender, shortness of
breath, cardiovascular disease, absence of cough, non-Hispanic
ethnicity, higher body temperature, confusion, chronic kidney
disease, race (African American), and fever. Note that in Fig. 7 for
binary features "max” feature values correspond to 1 (e.g.,
presence of the feature). In the case of gender, 1 corresponds to
female (see Table 1). Figure 8 illustrates the composition of two
example predictions from the final model.

Published in partnership with Seoul National University Bundang Hospital

DISCUSSION

In this work, a prognostic model was created based on real-world
data to predict at COVID-19 diagnosis, whether patients will enter
a critical state within the next 28 days or not. Our results from 100
non-random train-test splits by time (12,602 patients for training
and 3151 patients unseen during training for testing) showed high
predictive performance (median sensitivity of 0.829 and specificity
of 0.754) and acceptably-calibrated output probabilities with a
minor tendency to over-forecast probabilities. Furthermore, the
interpretability analysis identified older age, pneumonia, higher
BMI, diabetes, male gender, shortness of breath, cardiovascular
disease, absence of cough, non-Hispanic ethnicity, and higher
body temperature as most important predictive factors for
critical state.

Around 16,000 US patients diagnosed with COVID-19 met the
inclusion criteria. To the best of our knowledge, it is one of the
largest cohorts used for COVID-19 progression modeling to date
based on EHR data. The definitions used for severe state or critical
state vary across different sources (e.g., intubation prior to ICU
admission, discharge to hospice, or death'”, moderate to severe
respiratory failure'', oxygen requirement greater than 10 L/min or
death'?), or are not described in detail. Based on the definition by
the World Health Organization®® including sepsis, septic shock,
and respiratory failure (e.g., acute respiratory distress syndrome
(ARDS)), the proportion of patients entering critical state (13.0%) in

npj Digital Medicine (2021) 113
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Fig. 5 Confusion matrix for the reduced feature sets across splits.
Confusion matrix for the predictions of the test sets based on the
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refers to entering critical state, and False refers to not entering
critical state. The shades of the confusion matrix correspond to the
median percentage of the actual labels (i.e., shade of the top left cell
and the bottom right cell represent the median specificity and the
median sensitivity, respectively).

our study is within the range of prevalence (12.6-23.5%) reported
in a review covering 21 studies®’. Similarly, case fatality rates vary
across US states and countries, as they directly depend on
factors such as the number of tested people, demographics,
socioeconomics, or healthcare system capacities. The death rate
for the entire US is estimated to be 3% (status August 26, 2020).
In the present work, the reported proportion of people assumed
to be deceased because of COVID-19 is 3.5%. These differences
may be justified in part by the fact that in these sources the
outcome (i.e., potential death) of recent cases is yet unknown
when computing the case fatality rate, hence leading to
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underestimation. As our analysis enforces at least 7 weeks of
data after diagnosis date increasing changes of knowing the
patients’ outcomes, this underestimation can be reduced. Never-
theless, death is not reliably reported in EHRs and records were
de-identified making linking to public death records not feasible.
Regarding demographics of our cohort, there are only minor
dissimilarities to numbers reported by the Centers for Disease
Control and Prevention (CDC) or US states. The interquartile range
of the age distribution of our cohort (32-63 years) matches with
the 33-63 years for COVID-19 cases across the entire US?®. The
racial breakdown varies strongly across different US states. Given
that Explorys clients are mostly in metropolitan areas, there is a
higher proportion of African Americans in the present EHR dataset
compared to US average®. The proportion of female cases (56.9%)
is more pronounced compared to the US-wide incidences of 406
(female) and 401 (male) cases per 100,000 persons also showing a
marginally higher rate for females than males, respectively®®. The
most common underlying comorbidities identified through ICD
codes in our cohort are hypertension, obesity, cardiovascular
disease, diabetes, and chronic lung disease (includes asthma and
chronic obstructive pulmonary disease). As this is in line with
statistics from the CDC?3° as well as other studies conducted in
China (e.g.’") and the prevalence of such features is not affected
by any time window restrictions (i.e., the entire patient history was
considered), it substantiates the validity of the Explorys data. Since
the aim of the present work is to develop a model for predictions
at the time point of COVID-19 diagnosis, symptoms identified
through ICD codes (e.g., fever or cough) are only extracted from
the 14 days previous to the COVID-19 diagnosis. As the COVID-19
diagnosis may be early or late in the disease progression, there is
the possibility to capture either early or late symptoms depending
on each case. However, due to the time window restriction, the
prevalence of reported symptoms tends to be lower compared to
statistics including reported symptoms during the entire course of

Published in partnership with Seoul National University Bundang Hospital
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the disease®®. Moreover, outpatient symptoms based on ICD
codes may be under-documented, as hospitals may not get paid
for their diagnosis. In spite of these lower numbers, the most
common symptoms in our cohort, namely cough, fever, and
shortness of breath, are confirmed by other reports and
studies®®323 In summary, despite the high sparsity of Explorys
EHR data, the size and quality of the extracted dataset
demonstrates high value and validity for the present use case.
Although our dataset is based on sparse real-world data, our
prognostic model shows an excellent model performance in terms
of ROC AUC (0.861 [0.838, 0.883])** and a substantial improvement
of the PR AUC (0.434 [0.414, 0.485]) compared to chance level
(0.125 [0.068, 0.133]). While the optimal decision threshold for a
medical application may differ from the threshold based on the
Youden'’s J statistic, as in some applications high sensitivity and in
others high specificity is more important, the Youden's J statistic
allows creating a scenario with equally weighted sensitivity and
specificity for comparing models using the same optimization
criteria. Maximizing the Youden'’s J statistic (0.575 [0.537, 0.622])
leads to a sensitivity of 0.829 [0.805, 0.852] and a specificity of
0.754 [0.713, 0.785]. For this example decision threshold and
sensitivity one obtains a median precision (or positive predictive
value, PPV) of 0.296 (see Fig. 4). The PPV describes the percentage
of patients actually entering critical state when they are predicted
to enter critical state, i.e, 29.6% of the cases (compared to the
chance level of 12.5 [6.8, 13.3]). While this seems rather low, it may
depend in what setting the model is used. If medical resources are
scarce, a model with a low false positive rate and high PPV, and
thus with a lower sensitivity, would be favorable. Hence, the
decision threshold should be increased. In that case, with for
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example a specificity of 97.5%, the PPV would be 56.2%.
Furthermore, the results in Table 3 demonstrate that the feature
reduction based on feature importance does not impact the
model performance, yet simplifies the models. As different types
of datasets, inclusion/exclusion criteria, features, and prediction
target definitions were used in other papers presenting the
development of models predicting COVID-19 critical state, (e.-
g.">"7, or review®), it renders it difficult to do a direct performance
comparison (reported metrics'"">'73°> were in the following
ranges: ROC AUC 0.81-0.99, PR AUC 0.56-0.71, sensitivity
0.70-0.94, specificity 0.74-0.96). Furthermore, some publications
do not mention some metrics (e.g, PR AUC), which are
complementary and particularly useful for imbalanced datasets,
as focusing only on high ROC AUC values (potentially resulting
from high class imbalance) may lead to overoptimistic interpreta-
tion of model performance®. Unlike other papers'"'*'” usually
performing a cross-validation or using a limited number of
independent sets for the testing, the present approach used non-
random train-test splits by time repeated 100 times to obtain a
distribution of performance. Such an approach has the advantage
of providing a better understanding of the generalizability of the
model and the robustness of the performance estimate, as it is
likely that a single test set might underestimate or overestimate
the real performance for small testing sets. Even though our
model was trained on data coming from many hospitals
compared to other work being only based on a single or limited
number of contributors, an external validation should be
performed to better assess its generalizability. Most publications
on prognosis prediction models do not report model calibration?,
with the exception of a few'*'8, The present model based on the
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For gender, 1 corresponds to female and 0 to male.

