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Abstract

Burn injuries are a common form of traumatic injury that leads to significant morbidity and 

mortality worldwide. Burn injuries are characterized by inflammatory processes and alterations in 

numerous organ systems and functions. Recently, it has become apparent that the gastrointestinal 

bacterial microbiome is a key component of regulating the immune response and recovery from 

burn and can also contribute to significant detrimental sequelae after injury, such as sepsis and 

multiple organ failure. Microbial dysbiosis has been linked to multiple disease states, however, its 

role in exacerbating acute traumatic injuries, such as burn, are poorly understood. In this article, 

we review studies that document changes in the intestinal microbiome after burn injury, assess the 

implications in post-burn pathogenesis, and the potential for further discovery and research.

1. INTRODUCTION

Burn injuries are a subset of traumatic injuries to the skin that can be caused by a number 

of different insults. This includes thermal, chemical, radiation, electrical, friction, and cold 

burns (frostbite). The majority of burns are caused by thermal insults, including fire, hot 
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objects, or hot liquids/scalding. As of 2016, an estimated 486,000 people in the United 

States received medical care related to a burn injury, with 40,000 people hospitalized due 

to their injury(1). Furthermore, incidents of burn injury are significantly higher in lower 

income countries with the WHO attributing up to 90% of the 11 million burn injuries 

world-wide in low income countries, and are a major cause of morbidity in the world(2).

Burn injury severity is categorized by the depth and size of the wound as demonstrated 

in Figure 1. First degree burns have the injury limited to the epidermis, or outermost and 

superficial layer of the skin. Second degree or partial thickness burns are defined by the 

injury extending past the outermost layer into the dermis and often form blisters that are 

extremely painful. Depending on the depth of the partial thickness burn, surgery may be 

required. Third- and fourth-degree burns penetrate the full thickness of the dermis, with 

fourth degree burns causing deeper damage to underlying muscle or bone. Third- and fourth

degree burns are not painful due to destroyed nerve endings and require surgery and careful 

management of the burn area to prevent infection. Fourth-degree burns will often lead to 

the loss of the injured area. Along with the depth of the injury, the total surface area is an 

important component of determining burn injury severity. If the burn covers less than 10% of 

the total body surface area (TBSA), it is categorized as a minor burn. The classification for 

major burns is less well-defined, however, the following guidelines are often used to indicate 

a major burn: greater than 20% TBSA in adults, greater than 30% TBSA in children, and 

greater than 10% TBSA in elderly patients(3).

2. RESPONSE TO BURN INJURY

The initial burn injury causes numerous detrimental effects not only to the immediate 

burn area but leads to a cascade of responses in the entire body that can lead to severe 

consequences such as shock and multiple organ failure. These systemic responses can 

cause serious detriment to the patient and their recovery. Immediately following injury, 

catecholamines, cortisone, and inflammatory cytokines like IL-6 and tumor necrosis factor 

(TNF) are released into systemic circulation. Burn injury usually leads to distributive shock, 

in which capillaries become leaky and fluid is lost to the extravascular space. This loss of 

fluid from the circulatory system results in edema, fluid accumulation in tissues, reduced 

cardiac output, and compromised delivery of oxygen to numerous bodily organs, including 

the gastrointestinal tract(4, 5). Furthermore, burns can be complicated by other injuries, such 

as inhalation injury which can compromise the airway. A small subset of burn injuries are 

also associated with other traumatic injuries, such as traumatic brain injury, soft tissue injury 

and/or fracture, or injuries to the thorax and/or abdomen(6, 7). Like with any trauma patient, 

airway, breathing, and circulation must be stabilized upon immediate arrival to the hospital.

Current standards in burn treatment require immediate fluid resuscitation to account for this 

hypovolemic state. Fluid requirements are calculated based on several different formulas; 

however, initial rates are dependent on the size of the burn area, the patient’s body 

weight, and eventual fluid output by the patient (urine volume)(8-10). The purpose of fluid 

resuscitation is to adequately perfuse and oxygenate organs to avoid complications such 

as renal failure(11, 12). A delicate balance must be maintained while resuscitating burn 

patients, as over-resuscitation combined with endothelial leakage observed can lead to “fluid 
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creep” and severe consequences such as abdominal compartment syndrome, pulmonary 

edema, and decreased perfusion of the burn wound itself (9, 13).

The type of fluid used in resuscitation must also be considered: isotonic crystalloids, 

hypertonic solutions, colloids, and increasingly plasma is being used. Crystalloids, including 

Ringer’s lactate (RL) and normal saline, are readily available products and commonly 

used. However, over-resuscitation with RL has been associated with increased neutrophil 

activation after hemorrhage, and high volume administration of saline can lead to 

hyperchloremic acidosis(14, 15). Due to problems associated with over-resuscitation and 

edema, hypertonic solutions have also been used but require close monitoring due to risks of 

hypernatremia and subsequent renal failure(16). Recently, there has been an increased shift 

to using blood products, including plasma, as it is a physiologic fluid that may help prevent 

excess vascular leakage after burn injury(17). A rat model of burn injury demonstrated that 

addition of fresh frozen plasma (FFP) to resuscitation fluid helped diminish endothelial 

leakage(18). However, there are limited studies on the effect of the type of resuscitation 

fluids on the burn microbiome. One study using a swine burn model demonstrated that 

resuscitation volumes could influence the gut microbiota, such as a dose-dependent increase 

in Bacteroidetes and ameliorating growth of harmful Proteobacteria populations(19). A 

similar study used different resuscitation fluid paradigms in a swine model and found that 

while all groups experienced intestinal microbial dysbiosis following burn injury, limited

volume crystalloid (LV-Cr) resuscitation led to the most drastic dysbiosis and hepatocellular 

damage(20). However, further research needs to be done to fully understand the impact of 

burn resuscitation protocols on the microbiome.