Explorys dataset is acceptably-calibrated, showing only minor
tendency to over-forecast probabilities. This over-forecast at
higher predicted probabilities may be due to a low percentage
of cases with critical state. In any case, over-forecast accentuating
cases with relatively high probability is preferable to under-
forecast, where patients with high probability of critical state may
not be identified. Overall, our prognostic model shows excellent
performance and has the advantage to provide an acceptably-
calibrated risk score instead of a binary classification. This could
potentially help healthcare professionals to create a more fine-
graded risk stratification of patients.

Pneumonia appeared among the top features, as pneumonia is
a diagnosis defining moderate and severe cases?®, which are
precursor stages for critical state due to COVID-19 disease. The
results from a study with 1099 patients showed that patients with
severe disease had a higher incidence of physician-diagnosed
pneumonia than those with non-severe disease®’. As identified by
the interpretability analysis, older age is an important risk factor.
This has been confirmed by many studies showing its relevance in
progressing to grade IV and V on the pneumonia severity index
and mortality of COVID-19 patients®®*°. The developed model
was also able to endorse existing results showing that men are,
despite similar prevalence to women, more at risk for worse
disease severity, independent of age®'. Similarly, obesity has been
reported as a factor increasing probability of higher disease
severity and lethality®”#>*>, While the feature obesity shows
minimal importance, the feature BMI is among the top features
leading to high risk (in case of high BMI). It can be assumed that
the feature obesity with a prevalence of 25.1% in our dataset
compared to age-adjusted prevalence of obesity in the US is
around 35%™** is under-reported in the EHR data of our cohort. The
median BMI in our dataset is very close to the threshold from
overweight to obesity (BMI of >30kg/m?). Hence it can be
concluded that approximately 50% of our patients are obese. In
addition, the BMI feature is a continuous variable with only 16.7%
missing entries, having thus more information content and, as a
result, shows higher predictive importance than obesity. In line
with the literature, the following comorbidities were also shown to
drive high probabilities for critical state: diabetes**™’, chronic
kidney disease?®°, and cardiovascular diseases**>'"2, As a matter
of fact, many elderly patients with these comorbidities use
Angiotensin-converting enzyme (ACE) inhibitors and Angiotensin-
receptor blockers (ARBs), which upregulate the ACE-2 receptor™.
Given that ACE-2 receptor has been proposed as a functional
receptor for the cell entry mechanism of coronaviruses, it has been
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hypothesized that as a consequence this may lead to a higher
prevalence and elevated risk for a severe disease progression after
SARS-CoV-2 infection®®. The two primary symptoms influencing
the progression of the disease based on the present analysis are
shortness of breath (dyspnea) and cough, both prevalent
symptoms for COVID-19°3. Interestingly, they have opposite
effects on the prediction probability of the model, with shortness
of breath increasing and cough decreasing the probability for
critical state. This can be explained by the fact that cough is an
early symptom during mild or moderate disease, and shortness of
breath develops in the late course of illness. This concurs with
statistical reports from China showing higher prevalence of
shortness of breath in severe cases and a higher prevalence of
cough in non-severe cases and survivors®'>>>¢, Hence, if cough is
reported, this may indicate that the disease is still in early stage
and there is the chance that it may not lead to a critical state,
whereas if shortness of breath is reported, chances for further
disease progression may be much higher. Furthermore, hospitals
may not report outpatient symptoms such as cough, whereas they
may report more critical symptoms such as shortness of breath
more reliably. This means that it is highly likely that many of the
patients in our cohort without an ICD code entry for cough
actually may have had cough, in particular given that it is a highly
prevalent symptom. This may considerably contribute to this
rather surprising result. High body temperature also emerges as
an important feature for predicting critical state. Despite having a
high level of missing data, it appears to have more value given its
continuous scale compared to the binary feature fever, similarly to
the case of BMI vs. obesity. Nonspecific neurological symptoms
like confusion are less commonly reported®?. Nevertheless, the
plot (b) in Fig. 7 reveals that the presence of confusion
significantly contributes to an increase in the model’s output
probability, despite having low overall importance (which in turn
is also driven by the low prevalence within our dataset). Confusion
may be a clearer precursor of neuroinvasion of SARS-CoV-2, which
has been suggested to potentially lead to respiratory failure®’.
Overall, the findings of this work are in line with results from the
vast number of studies reported in the literature and the
interpretability analysis provides evidence for the validity of the
prognostic prediction modeling. When comparing the most
relevant features in the present work with models predicting
comparable disease progression, there are some similarities but
also major differences: Some models include mostly laboratory
biomarkers and other vital measurements'®, while others also
include for example comorbidities'” and signs and symptoms'".
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cohort, illustrating the class imbalance.

The feature importance analysis of a model including both
biomarkers and comorbidities revealed that the most important
features are biomarkers'’. Similarly, different combinations of
types of features were explored, showing that the performance in
terms of ROC AUC is higher when using laboratory biomarkers
compared to signs and symptoms and that there is only a
marginal improvement when including comorbidities as addi-
tional covariates''. Interestingly, our model shows similar classi-
fication performance as the models above, despite not including
biomarkers and having the features being restricted to only
demographics, comorbidities, and signs and symptoms. Given the
fact that the model of this present work does not rely on
biomarkers, it increases its applicability.

EHRs can be a powerful data source to create evidence based
on real-world data, especially when combined with a platform
facilitating the structured extraction of data. However, there are
trade-offs to be made when doing analyses on EHR data in
contrast to the analysis of clinical study data®®. One major
limitation is that patients may get diagnoses, treatments, or
observations outside of the hospital network covered by Explorys,
resulting in sparse patient histories. Other challenges are potential
over- and under-reporting of diagnoses, observations, or proce-
dures. For example, clinicians may enter an ICD-10 code for
COVID-19 when ordering a SARS-CoV-2 test leading to over-
documentation and “false positive” entries. On the other hand,
relying only on test results may increase the risk that tested
patients only performed the test at a hospital within the Explorys
network, but did not get diagnosed and treated within the same
hospital, which would lead to potentially “false negatives” in terms
of target labeling. For this reason the inclusion criteria for our
cohort was based on the combination of an ICD code entry for
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COVID-19 with a positive SARS-CoV-2 test result, to increase the
probability of only including patients with actual COVID-19. EHR
data often requires imputation, as there is rarely a patient with a
complete data record, especially when the set of features is large.
The method of imputation may also introduce additional biases
which are difficult to control. One limitation of binary features
encoding presence or absence of entries in an EHR system (e.g.,
for comorbidities) is that in case of patients without an entry it
cannot be known whether the patient does not suffer from this
condition or whether the patient does suffer from this condition,
but it has not been diagnosed or reported in this EHR. Therefore,
in the present work, the model has to rely on whether this
information is available or not. In the other cases (e.g., body
temperature or BMI), it was ensured that the imputation was
based purely on the train set to avoid information leakage, which
is particularly important in predictive modeling. Furthermore, to
ensure data privacy and prevent re-identification, patients’ age is
truncated, and death dates and related diagnoses and procedures
are not available in Explorys data. As the latter is relevant for the
present modeling, several assumptions had to be taken. For
example in the 11 cases of deceased patients without critical state
after COVID-19 diagnosis, it was assumed that they deceased due
to COVID-19. However, they may have also deceased due to
another reason. Nevertheless, as they represent less than 0.1% of
our cohort, this assumption does not substantially influence the
modeling. Furthermore, resulting death rates correspond well to
official COVID-19-related death rates in the US or relevant states.
An additional limitation and potential bias is linked to the data
extraction using time windows. Even though the window lengths
were motivated by medical reasoning, they are subject to trade-
offs which is not the case for clinical studies due to precise
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protocols: extending the windows to capture enough information
spread over multiple visits and account for delays in EHR entries,
versus remaining recent enough and related to COVID-19.
Furthermore, the features used in this model do not capture the
time information for the individual samples (e.g., how many days
before COVID-19 diagnosis the ICD code for fever was entered into
the system). In addition, it could be that the reference for the time
windows is not accurate, as the ICD code or LOINC entry used as
COVID-19 diagnosis proxy may not have been the actual first
diagnosis of the patient. The model was based on US data from
hospitals of the Explorys network, sampling mostly metropolitan
areas, resulting for example in a higher ratio of African Americans
compared to the US average. Therefore it is highly likely that there
are socioeconomic and demographic biases. Moreover, the data
reflects the American healthcare system in terms of testing,
diagnosing, and treating procedures as well as reporting. Thus,
one major limitation of this work is the lack of external validation
using a different dataset. Despite these limitations, RWE can
retrospectively generate insights on a scale, which would not be
feasible with an observational clinical study. Furthermore,
approaches based on RWE might even have higher clinical
applicability due to their incorporation of statistical noise while
model training®.

The results of this work demonstrate that it is possible to
develop an explainable machine learning model based on patient-
level EHR data to predict at the time point of COVID-19 diagnosis,
whether individual patients will progress into critical state in the
following 4 weeks. Without the necessity of relying on multiple
laboratory test results or imaging such as computer tomography,
this model holds promise of clinical utility due to the simplicity of
the relevant features and its adequate sensitivity and specificity.
Even though this prognostic model for critical state has been
trained and evaluated on one of the largest COVID-19 cohorts to
date with EHR data from around 16,000 patients, it includes
predominantly cases from metropolitan areas within the US and
may therefore be biased towards sub-populations of the US and
the American healthcare system. To prove its generalizability
before being considered for clinical implementation, it should be
validated with other datasets. Such RWE models have the
potential to identify new risk factors by mining EHRs. This model
could also be augmented with treatment features (e.g., drugs or
other interventions) after diagnosis in order to predict whether
the respective treatments would lead to an improvement (i.e.,
reduction of the probability of entering critical state). RWE
approaches will never replace clinical studies to validate risk
factors or evaluate treatment effectiveness. Nevertheless, these
types of retrospective real-world data analyses can support other
research generally requiring much higher efforts and costs: They
could help identifying high risk or responder groups or informing
the design of clinical trials, with the aim of making research more
efficient and accelerating the avenue to personalized treatment
and eventually reduced burden on the healthcare system.

METHODS
RWE insights platform

This work was achieved by using the RWE Insights Platform, a data science
platform for analyses of medical real-world data to generate RWE recently
developed by IBM. The RWE Insights Platform is a data science pipeline
facilitating the setup, execution, and reporting of analyses of medical real-
world data to discover RWE insights in an accelerated way. The platform
architecture is built in a fully modular way to be scalable to include
different types of analyses (e.g. treatment pathway analysis, treatment
response predictor analysis, comorbidity development analysis) and
interface with different data sources (e.g., the Explorys database).

For the present use case of COVID-19 prognosis prediction, we used the
comorbidity development analysis which allows defining a cohort, an
outcome to be predicted, a set of predictors, and relative time windows for
the extraction of the samples from the data source. New data-extraction
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modules for specific disease, outcome, treatments, and variables for the
current use case were developed.

The RWE Insights Platform has been developed using open-source tools
and includes a front end based on HTML and CSS interfacing via a Flask
RESTful API to a Python back end (python 3.6.7) using the following main
libraries: imbalanced-learn 0.6.2, numpy 1.15.4, pandas 0.23.4, scikit-learn
0.20.1, scipy 1.1.0, shap 0.35.0, statsmodel 0.90.0, and xgboost 0.90. The
platform is a proprietary software owned by IBM. The detailed description
of the RWE Insights Platform is beyond the scope of this publication.