While fluid resuscitation is paramount to burn treatment, it does not fully restore organ 

function. Burn patients still have numerous systemic abnormalities that must be closely 

monitored and treated. Inflammatory cytokine levels are consistently elevated in mouse 

models of burn injury for several days and a similar trajectory was observed in pediatric 

burn patients(21, 22). Finally, patients with severe burns enter a hypermetabolic state, 

and combined with systemic inflammation, are at risk for secondary infection, sepsis, and 

multiple organ failure.

Even after sufficient fluid resuscitation, patients still have experienced significant organ 

ischemia, and secondly, aggressive infusion of fluids leads to rapid re-introduction of 

oxygen to ischemic tissues, production of reactive oxygen species (ROS), and formation of 

free radicals. A major source of free radicals are neutrophils activated by damage associated 

molecular patterns (DAMPs) derived from injured tissue, leading to oxidative stress and 

injury of organs(23-26). Free radical-mediated injury after burn injury has been documented 

in numerous organs, including the lungs, liver, and the gastrointestinal tract(27-30). A 

number of studies have investigated antioxidants such as Vitamin C as a supplemental 

therapy to combat the severe oxidative stress encountered after a burn injury(31, 32).

Furthermore, this systemic inflammatory phase is characterized by release of inflammatory 

cytokines such as IL-1, IL-6, IL-18, and tumor necrosis factor (TNF), leading to further 

detrimental effects in numerous organ systems(33). The uncontrolled inflammatory response 

and release of cytokines can lead to systemic inflammatory response syndrome (SIRS), 
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characterized by overactivation of the immune response(34). This uncontrolled activation of 

the inflammatory response leads to organ tissue damage, which exacerbates the injury itself. 

Under these circumstances, the inflammatory mediators produced by the host are causing 

more damage to organ systems rather than eliminating subsequent infections. Due to this, 

patients with severe burn injuries are also at risk to develop secondary infections, which can 

lead to sepsis and multiple organ failure. Several studies have implicated the gastrointestinal 

tract as a source of bacterial endotoxin products and infection due to its large reservoir of 

bacteria(35-38).

2.1 Gastrointestinal abnormalities following burn injury

Following a severe cutaneous burn injury, the gastrointestinal system is adversely impacted 

by the initial hypoxia, the subsequent free radical injury and inflammation, leading to 

deficits in gastrointestinal (GI) barrier integrity and immune function(39). The GI tract 

is host to the body’s largest reservoir of bacteria and maintaining homeostasis between 

the host and the microbiome is crucial. Numerous abnormalities in the GI system have 

been documented in burn patients, including increased gut permeability, decreased gut 

motility/transit, and increased gut bacteria translocation(40-46). Bacterial products and 

bacteria themselves have been detected in the mesenteric lymph node, liver, and lungs 

following injury(35, 38, 47). This infiltration of bacteria can exacerbate the tissue damage 

by recruiting more neutrophils who continue to release ROS and free radicals(28). 

Burn injury has been reported not only to harm the gastrointestinal organs but alters 

the microbial populations themselves. Animal models of burn injury and reports from 

patients have shown that bacterial diversity is diminished and beneficial species, such 

as Bifidobacterium, are decreased compared to healthy controls(36, 48, 49). Trauma 

patients also exhibit these changes within 72hrs, showing a reduction in Bacteroidales, 
Fusobacteriales and Verrucomicrobiales, accompanied by an increase in Clostridiales and 

Enterococcus bacteria(50). GI functional deficiencies can be complicated by treatments 

used for the burn injury, including opioid analgesics, which may inhibit gut transit 

and reduce motility(51). This slowed transit of digestion products can lead to increased 

bacterial overgrowth in the intestines and overgrowth of pathogenic bacteria, in particular 

Enterobacteriaceae(47, 52). Similar to analgesics, antibiotic usage is ubiquitous due to 

high rates of mortality associated with secondary infections in burn patients. However, 

its usage leads to disruption of the gastrointestinal microbiome and introduces another 

confounding factor in the management of burn patients(53-56). As expected, antibiotic usage 

is linked to a decrease in the diversity of the gut flora and can allow multi-drug resistant 

strains to flourish(57). Others have demonstrated that the microbiome plays a crucial 

role in numerous disease states, including in unexpected areas, such as the regulation of 

cardiorespiratory control and the strength of the immune response derived from vaccines(58, 

59). Some studies have used manipulation of the microbiome to their advantage. In trauma 

patients, selective decontamination of the digestive tract (SDD), a prophylactic regimen of 

non-absorbable antibiotics with the aim to prevent nosocomial infections in critically ill 

patients, has shown to have some benefit in morbidity and mortality(60-62). However, there 

is still limited research in how the microbiome can affect the disease course of burn patients, 

as well as their potential as a therapeutic target or therapeutic that may aid the recovery of 

burn patients.
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3. CONFOUNDING VARIABLES IN BURN INJURY

3.1 Alcohol Use

Most instances of burn injury do not occur in isolation and are complicated by factors such 

as the patient alcohol and/or drug usage. In nearly half of all burn injuries, patients are 

intoxicated at the time of admission following burn injury(63). Alcohol leads to lowered 

inhibition, loss of dexterity and balance, and leads to increased accidental injuries, including 

burn injury(64). It is well-established that alcohol intoxication at the time of burn injury 

leads to worse outcomes, including increased hospital stay, increased infection rates, and 

a higher rate of surgical procedures(65). Alcohol alone is a risk factor and one of the 

leading causes of morbidity and mortality worldwide(66). Furthermore, alcohol usage can 

disrupt the microbiome, leading to dysbiosis, as well as alter permeability of the intestinal 

barrier. Studies have shown increased levels of endotoxin in alcoholic patients compared 

to controls, as well as increased small intestinal bacterial overgrowth(67-69). Ethanol 

exposure also alters immune responses, such as decreasing NLRP3 activation and cytokine 

production(70-72). Taken together, alcohol exposure at the time of burn injury potentiates 

end organ damage, including the lungs, liver, and gastrointestinal tract(73-77).

3.2 Advanced Age

Adults over the age of 65 are a growing percentage of the population(78). Within individuals 

of advanced age, there is increased incidence of chronic illnesses and a phenomenon 

known as “inflamm-aging,” which is a constant low-grade inflammatory state(79). Aging 

individuals have higher levels of TNFα and IL-6, but have diminished immune responses 

and are more susceptible to infections such as pneumonia(80, 81). Advanced age also 

leads to poor immune responses after burn, including delayed wound-healing, delayed 

inflammatory responses, and dysregulation of immune cells such as monocytes(82-85). 

While the elderly experience immune senescence with advanced age, the composition of 

their microbiome also changes, including greater proportion of Bacteroides and Clostridium 
groups(86-88). In a study using germfree mice, FMT were performed from young or old 

donor mice and transferred into young germfree mice. The mice inoculated with aged gut 

microbiota demonstrated increased intestinal inflammation and increased translocation of 

bacterial products from the gut lumen into systemic circulation, as well as immune cell 

activation(89). As for burn injuries, elderly patients consistently have poorer outcomes 

compared to younger patients, including increased morbidity, mortality, a delayed initial 

inflammatory response, followed by a prolonged hyperinflammation long after burn(84, 90). 

All of these aberrations in the aged population can compound in increased morbidity and 

mortality observed in elderly patients following burn injury, but the contribution of the 

microbiome is still poorly understood in the context of the elderly and acute injuries such as 

burn.

3.3 Sex

It is well-documented that there are differences in immune responses, leading to sexual 

disparities in numerous areas including the rate of autoimmune diseases and mortality after 

infection. Sex hormones are known to regulate immunity, with a general trend of females 

having a stronger immune response during reproductive age, including a more robust 
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humoral response(91-93). Differences have also been observed in traumatic injuries(94-96). 

In a rat study of trauma/hemorrhagic shock (T/HS) and burn injury, females showed less 

lung and gut injury following both injury models compared to male mice. When the female 

rates were ovariectomized, this protection was lost(97). Neutrophil response to a T/HS or 

burn injury rat model also demonstrated sexual dimorphism. CD11b surface expression and 

respiratory burst activity was increased in male rats after injury compared to female rats. 

This effect was reduced with castration of male rats rats(98). In a study of trauma patients, 

there was a slight increase in survival for women under the age of 40 with an Injury Severity 

Score between 16 and 24. Women also had less infectious complications, however, they did 

have a higher rate of death with infection(99). Conversely, in an analysis of patients from the 

National Burn Repository, female patients had a higher incidence of death as a result of burn 

injury across all age groups compared to men(100). More studies are needed to elucidate the 

effect sex has on burn patient survival and recovery.

4 THE MICROBIOME

The microbiome constitutes a diverse and complex population of bacteria, fungi, viruses, 

and other microorganisms that colonizes a specific location of the body. Although there are 

several different microbiomes within the human body, including the skin and oral mucosa, 

this review will focus on the gastrointestinal microbiome. The GI or gut microbiota is the 

largest reservoir of bacterial species in the human body, with upwards of 1012 bacteria 

per gram of luminal contents(101, 102). In addition to large quantities of total bacteria, 

the human gut microbiota also exhibits sizable numbers of individual bacterial species. 

Although it was previously believed that around 1,000 bacterial species are present in the 

gut, recent studies indicate there may in fact be over 15,000 individual species of bacteria in 

the human gut microbiome(103-105).

The earliest studies into the microbiome were hampered by the inability to culture the 

majority of bacteria present in the gut. Scientists have since harnessed the power of high 

through-put sequencing to make advances in understanding the composition and function 

of the microbiome. A commonly used method to detect and assess bacterial species is 16S 

ribosomal RNA (rRNA) sequencing. The 16S rRNA gene is an evolutionarily conserved 

component of the ribosome consisting of both conserved and a hypervariable region. 

Researchers can differentiate between bacterial species by sequencing the hypervariable 

region of this gene. With the advent of next generation sequencing, newer studies are 

beginning to utilize whole-genome sequencing. These approaches allow scientists to detect 

strains of individual bacterial species and analyze pathogenic bacterial genes. Overall, these 

methods have expanded the studies able to be performed and shaped our understanding of 

the human microbiome in health and disease.