Real-world data source

Our work was based on de-identified data from the Explorys database. The
Explorys database is one of the largest clinical datasets in the world
containing EHRs of clinical activity of around 64 million patients distributed
across more than 360 hospitals in the US?2. This dataset contains data on
patients in all 50 US states who seek care in healthcare systems, which
chose the IBM Enterprise Performance Management platform for their
population and performance management and is not tied to particular
insurers. Data were standardized and normalized using common
ontologies, searchable through a Health Insurance Portability and
Accountability Act (HIPAA)-enabled, de-identified dataset from IBM
Explorys. Individuals were seen in multiple primary and secondary
healthcare systems from 1999 to 2020 with a combination of data from
clinical electronic medical records, health-care system outgoing bills, and
adjudicated payer claims. The de-identified EHR data include patient
demographics, diagnoses, procedures, prescribed drugs, vitals, and
laboratory test results. Hundreds of billions of clinical, operational, and
financial data elements are processed, mapped, and classified into
common standards (e.g., ICD, SNOMED, LOINC, and RxNorm). As a
condition of allowing the use of the de-identified data for research, these
systems cannot be identified. The aggregated Explorys data were
statistically de-identified to meet the requirements of 45 Code of Federal
Regulations § 164.514(b), 1996 HIPAA, and 2009 Health Information
Technology for Economic and Clinical Health (HITECH) standards. Business
affiliation agreements were in place between all participating healthcare
systems, and Explorys regarding contribution of EHR data to the Explorys
Platform and the use of these de-identified data. The Explorys dataset does
not include data from patients, who indicated at patient onboarding that
they did not wish to have their data used for de-identified secondary use.
Since the Explorys dataset consists of de-identified data for secondary use,
the use of said dataset is not considered a human study and thus ethical
approval was not required for the present work. The Explorys database has
been proven to be useful in many retrospective data analyses for different
applications (e.g., refs. °°°%). As data in Explorys is updated continuously, a
view of the database was created and frozen on August 26, 2020 for
reproducibility of this work.

Cohort

The cohort included all patients in the Explorys database having a
documented diagnosis of COVID-19 and a reported positive entry for a
SARS-CoV-2 test, both since January 20, 2020. As the new ICD-10 code
U07.1 for COVID-19 cases confirmed by laboratory testing has been
created and pre-released a couple of months after pandemic onset,
already existing ICD codes related to coronavirus (B34.2 Coronavirus
infection, unspecified and B97.29 Other coronavirus as the cause of
diseases classified elsewhere) were also included, as hospitals may have
used them for early cases. Based on their appearance in Explorys, the
following LOINC codes for polymerase chain reaction (PCR) tests for the
detection of SARS-CoV-2 (COVID-19) RNA presence were included: 94309-2,
94500-6, and 94502-2 (see ref. ®° for detailed descriptions of the tests). The
January 2020 cutoff was instituted to be consistent with the spread of
COVID-19 in the US and to limit inclusion of patients, who may have been
diagnosed with other forms of coronavirus besides SARS-CoV-2. In case of
multiple entries per patient after January 20, 2020, the first ICD code or
LOINC entry date was used as COVID-19 diagnosis date. In order to have
enough data to extract the patient’s outcome, the diagnosis date had to be
at least 7 weeks before the freeze date of the database (August 26, 2020),
i.e, July 8, 2020, as it may take up to 7 weeks from symptom onset to
death®®.

Prediction target

Critical state was used as a binary prediction target and included sepsis,
septic shock, and respiratory failure (e.g, ARDS)?®. Severe sepsis is
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Table 4. ICD-10 codes for the prediction target.

ICD-10 code Description

A41.89 Other specified sepsis

A41.9 Sepsis, unspecified organism

R65.2 Severe sepsis

R65.20 Severe sepsis without septic shock

R65.21 Severe sepsis with septic shock

J80 Acute respiratory distress syndrome (ARDS)

J96 Respiratory failure, not elsewhere classified

J96.0 Acute respiratory failure

J96.00 Acute respiratory failure, unspecified whether with
hypoxia or hypercapnia

J96.01 Acute respiratory failure with hypoxia

J96.02 Acute respiratory failure with hypercapnia

J96.9 Respiratory failure, unspecified

J96.90 Respiratory failure, unspecified, unspecified whether
with hypoxia or hypercapnia

J96.91 Respiratory failure, unspecified with hypoxia

J96.92 Respiratory failure, unspecified with hypercapnia

Patients with first diagnosis of any of the listed ICD-10 codes within the

specified time window were labeled as entering critical state.

associated with multiple organ dysfunction syndrome. The precise
definition based on ICD codes used for critical state is listed in Table 4.
In case of multiple entries for a patient, the first entry was retained. In
addition, the date of the entry for critical state had to be in a window of
[0, +28] days (boundaries included) after the diagnosis date to be eligible,
as illustrated in Fig. 2. Four weeks were chosen to ensure coverage of the
majority of critical outcomes, as the interquartile range of time from illness
onset to sepsis and ARDS were reported to be [7, 13] and [8, 15] days,
respectively®'. Patients with an eligible entry for critical state were labeled
as entering critical state, whereas patients eligible based on cohort
definitions without any entry for critical state were labeled as not entering
critical state. One exception to these rules were patients who are flagged
as deceased in the Explorys database. In order to include death cases
potentially related to COVID-19 in the critical state group, and as death
dates and records with diagnoses and procedures relating to the patient’s
death are not available in the Explorys data to avoid re-identification of
patients and ensure data privacy, patients with one of the following
conditions were also labeled as entering critical state: deceased with an
entry for critical state within the window, deceased with an entry for
critical state within and after the window, or deceased without any entry
for critical state (and thus excluding deceased patients with an entry for
critical state before the window). In the latter case, the date was set to the
end of the window for critical state entries. To validate these assumptions,
the proportion of patients assumed to be deceased due to COVID-19 in our
cohort was compared to epidemiological numbers.