4.1 Normal Bacterial Composition

The human gut microbiome is a diverse community of bacterial species that varies widely 

between individuals. Bacterial community structure is thought to be influenced by individual 

genetics, diet, environmental factors and exposure to microbes(106). In addition, differences 

in both bacterial abundance and composition are apparent throughout the length of the 
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gastrointestinal tract. However, the microbiome of the distal small intestine, cecum and 

large intestine share many commonalities(107). Throughout the years, this complexity has 

hampered the characterization of how a normal and healthy gut microbiome is structured. 

Nevertheless, scientists have identified several bacterial phyla and associated genera that 

are present across a number of intestinal microbiome studies. In general, the human 

intestinal microbiome is predominately composed of bacteria belonging to the Firmicutes, 
Actinobacteria and Bacteroidetes phylum(102). Core microbial genera belonging to the 

Firmicutes phyla include Ruminococcus, Faecalibacterium, Eubacterium, Clostridium and 

Roseburia(108). Pathogenic bacterial species, such as Enterobacteriaceae, are generally 

present at a very low abundance of <0.1% or less of the bacterial population(102). 

Recent studies looking at gut bacteria compositions across individuals have identified 

three general bacterial profiles, or enterotypes, that normal human gut microbiome samples 

cluster into(109, 110). However, studies are ongoing to determine what impact a person’s 

enterotype may have on disease outcomes and their diagnostic potential. In addition to the 

presence or absence of specific bacterial species, overall diversity of the gut microbiome 

is an important indicator of health. In the field of microbiome research, the diversity 

of bacteria found within a single sample is termed alpha diversity. This is determined 

by assessing the evenness (abundance of a species) and richness (number of different 

species present) of the microbiota. A healthy gut microbiome exhibits high diversity and 

studies indicate that individuals with lowered microbiome diversity are more associated with 

inflammatory phenotypes, obesity, and insulin resistance(111).

4.2 Functions of the Gut Microbiota and Microbial Metabolites

Studies involving germ-free mice, which lack a resident microbiome, reveal several crucial 

functions for the microbiota in regulating intestinal homeostasis. Compared to mice raised in 

normal conditions, germ-free mice exhibit severe defects in mucosal immunity. Additionally, 

they have been shown to have reduced intestinal motility and vascularity, deficient cytokine 

production and reduced epithelial cell turnover(112). Historically, the gut microbiome has 

been studied for its vital role in host metabolism. The resident bacteria of the gut are 

responsible for the fermentation of otherwise non-digestible complex carbohydrates and 

other xenobiotic compounds. The resulting bacterial metabolites provide a critical source 

of energy for cells throughout the body. Furthermore, these metabolites can enter the 

bloodstream where they have been shown to impact overall host metabolism, weight, and 

insulin sensitivity(113-115). Short-chain fatty acids are widely studied bacterial metabolites 

that include acetate, propionate, and butyrate. Acetate and propionate are primarily used 

by the liver and other peripheral tissues, where they are often converted into glucose 

or lipids. Butyrate is a major source of energy for the intestinal epithelium, with some 

studies indicating it may provide up to 80% of the energy source(116-118). A wide 

variety of bacteria belonging to the Bacteroidetes and Firmicutes phyla can produce 

different SCFAs. Bifidobacterium species are widely studied for their ability to produce 

the SCFA butyrate. Additional butyrate producing bacteria include Ruminococcaceae family 

members, such as Faecalibacterium prausnitzii, and various species of Roseburia within the 

family of Lachnospiraceae(119-121). In addition to regulating energy balance, SCFAs have 

been shown to promote intestinal barrier function via several mechanisms. Treatment of 

intestinal epithelial cells with SCFAs increases proliferation and tight junction expression 
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and reduces epithelial permeability(122-124). Furthermore, SCFAs can modulate mucosal 

immune responses to suppress intestinal inflammation. For example, acetate has been 

shown to promote intestinal IgA production(125). In general, butyrate is considered an anti

inflammatory molecule that maintains immune homeostasis in the gut by promoting anti

inflammatory cytokines like IL-10 and maintenance of regulatory T cell function(126-128). 

Apart from regulating host metabolism and providing sources of energy, the bacteria that 

comprise the gut microbiota also regulate GI tract structure and integrity, modulate immune 

functions, and provide antimicrobial protection(102, 108). Therefore, maintaining a healthy 

gut microbiome is essential for the proper function of the gastrointestinal tract.

4.3 Health Implications of Microbial Dysbiosis

Although the bacterial populations of an individual vary over time, an important aspect 

of the human microbiome is its resilience and ability to recover from disturbances, such 

as antibiotic use(129). The inability of the gut microbiome to return to a healthy state is 

associated with dysfunctional gut health and a variety of diseases. Bacterial dysbiosis is 

described as a significant change in the intestinal microbiome, such as reduced diversity and 

increased abundance of pathogenic bacteria, that can result in adverse health effects(122). 

Many studies over the years have focused on the connection between bacterial dysbiosis and 

chronic inflammatory disorders of the gut. For example, gut bacterial dysbiosis is a common 

feature of patients with colorectal cancer and has been associated with chronic inflammation 

and colorectal cancer progression(130-132). The dysregulated immune responses central to 

inflammatory bowel disease (IBD) have been linked to dysbiosis of gut bacteria. Patients 

suffering from IBD display gut microbiomes that are distinct from healthy controls, 

with decreases in several beneficial bacteria and increases in Enterobacteriaceae, such as 

Proteobacteria, correlating with disease state(103, 133). Far less is understood about the 

impact of gut bacterial dysbiosis on more acute disorders, such as trauma and burn injury. 

Therefore, more research is needed to understand the contributions bacterial dysbiosis may 

have on the pathophysiology of severe burns.

5 IMPACT OF BURN INJURY ON GUT MICROBIOTA

It is clear from studies of inflammatory GI disorders, like IBD, that changes in the 

microbiome can significantly influence disease progression and outcomes. Although there 

are distinct differences between chronic disorders and acute trauma, like severe burn injury, 

both are impacted by intestinal inflammation and gut barrier disruption. Consequently, it is 

likely that bacterial dysbiosis would be prominent after severe burn injury and contribute to 

post-burn pathologies. This section will discuss changes in gut microbiota composition that 

occur after severe burn injury.

To begin to assess the microbiome’s impact on post-burn pathogenesis, early studies 

focused on detailing how the composition of the microbiome is altered after severe 

burn. Utilizing fecal samples from severe burn patients, Earley et al. showed clear 

evidence for bacterial dysbiosis following burn injury. The microbiome of control patients 

was dominated by Bacteroidaceae and Rimunococcaceae families, indicating healthy 

microbiome compositions. Both of these dominant bacterial groups were decreased in severe 
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burn patient samples, which exhibited overall significantly different compositions compared 

to control samples by non-metric multidimensional analysis(47). Additionally, they observed 

a significant increase in the abundance of Enterobacteriaceae, a bacterial family that 

includes several pathogenic species. Indeed, the most abundant Enterobacteriaceae taxon 

(OTU) found in severe burn patients was attributed to E. coli O83:H1, a pathogenic 

and invasive strain of Escherichia coli(47). Other studies investigating compositional 

changes in the microbiome of severe burn patients reiterate reduced bacterial diversity 

accompanied by a decrease in beneficial bacteria like Bacteroidaceae and an increased 

presence of pathogenic Escherichia bacteria belonging to the Enterobactericeae family(48, 

134). Escherichia coli is commonly associated with bacterial translocation and sepsis, which 

are known complications of severe burn injury(135). Therefore, increased abundance of 

Enterbactericeae, particularly strains of Escherichia coli, could provide a therapeutic target 

for reducing mortality associated with severe burns. As the abundance of bacterial species 

in the gut change following burn injury, there are likely accompanied by changes in 

the concentration of different bacterial metabolites. As discussed previously, SCFAs are 

widely studied bacterial metabolites that provide energy, modulate immune responses, and 

regulate gut barrier integrity. These beneficial metabolites are produced by several species 

among the Bacteroidaceae and Rimunococcaceae families, which have been shown to be 

reduced after severe burn injury(47, 48). In particular, studies show that after burn, patients 

exhibit decreases in the abundance of fecal Bifidobacterium, which is a major producer of 

butyrate(48). Additionally, investigators have assessed the concentrations of SCFAs in the 

stool samples of severe burn patients. One study following five patients with severe burns 

noted that the levels of SCFAs, including acetate, propionate, and butyrate, were reduced 

relative to normal levels. Although SCFA levels generally recovered as the patient did, levels 

of propionate and butyrate remained undetectable in the lone non-surviving patient(48). It 

is important to note that the few human studies described here utilize small patients sample 

sizes. Further research using patient samples is required to advance our understanding of 

how severe burn injury impacts the gut microbiome.

To reduce the impact of confounding factors present in patient studies, such as the complex 

diversity of the human microbiome and therapeutic interventions like antibiotics, several 

studies have examined the effect of severe burn injury on the microbiome in murine models. 

It should be noted that although both the mouse and human gut microbiomes are dominated 

by Bacteroidetes and Firmicutes phyla and share similarities in composition at higher 

taxonomic levels, including similar enterotype clustering, there are significant differences 

in composition at the bacterial species level(136, 137). In addition, human microbiome 

studies utilize stool samples while murine studies generally examine the bacterial content of 

the cecum. While there is significant overlap in the bacteria present throughout the lower 

GI tract (distal small intestines, cecum, and large intestine), the differences in bacterial 

composition based on location of sample collection can complicate analysis and is an 

important consideration. Although species differences may be present between humans and 

mice, similarities in bacterial families and dominant microbes indicate some conservation of 

the influence the microbiome has on intestinal function. Therefore, murine models represent 

a valuable tool that allow scientists to map broad shifts in microbial composition and 

examine the functional outcomes that may contribute to post-burn pathophysiology.
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Several studies utilizing murine models of severe burn injury have shown changes in the 

gut microbiome after burn that mirror the bacterial dysbiosis found in human studies, 

including decreased abundance of dominant beneficial bacteria accompanied by an increase 

in the Enterobacteriaceae family, such as E. coli species(47, 49, 138). In addition, murine 

studies have shown that severe burn results in decreased SCFA levels, particularly butyrate, 

in cecal contents immediately following injury and for up to 7 days after injury(36, 139, 

140). Accordingly, it has been found that the abundance of SCFA producing bacteria 

are reduced in murine models of severe burn injury. A study utilizing Sprague-Dawley 

rats and a 30% TBSA burn model showed a significant decrease in Clostridium IV 
and Clostridium XIV, which are both known butyrate producers(138). Furthermore, they 

found reduced levels of Lactobacillus, a commonly used probiotic, after burn injury(138). 