Features

Features were mainly grouped into "acute” features and "chronic” features.
Acute features are a set of features, which should be temporally close to
the COVID-19 diagnosis (e.g., body temperature, symptoms potentially
related to COVID-19, or hospitalization prior to the diagnosis), whereas
chronic features are a set of features which have no direct temporal
relation to the COVID-19 diagnosis (e.g., chronic comorbidities, measurable
demographics, or long-term habits). Features were selected based on
potential risk factors and predictors related to COVID-19 reported in the
literature. Figure 2 illustrates their difference in terms of time windows for
extraction. A negative value for boundaries of time window definitions
stand for dates prior to the reference date (e.g. prior to the diagnosis
date). Ideally, acute features should have been recorded for higher
consistency at diagnosis date. However, this may not be always the case in
the EHR compared to data from clinical studies. To account for recorded
symptoms previous to the diagnosis (e.g., through telemedicine before
performing a SARS-CoV-2 test, or due to potentially required multiple
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testing because of false negatives delaying diagnosis), a time window of
[—14, 0] days before the diagnosis was used to extract acute features.
Patients were considered hospitalized (inpatient) if the reported
admission-discharge period of the hospitalization overlapped with the
acute feature extraction time window. Following cases could occur: i)
admission or discharge occurred within the acute feature extraction time
window (start or end overlap), or ii) admission started before acute feature
extraction time window and discharge occurred after the end of the
window (complete overlap). Outpatients receiving a COVID-19 test or
diagnosis at a hospital were not considered as hospitalized. Entries for
chronic features were considered if prior to the diagnosis date, without
additional restriction. Demographic features which were not restricted to
any time window (e.g., gender or race) or required a special way of
extraction/computation (e.g., age) are grouped as "special” features (see
Table 1) and are not represented in Fig. 2. As part of the de-identification
process, for patients over 90 years of age, the age is truncated to 90 years.
Similarly, the age of all patients born within the last 365 days is set to 0
years. The full list of features including their definitions (e.g., based on ICD
or LOINC codes) is provided in Table 1, grouped by extraction time window
type. As features entries (especially relevant for chronic features) may have
been entered several years ago, ICD-9 codes were used as well for the
extraction. In general, the last entry within the specific extraction time
window was used to construct the feature, except if described otherwise in
Table 1. Binary features encode whether there is a reported entry in the
database for the specific item of interest or not. Thus, in contrast to
features representing actual values like body temperature, where no entry
means missing information on body temperature they are by definition
always either true (1) or false (0). As it is common for such features in EHR,
not having an entry in the database (e.g. for a comorbidity) does not
necessarily mean that the patient does not suffer from this comorbidity.
Thus, patients not suffering from a condition and patients not being
reported to suffer from a condition (latter case could be considered as
“missing” data) are confounded. As features which are generally multivalue
categorical variables (e.g., race) are represented as independent entries in
Explorys, it can be the case that there are more than one and even
conflicting entries in the database due to multiple and potentially
erroneous reporting (e.g., there could be both an entry for Caucasian
and for Asian). In order to fully reflect the information provided in the
database, including these cases, and as the type of model used in the
present work would require one-hot encoding of multivalue categorical
variables, these features were implemented as independent binary
variables.

Dataset preparation, modeling, and evaluation

The full dataset was constructed based on COVID-19 diagnosis including
binary prediction target labels for critical state and enriched by the various
features. Patients with missing age or gender information were removed
from the dataset. Descriptive distribution statistics were created for all
features, and non-binary features with more than 90% missing values were
removed from the feature set. For the remaining feature set, the concurvity
(non-linear collinearity) among features was assessed using Kendall's 7, a
non-parametric measure of correlation. In case of 1| >0.7%, the feature
with more missing values was removed from the feature set. In case both
features had the same amount of missing values, the numeric feature with
higher mean or the more frequent binary feature was removed. The latter
allowed keeping minorities as features and embedding the majority into
the baseline risk probability. To create a distribution and confidence
intervals of the model performance, as performance may change
depending on the choice of split, multiple non-random splits by time
were created. The methodology of splitting by time is recommended in
TRIPOD®, as it allows for non-random variation between the train and test
sets, since all records of the test data of each split come from a time
window which has not been seen during training of the respective split.
For each split, the dataset was split into a train set (80%) and a test set
(20%). A sliding window was applied on the chronologically ordered
patients to create 100 different splits, where the window of 20% width
corresponded to the test set of the split. Thus, for the first split, the test set
covered the chronologically first 20% of the data records (earliest cases),
while the test set of the 100th split corresponded to the last 20% (most
recent cases). The remaining data of a split (whether before or after the
test set window) was used as a train set.

For each non-random split by time the following steps were executed:
The non-binary features of the train set and the test set were imputed
based on multivariate feature imputation using Bayesian Ridge estimation
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fitted on the train set to avoid data leaking. This method imputes missing
values by modeling each feature with missing values as a function of other
features in a round-robin fashion®®’°. The implementation of the iterative
imputer of the scikit-learn package is based on the Multivariate Imputation
by Chained Equations”' but returning a single imputation. As modeling
approach, XGBoost, a decision-tree-based ensemble machine learning
algorithm using a gradient boosting framework, was used. Gradient tree
boosting models have shown to outperform other types of models on a
large set of benchmarking datasets’. To tune the XGBoost hyperpara-
meters, a five-fold cross-validation grid search on the training data
maximizing the ROC AUC was used. Subsequently, an XGBoost model was
re-trained on the entire train set using the previously identified
parameters. The following grid of XGBoost parameters was evaluated:
max depthe(2, 3, 4, 5 6, 7, 8 (maximum depth of a tree),
min child weight €[1, 3, 5] (minimum sum of instance weight
needed in a child), gamma € [0.0, 0.1] (minimum loss reduction required
to make a further partition on a leaf node of the tree), subsample € [0.8,
1.0] (subsample ratio of the training instances), colsample bytree €
[0.8, 1.0] (subsample ratio of columns when constructing each tree),
reg_alpha €[00, 0.01] (L1 regularization term on weights), and
learning rate €[0.01, 0.05, 0.1] (step size shrinkage). The 100 trained
XGBoost models were subsequently used to create predictions on the test
set for performance evaluation.

The performance of the models was evaluated on the test set for each
non-random train-test split by time and reported with median and
interquartile range across different splits. This provides a distribution of
expected performance, if a new model would be trained on similar data.
Following metrics were computed: receiver operating characteristic (ROC)
curve and precision recall (PR) curve as well as their respective areas under
the curve (ROC AUC, also known as C-statistic, and PR AUC), Brier score,
and log loss. The PR AUC is particularly useful to compare models from
different datasets, which may be less or more imbalanced, as compared to
the ROC AUC, the metric is not affected by class imbalance. The confusion
matrix, sensitivity, specificity, and F1-score were reported for the optimal
probability classification threshold. This threshold was obtained based on
maximizing the largest Youden's J statistic (corresponding to the largest
geometric mean as a metric for imbalanced classification seeking for a
balance between sensitivity and specificity). Furthermore, the calibration of
the models was reported, comparing binned mean predicted values (i.e.,
probabilities) to the actual fraction of positives (labeled as critical state)’?,
in order to evaluate whether the predicted probability is realistic and can
provide some confidence on the prediction.