Studies show that the metabolite lactate, produced by Lactobacillus, is readily utilized 

by other bacteria to produce butyrate, and is therefore an important contributor to SCFA 

levels(141). These changes found in rats are consistent with mouse models of severe burn 

injury. A study published by Beckmann et al. revealed a reduction in Lactobacillaceae and 

Clostridiaceae bacterial families in mouse cecal contents after burn injury(49). Likewise, 

Feng et al. showed that Lactobacillus was a principal species, reduced after burn injury, 

that significantly correlated with SCFA levels(36). Interestingly, they also found that 

butyrate levels negatively correlated with the abundance of a prominent enteric pathogen, 

Escherichia-Shigella(36). This indicates that changes in the levels of SCFAs and the bacteria 

that produce them could potentially influence the abundance of pathogenic bacteria, thereby 

contributing to post-burn pathogenesis via multiple pathways.

6 THE GUT BARRIER, BACTERIAL TRANSLOCATION, AND BURN

The gastrointestinal tract is the largest mucosal surface in the body, responsible for 

regulating nutrient absorption while maintaining a barrier against environmental toxins 

and pathogens (Figure 2). The proximity of resident microbiota ensures that the barrier 

formed by intestinal epithelial cells is crucial for maintaining a homeostatic relationship 

between the host immune response and resident microbes. This intestinal epithelial barrier 

includes tight junction proteins that maintain close association of epithelial cells with each 

other, in addition to antimicrobial peptides (AMPs) and mucus which prevent bacterial 

overgrowth and invasion(142, 143). These components make intestinal epithelial cells the 

primary physical barrier that prevents enteric infections. Consequently, disruption of the 

intestinal barrier can dramatically impact health and is associated with a wide variety 

of gastrointestinal disorders(144). Nearly every aspect of the intestinal epithelial barrier 

is affected by severe burn. Studies show that burn injury reduces epithelial cell tight 

junction protein expression, disrupts tight junction localization, reduces mucus production, 

and inhibits the expression of AMPs(145, 146). Overall, these changes result in increased 

intestinal permeability(145, 147). Bacterial translocation resulting from intestinal barrier 

disruption is thought to contribute to severe consequences after burn injury, including sepsis 

and multiple organ failure(135). Indeed, bacteria and their products have been detected in 

the lung, liver, and mesenteric lymph nodes after severe burn injury(47, 148, 149). Further 

research is required to investigate the mechanisms by which bacterial translocation after 
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severe burn contributes to mortality and the pathophysiology of systemic inflammation and 

organ dysfunction.

Due to the close interactions between intestinal epithelial cells and the gut microbiome, the 

impact of gut bacteria on intestinal barrier function has been of recent interest. In particular, 

the contributions of both commensal and pathogenic bacteria to chronic disorders, like IBD 

and celiac disease, have been widely studied. Beneficial commensal bacteria have been 

shown to promote epithelial cell barrier function by reducing epithelial permeability and 

increasing tight junction protein expression(150-152). Additionally, bacterial metabolites 

including butyrate, acetate, and indole, can enhance the intestinal barrier(153-155). On 

the other hand, several pathogenic bacteria have been linked to gut barrier disruption and 

intestinal permeability(150). Certain invasive strains of Escherichia coli have been shown 

to target components of epithelial cell tight junctions to promote permeability(156). Other 

pathogenic bacteria that are known to disrupt epithelial tight junctions include Clostridium 
perfringens and Clostridium difficile(157, 158). Although the connection between the 

gut microbiome and intestinal barrier integrity has been established in other models of 

gastrointestinal inflammation, few studies have been conducted to discern the impact that 

changes in the microbiome have on gut barrier integrity following severe burn injury. It is 

likely that the increased abundance of pathogenic bacteria, like Enterobacteriaceae, could 

exacerbate intestinal barrier disruption after burn injury and promote the translocation of 

bacteria and bacterial endotoxins from the gut into the bloodstream. Further research in this 

area could provide new therapeutic targets to reduce the severity of sepsis, multiple organ 

failure and other critical complications of severe burn.

7 SYSTEMIC IMMUNE RESPONSE TO BURN

The initial immune response to burn injury is characterized by rapid activation of the 

innate immune system, including neutrophils, monocytes, and macrophages (Figure 3). 

These cells are able to recognize damage associated molecular patterns (DAMPs) and 

pathogen associated molecular patterns (PAMPs) through Toll-like receptors and NOD-like 

receptors(159-161). This activates the transcription factor NFκB, which regulates numerous 

pro-inflammatory downstream mediators, including TNF, IL-6, and IL-1β(162). When 

looking at genome-wide changes in leukocytes following burn injury, changes in gene 

expression were similar to those observed under severe trauma or endotoxemia(163). 

Furthermore, these changes in transcripts were observed as early as 4h after injury and 

persisted for weeks, indicating that traumatic injuries, including burn, lead to a rapid 

alteration in immune response followed by a chronic disruption in their activity

7.1 Long-term Disruptions in Immunity

While the initial response to burn injury is characterized by rapid onset of inflammation 

and a hypermetabolic state, the long-term consequences of burn injury are characterized 

by chronic dysfunction of the immune system. Compared to non-burn trauma patients, 

burn-injured patients displayed higher levels of inflammatory markers IL-6 and IL-18 in the 

plasma(164). A study following pediatric patients showed that markers of hypermetabolism 

(resting energy expenditure, body composition, metabolic markers) were elevated for up 

Luck et al. Page 11

Shock. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to three years post burn injury. Similarly, levels of catecholamines, cortisol, and acute 

phase proteins were elevated(165). A study of different types of skin trauma found that 84 

days post-injury, burn injured mice had significantly elevated levels of IL-10 in the sera, 

accompanied by reduced numbers of lymphocytes, neutrophils, and eosinophils compared to 

animals receiving an excision injury(166) . In a study of sepsis patients, it was determined 

that higher IL-10 concentration in the sera correlated with increased mortality, likely due 

to immunosuppression(167). A similar elevation in IL-10 was observed in a prospective 

study of patients with systemic inflammatory response syndrome (SIRS)(168). Multiple 

studies have observed changes in serum cytokines between surviving and non-surviving 

burn patients and proposed prognostic indicators, including combinations of cytokines 

IL-6/IL-7/IL-10, and IL-1RA/IL-6/MCP-1(169, 170). Other cytokines, such as IL-27, have 

also been proposed as a diagnostic biomarker for sepsis or infection in critically ill 

patients(171-174).The cytokine milieu in burn patients is complex, and while numerous 

biomarkers have been identified for these critically ill patients, the profile of each patient is 

different and likely requires individualized care.

7.2 Neutrophils

There are numerous deficits in the pro-inflammatory response observed in several cell types 

following burn injury. For example, neutrophils are the first responders in many instances of 

injury, including burns. Studies have shown increased neutrophil populations in the blood, 

intestine, and lungs after burn injury(28, 29, 175). While key responders to the initial 

injury, neutrophils in burn patients have been reported to have reduced phagocytic and 

bacterial killing ability up to 28 days after burn injury(176). Furthermore, in an animal 

model of burn injury and secondary infection, neutrophils have been reported to exhibit 

reduced recruitment to the lungs after intranasal administration of lipopolysaccharide (LPS), 

as well as reduced NETosis or formation of neutrophil extracellular traps (NETs). NETs 

are a key component of neutrophil bactericidal activity to contain bacterial infection and 

infiltration(177). Similarly, directional migration speed of neutrophils was significantly 

reduced in neutrophils isolated from burn patients and correlated with the size and severity 

of the burn(178). Following the initial burn injury, neutrophil recruitment into the GI tract 

due to hypoxia and cellular damage compounds the injury through production of ROS, and 

studies have shown that neutrophils have delayed apoptosis after burn injury(179). This 

prolonged lifespan is problematic, as inflammation persists in organs and prevents resolution 

of the inflammatory process. Studies observing intestinal damage in Graft versus Host 

Disease (GVHD) have also identified neutrophils as a key player in intestinal damage once 

recruited and observed that eliminating their ability to produce ROS significantly improved 

tissue damage and reduced effector T cell recruitment(180). Paradoxically, while neutrophils 

have prolonged lifespans after burn injury, they are worse at eliminating repetitive infections 

from pathogens. A mouse model of cutaneous burn injury found that animals infected with 

Pseudomonas aeruginosa pneumonia were worse at clearing the bacteria when given two 

repeat infections. While they mounted a hyper-inflammatory response to the first infection, 

the repeated infection merely increased recruitment of neutrophils and macrophages to the 

lungs, without clearing the infection itself(181). Poor neutrophil bactericidal activity in 

response injury contributes to poor outcomes in burn patients and is likely exacerbated 

by documented shifts in the microbiome to overgrowth of pathogenic bacteria. However, 
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the effect of bacterial changes on neutrophil function in the context of burn injury is not 

sufficiently understood or explored.

7.3 Macrophages

Similar to neutrophils, macrophages are activated by DAMPs and PAMPs in response to 

burn injury. After burn injury, macrophages produce copious pro-inflammatory cytokines, 

prostaglandins, and reactive nitrogen species(181-183). This hyperactive response by 

macrophages is thought to contribute to increased susceptibility of burn patients to sepsis 

due to the “two-hit” theory, in which an initial insult primes the patient’s immune response 

to be hyper-inflammatory, followed by a second insult (infection or sepsis). Following 

the second insult, the patient is unable to mount an appropriate immune response due to 

the initial hyperinflammatory state and succumbs to multiple organ failure(184). Again, 

dysbiosis in the burn microbiome to preferentially allow overgrowth of harmful species, 

such as the Enterobacteriaceae family, are likely to exacerbate the two-hit theory of burn 

injury and subsequent sepsis. Macrophage hyperactivity results in elevated TNF, IL-6, 

and nitric oxide (NO) levels following burn injury. In particular, excess NO production 

by macrophages isolated from burn injured mice suppressed proliferation of splenic T 

cells(185). While macrophages are hyperinflammatory in the short term, long-term effects 

of burn injury on hematopoiesis in the bone marrow lead to perturbed development 

of monocytes. As early as 48h after injury, monocyte progenitors isolated from bone 

marrow of burn and burn sepsis mice show impaired TNFα production following LPS 

stimulation(186). These unresponsive progenitors eventually replace the initial pool of 

hyperreactive macrophages, leading to the immunosuppression observed later in burn injury 

recovery.