Interpretability of the models was generated using Tree SHAP?, a
version of SHAP (SHapley Additive exPlanations) optimized for tree-based
models. SHAP is a framework to explain the contribution of feature values
to the output of individual predictions by any type of model and to
compute the global importance of features. This individual contribution is
expressed as SHAP value, corresponding to log-odds (output of the trees in
XGBoost). In order to reduce the complexity of the models by removing
less important features (and therefore increasing the model’s applicability
and reducing its dependency on imputation in cases where less feature
values are available for a prediction), the mean absolute SHAP value was
computed for each feature in each split. For each split, the features were
ordered by decreasing mean absolute SHAP value and only the features
representing when combined 95% of the sum of the mean absolute SHAP
values were retained, thus removing the least important features which
combined contribute to less than 5%. While this approach prevents
leakage, this split-specific feature reduction process may result in a
different reduced feature sets for the different splits. This approach is
inspired by’*”® suggesting to use SHAP values for feature selection.
However, instead of using an absolute threshold for SHAP values or a
percentage of features, we propose to use a cumulative percentage
threshold analogous to what can be done in Principal Component Analysis
to achieve for example 95% of variance explained with a subset of
principal components. The process of train-test splitting, imputation,
model fitting, and evaluation was repeated with the new split-specific
reduced feature set.

While 100 splits are useful to describe model performance to be
expected on unseen data, fitting a final model on the entire set of patient
records would maximize the use of information. The same methodology
for feature reduction as previously in each individual split was performed
after training a single model on the entire dataset. The final XGBoost
model was retrained on the entire set of patient records with the reduced
set of features. Since the identical methodology was used when creating
the distributions of performance based on the test sets, the reported
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performance distributions are representative of the expected performance
of the final model on unseen data.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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use (e.g., for scientific research) on a commercial basis. Requests for access to the
data should be sent to IBM Watson Health and not to the corresponding author.

CODE AVAILABILITY

Custom codes were made for the analysis using open source libraries (python 3.6.7,
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reasons. The predictive model is owned by IBM. However, IBM is willing to cooperate
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access to the model as well as sharing of output and results are clearly defined in a
collaboration agreement.

Received: 31 August 2020; Accepted: 21 June 2021;
Published online: 20 July 2021

REFERENCES

1. Gorbalenya, A. E. et al. The species severe acute respiratory syndrome-related
coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5,
536-544 (2020).

2. Johns Hopkins University (JHU). COVID-19 dashboard by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University (JHU). Accessed on
26 August 2020; https://coronavirus.jhu.edu/map.html (2020).

3. Peeri, N. C. et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics,
the newest and biggest global health threats: what lessons have we learned? Int.
J. Epidemiol. 49, 717-726 (2020).

4. Anderson, R. M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T. D. How will
country-based mitigation measures influence the course of the COVID-19 epi-
demic? Lancet 395, 931-934 (2020).

5. Armocida, B., Formenti, B., Ussai, S., Palestra, F. & Missoni, E. The italian health
system and the COVID-19 challenge. Lancet Public Health 5, €253 (2020).

6. Ranney, M. L., Griffeth, V. & Jha, A. K. Critical supply shortages the need for
ventilators and personal protective equipment during the Covid-19 pandemic. N.
Engl. J. Med. 382, e41 (2020).

7. Bullock, J., Alexandra, L., Pham, K. H., Lam, C. S. N. & Luengo-Oroz, M. Mapping the
Landscape of Artificial Intelligence Applications against COVID-19. Journal of
Artificial Intelligence Research 69, 807-845 (2020).

8. Wynants, L. et al. Prediction models for diagnosis and prognosis of COVID-19
infection: systematic review and critical appraisal. BMJ 369, m1328 (2020).

9. Bai, X. et al. Predicting COVID-19 malignant progression with Al techniques. Preprint
at  medRxiv  https://www.medrxiv.org/content/10.1101/2020.03.20.20037325v2
(2020).

10. Feng, Z. et al. Early prediction of disease progression in 2019 novel coronavirus
pneumonia patients outside wuhan with CT and clinical characteristics. Preprint
at medRxiv https://www.medrxiv.org/content/10.1101/2020.02.19.20025296v 1
(2020).

11. Ferrari, D. et al. Machine learning in predicting respiratory failure in patients with
COVID-19 pneumonia—challenges, strengths, and opportunities in a global
health emergency. Preprint at medRxiv https://www.medrxiv.org/content/
10.1101/2020.05.30.20107888v2 (2020).

12. Gong, J. et al. A Tool for Early Prediction of Severe Coronavirus Disease 2019
(COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and
Guangdong, China. Clinical Infectious Diseases 71, 833-840 (2020).

13. Haimovich, A. et al. Development and validation of the COVID-19 severity index
(CSI): a prognostic tool for early respiratory decompensation. Preprint at medRxiv
https://www.medrxiv.org/content/10.1101/2020.05.07.20094573v2 (2020).

Published in partnership with Seoul National University Bundang Hospital


https://coronavirus.jhu.edu/map.html
https://www.medrxiv.org/content/10.1101/2020.03.20.20037325v2
https://www.medrxiv.org/content/10.1101/2020.02.19.20025296v1
https://www.medrxiv.org/content/10.1101/2020.05.30.20107888v2
https://www.medrxiv.org/content/10.1101/2020.05.30.20107888v2
https://www.medrxiv.org/content/10.1101/2020.05.07.20094573v2

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

. Jiang, X. et al. Towards an artificial intelligence framework for data-driven pre-

diction of coronavirus clinical severity. Comput. Mater. Contin. 63, 537-551 (2020).

. Liu, J,, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with

2019 coronavirus disease in the early stage. J Transl Med 18, 206 (2020).

. Petrilli, C. M. et al. Factors associated with hospitalization and critical illness

among 4103 patients with COVID-19 disease in New York City. Preprint
at medRxiv https://www.medrxiv.org/content/10.1101/2020.04.08.20057794v1
(2020).

. Vaid, A. et al. Machine learning to predict mortality and critical events in COVID-

19 positive New York City patients. Preprint at medRxiv https://www.medrxiv.org/
content/10.1101/2020.04.26.20073411v1 (2020).

. Xie, J. et al. Development and external validation of a prognostic multivariable

model on admission for hospitalized patients with COVID-19. Preprint at medRxiv
https://www.medrxiv.org/content/10.1101/2020.03.28.20045997v2 (2020).

. Yan, L. et al. A machine learning-based model for survival prediction in patients

with severe COVID-19 infection. Preprint at medRxiv https://www.medrxiv.org/
content/10.1101/2020.02.27.20028027v3 (2020).

DeCaprio, D. et al. Building a COVID-19 vulnerability index. Preprint at arXiv
https://arxiv.org/abs/2003.07347 (2020).

Knight, S. R. et al. Risk stratification of patients admitted to hospital with covid-19
using the isaric who clinical characterisation protocol: development and valida-
tion of the 4c mortality score. BMJ 370, m3339 (2020).

Watson Health, IBM Corporation. IBM explorys network—unlock the power of big
data beyond the walls of your organization. Technical Report (2016). Accessed on
26 August 2020, https://www.ibm.com/downloads/cas/RWA9EAXD

Benchimol, E. I. et al. The REporting of studies conducted using observational
routinely-collected health data (RECORD) statement. PLOS Med. 12, e1001885
(2015).

Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD):
The TRIPOD statement. Ann. Intern. Med. 162, 55-63 (2015).

Lundberg, S. M. et al. From local explanations to global understanding with
explainable ai for trees. Nat. Mach. Intell. 2, 56-67 (2020).

WHO. Severe acute respiratory infections treatment centre. Technical Report
(2020). Accessed on 26 August 2020, https://www.who.int/publications/i/item/
10665-331603

Hu, Y. et al. Prevalence and severity of corona virus disease 2019 (COVID-19): a
systematic review and meta-analysis. J. Clin. Virol. 127, 104371 (2020).

Stokes, E. K. et al. Coronavirus disease 2019 case surveillance—United States,
January 22-May 30, 2020. MMWR Morb. Mortal. Wkly Rep. 69, 759-765 (2020).
Census Bureau, U. U.S. Census Bureau QuickFacts: United States. Accessed on 26
August 2020 https://www.census.gov/quickfacts/fact/table/US/PST045219 (2020).
Garg, S. et al. Hospitalization rates and characteristics of patients hospitalized
with laboratory-confirmed coronavirus disease 2019—COVID-NET, 14 states,
march 1-30, 2020. Morb. Mortal. Wkly Rep. 69, 458-464 (2020).

Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with
COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062
(2020).

Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019
novel coronavirus pneumonia in wuhan, china: a descriptive study. Lancet 395,
507-513 (2020).

Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-
2 pneumonia in Wuhan, China: a single-centered, retrospective, observational
study. Lancet Respir. Med. 8, 475-481 (2020).

Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test
assessment. J. Thorac. Oncol. 5, 1315-1316 (2010).

Huang, H. et al. Prognostic factors for covid-19 pneumonia progression to severe
symptoms based on earlier clinical features: a retrospective analysis. Front. Med.
7, 643 (2020).

Fernandez, A. et al. Learning from Imbalanced Data Sets (Springer, 2018).

Guan, W.-J. et al. Clinical characteristics of coronavirus disease 2019 in China. N.
Engl. J. Med. 382, 1708-1720 (2020).

Du, R-H. et al. Predictors of mortality for patients with COVID-19 pneumonia
caused by SARS-CoV-2: a prospective cohort study. Eur. Respir. J. 55, 2000524
(2020).

Liu, K, Chen, Y., Lin, R. & Han, K. Clinical features of COVID-19 in elderly patients: a
comparison with young and middle-aged patients. J. Infect. 80, e14-e18 (2020).
Mehra, M. R,, Desai, S. S., Kuy, S., Henry, T. D. & Patel, A. N. Cardiovascular disease,
drug therapy, and mortality in covid-19. N. Engl. J. Med. 382, e102 (2020).

Jin, J-M. et al. Gender differences in patients with COVID-19: focus on severity
and mortality. Front. Public Health 8, 152 (2020).

Petrakis, D. et al. Obesity—a risk factor for increased COVID-19 prevalence,
severity and lethality (review). Mol. Med. Rep. 22, 9-19 (2020).

Lighter, J. et al. Obesity in patients younger than 60 years is a risk factor for covid-
19 hospital admission. Clin. Infect. Dis. 71, 896-897 (2020).

Published in partnership with Seoul National University Bundang Hospital

M.D. Rinderknecht and Y. Klopfenstein

np)j

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

74.

75.

Flegal, K. M., Carroll, M. D, Kit, B. K. & Ogden, C. L. Prevalence of obesity and
trends in the distribution of body mass index among US adults, 1999-2010. JAMA
307, 491-497 (2012).

Guo, W. et al. Diabetes is a risk factor for the progression and prognosis of COVID-
19. Diabetes Metab. Res. Rev. n/a, 3319 (2020).

Wang, B, Li, R, Lu, Z. & Huang, Y. Does comorbidity increase the risk of patients
with COVID-19: evidence from meta-analysis. Aging 12, 6049-6057 (2020).

Yan, Y. et al. Clinical characteristics and outcomes of patients with severe covid-
19 with diabetes. BMJ Open Diabetes Res. Care 8, €001343 (2020).

Cheng, Y., Luo, R, Wang, K. & Zhang, M. et al. Kidney disease is associated with in-
hospital death of patients with COVID-19. Kidney Int. 97, 829-838 (2020).
Emami, A, Javanmardi, F., Pirbonyeh, N. & Akbari, A. Prevalence of underlying
diseases in hospitalized patients with COVID-19: a systematic review and meta-
analysis. Arch. Acad. Emerg. Med. 8, e35 (2020).

Henry, B. M. & Lippi, G. Chronic kidney disease is associated with severe coronavirus
disease 2019 (covid-19) infection. Int. Urol. Nephrol. 52, 1193-1194 (2020).

Bansal, M. Cardiovascular disease and covid-19. Diabetes Metab. Syndrome 14,
247-250 (2020).

Guo, T. et al. Cardiovascular implications of fatal outcomes of patients with
coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5, 811-818 (2020).

Zheng, Y.-Y,, Ma, Y.-T., Zhang, J.-Y. & Xie, X. COVID-19 and the cardiovascular
system. Nat. Rev. Cardiol. 17, 259-260 (2020).

Shahid, Z. et al. COVID-19 and older adults: what we know. J. Am. Geriatrics Soc.
68, 926-929 (2020).

Zhao, X. et al. Incidence, clinical characteristics and prognostic factor of patients
with COVID-19: a systematic review and meta-analysis. Preprint at medRxiv
https://www.medrxiv.org/content/10.1101/2020.03.17.20037572v1 (2020).

Li, K. et al. The clinical and chest CT features associated with severe and critical
COVID-19 pneumonia. Investig. Radiol. 55, 327-331 (2020).

Asadi-Pooya, A. A. & Simani, L. Central nervous system manifestations of COVID-
19: a systematic review. J. Neurol. Sci. 413, 116832 (2020).

Kim, H.-S., Lee, S. & Kim, J. H. Real-world evidence versus randomized controlled
trial: clinical research based on electronic medical records. J. Korean Med. Sci. 33,
€213 (2018).

Bachtiger, P., Peters, N. S. & Walsh, S. L. Machine learning for COVID-19—asking
the right questions. Lancet Digit. Health 2, e391-e392 (2020).

Angelini, D. E., Radivoyevitch, T., McCrae, K. R. & Khorana, A. A. Bleeding incidence
and risk factors among cancer patients treated with anticoagulation. Am. J.
Hematol. 94, 780-785 (2019).

Kaelber, D. C, Foster, W., Gilder, J., Love, T. E. & Jain, A. K. Patient characteristics
associated with venous thromboembolic events: a cohort study using pooled
electronic health record data. J. Am. Med. Inform. Assoc. 19, 965-972 (2012).
Pfefferle, K. J., Shemory, S. T., Dilisio, M. F., Fening, S. D. & Gradisar, I. M. Risk
factors for manipulation after total knee arthroplasty: a pooled electronic health
record database study. J. Arthroplast. 29, 2036-2038 (2014).

Raket, L. L. et al. Dynamic ElecTronic hEalth reCord deTection (DETECT) of indi-
viduals at risk of a first episode of psychosis: a case-control development and
validation study. Lancet Digit. Health 2, e229-e239 (2020).

Ravizza, S. et al. Predicting the early risk of chronic kidney disease in patients with
diabetes using real-world data. Nat. Med. 25, 57-59 (2019).

LOINC. SARS Coronavirus 2 - LOINC. Accessed 20 April 2020 https://loinc.org/sars-
coronavirus-2/ (2020).

Wang, W., Tang, J. & Wei, F. Updated understanding of the outbreak of 2019
novel coronavirus (2019-ncov) in wuhan, china. J. Med. Virol. 92, 441-447 (2020).
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a
simulation study evaluating their performance. Ecography 36, 27-46 (2013).
Moons, K. G. et al. Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): Explanation and elaboration. Ann.
Intern. Med. 162, W1-W73 (2015).

Tipping, M. E. Sparse bayesian learning and the relevance vector machine. J.
Mach. Learn. Res. 1, 211-244 (2001).

MacKay, D. J. Bayesian interpolation. Neural Comput. 4, 415-447 (1992).

van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by
chained equations in R. J. Stat. Softw. Artic. 45, 1-67 (2011).

Olson, R. S., La Cava, W., Mustahsan, Z., Varik, A. & Moore, J. H. Data-driven advice
for applying machine learning to bioinformatics problems. Biocomputing 23,
192-203 (2018).

Van Calster, B,, McLernon, D. J.,, Van Smeden, M., Wynants, L. & Steyerberg, E. W.
Calibration: the achilles heel of predictive analytics. BMC Med. 17, 230 (2019).
Kumar, C. S., Choudary, M. N. S, Bommineni, V. B, Tarun, G. & Anjali, T. Dimensionality
reduction based on shap analysis: a simple and trustworthy approach. In 2020 Inter-
national Conference on Communication and Signal Processing (ICCSP), 2020 International
Conference on Communication and Signal Processing (ICCSP) 558-560 (IEEE, 2020).
Marcilio, W. E. & Eler, D. M. From explanations to feature selection: assessing shap
values as feature selection mechanism. In 2020 33rd SIBGRAPI Conference on

npj Digital Medicine (2021) 113

13


https://www.medrxiv.org/content/10.1101/2020.04.08.20057794v1
https://www.medrxiv.org/content/10.1101/2020.04.26.20073411v1
https://www.medrxiv.org/content/10.1101/2020.04.26.20073411v1
https://www.medrxiv.org/content/10.1101/2020.03.28.20045997v2
https://www.medrxiv.org/content/10.1101/2020.02.27.20028027v3
https://www.medrxiv.org/content/10.1101/2020.02.27.20028027v3
https://arxiv.org/abs/2003.07347
https://www.ibm.com/downloads/cas/RWA9EAXD
https://www.who.int/publications/i/item/10665-331603
https://www.who.int/publications/i/item/10665-331603
https://www.census.gov/quickfacts/fact/table/US/PST045219
https://www.medrxiv.org/content/10.1101/2020.03.17.20037572v1
https://loinc.org/sars-coronavirus-2/
https://loinc.org/sars-coronavirus-2/

np)

M.D. Rinderknecht and Y. Klopfenstein

Graphics, Patterns and Images (SIBGRAPI), 2020 33rd SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI) 340-347 (IEEE, 2020).

ACKNOWLEDGEMENTS

The authors would like to thank Tobias Egli, Oliver Miiller, Ajandek Peak, and Sylvia
Schumacher for contributing to the development of the RWE Insights Platform, and in
particular Tobias Egli and Oliver Miiller for their feedback on the manuscript. This
work was done in close collaboration and discussion with the US IBM Watson Health®
team, which also provided access to the Explorys dataset for this project. We thank
notably Anil Jain, MD, Vice President and Chief Health Information Officer of IBM
Watson Health, and Brenna Brady, Health Outcomes researcher of IBM Watson
Health, for advice regarding clinical aspects and critical review of the manuscript as
well as Ben Kolt, Explorys Offering Manager, for support and advice related to
processing EHR data. The RWE Insights Platform project is supported and sponsored
by Paolo Bassignana and Lars Bohm (Digital Health, IBM Switzerland Ltd).

AUTHOR CONTRIBUTIONS

M.R. and Y.K. lead the development of the RWE Insights Platform, contributed to the
conception of this work, developed the methodology, implemented the use case and
the modeling approach, performed the analysis, interpreted the results, and drafted
the manuscript. Both authors revised the manuscript and approved the final version.

COMPETING INTERESTS
M.R. and Y.K. are employees of IBM Switzerland Ltd.

npj Digital Medicine (2021) 113

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541746-021-00482-9.

Correspondence and requests for materials should be addressed to Y.K.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Published in partnership with Seoul National University Bundang Hospital


https://doi.org/10.1038/s41746-021-00482-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
	Introduction
	Results
	Cohort, descriptive statistics, and concurvity
	Performance
	Feature reduction and model interpretability

	Discussion
	Methods
	RWE insights platform
	Real-world data source
	Cohort
	Prediction target
	Features
	Dataset preparation, modeling, and evaluation
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