7.4 Antigen Presenting Cells

Macrophages are only one type of antigen presenting cell (APC) that are crucial in initiating 

adaptive immune responses, including activation of T cells. APCs isolated from burn injured 

mice have a demonstrated weakness in activating the proliferation of naïve T cells(187). 

Dendritic cells (DCs) are another subset of professional antigen presenting cells and are 

an essential bridge between the innate and adaptive immune response. Dendritic cells 

isolated from burn-injured mice demonstrated a dampened response to TLR9 stimulation 

and had impaired T cell activation activity(188, 189). Burn injury also led to significant 

reduction of CD11c+ DCs in lymph nodes, along with upregulation of programmed death 

ligand 1 (PD-L1) expression on splenic DCs, which is a potent suppressor of T cell 

activation(190). PBMCs isolated from burn patients demonstrated that overexpression of 

transcription factor MafB correlated with the dendritic cell depletion observed in burn 

patients, and silencing MafB in an in vitro culture system restored myeloid dendritic cell 

differentiation(191). This long-term perturbance in APC development and differentiation 

contributes to post-burn pathogenesis. While trauma and burn injury is often described by its 

initial hyperinflammatory state, the long-term consequences of burn injury is characterized 

by immunosuppression and increased susceptibility to infection.
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7.5 T Cells

In concert with deficiencies in the innate immune system, there are well-documented effects 

of burn injury on T cells and their ability to mount a response to infection. T cells 

maintain a balance of pro and anti-inflammatory activity in response to various stimuli. 

Naive T cells are activated by DCs through antigen presentation and antigen recognition 

by the T-cell receptor (TCR), along with co-stimulatory molecules such as CD28 and 

cytokines. Both CD4 and CD8 positive T cells have demonstrated perturbations following 

burn injury(192, 193). In a mouse model of burn injury, there was a significant decrease 

in the number of splenocytes following a 20% TBSA burn. This decrease in cellularity 

was persistent for 5 days after injury and a diminished proliferative response was observed 

in splenocytes(194, 195). Similarly, T cells isolated from burn injured mice demonstrated 

reduced IL-2 production and augmented interferon gamma (IFNγ) production(196). IL-2 is 

particularly important to stimulate proliferation of T cells, and a study of burn patients found 

that while all burn patients demonstrated a decrease in IL-2 production by peripheral blood 

mononuclear cells (PBMCs), surviving patients had a gradual recovery of IL-2 whereas 

non-survivors did not recover IL-2 production(197). In addition to decreased proliferation, 

T cell survival is reduced upon burn injury complicated with sepsis. Findings from a 

combined burn and sepsis model show significant reduction in T cell population of the 

mesenteric lymph node by apoptosis(198). T cells isolated from peripheral blood of burn 

injured patients did not show a significant change in the ratio of CD4 to CD8 T cells, 

however, there was a demonstrated increase in the release of cytokine IL-4 by day 5. 

This increase in IL-4 production was mainly by CD8 T cells(199). Regulatory T cells 

(Tregs) are another important subset of T-cells altered after traumatic injuries such as burn. 

Under normal conditions, Tregs maintain a careful balance by preventing overactivation 

of inflammatory mediators through suppression of T cell proliferation/activation and 

production of anti-inflammatory cytokines such as IL-10 and TGF-β. In a study of 

peripheral blood cells taken from patients, Tregs isolated from burn patients showed higher 

cell surface expression of key suppressive mediators such as CTLA-4. IL-10 and TGF-β 
production by Tregs was also increased in burn patients compared to healthy controls(200). 

Progressive immunosuppression is observed after trauma, and it is well-established that 

Tregs play a key role in depressing immune function, including reducing production of 

IFNγ by Th1 cells following injury(201). Tregs isolated lymph nodes draining the injured 

areas from burn injured animals are found to show markers of T cell receptor (TCR) 

activation after injury, including phosphorylation of ZAP70 and nuclear factor of activated 

T cells (NFAT)(202, 203). Increased Treg activity has also been noted in trauma patients 

and correlates with poor clinical outcomes(200, 201). Similarly, studies have shown that 

depletion of Tregs prior to injury restores the proliferative capacity of CD4 T cells following 

burn injury in mice(204). In addition, Th17 cells have been identified as crucial players after 

burn injury. At the injury site itself, Th17 cytokines such as IL-17 and IL-22 are elevated 3h 

post-injury(205). While IL-17 is considered inflammatory and can aid in the recruitment of 

neutrophils, IL-22 promotes integrity of mucosal barriers, such as in the lungs or GI tract. 

IL-22 acts to promote tight junction formation and proliferation of intestinal epithelial cells, 

which is integral to maintaining proper barrier function after burn injury and preventing 

multiple organ failure or sepsis from bacteria originating from the gut(205).
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8 INFLAMMATORY RESPONSE IN THE GI TRACT

Some of the most dire consequences of burn injury are the result of remote organ injury, 

such as inflammation in the lungs, kidney, gastrointestinal system, and bone marrow(47, 

186, 206-210). While systemic inflammatory responses account for some of the organ 

dysfunction observed, it is suggested that one of the main drivers of inflammation and 

perturbed immune responses following burn injury is the translocation of gut bacteria and/or 

bacterial products from the GI lumen to systemic circulation. The gut-origin hypothesis of 

sepsis, SIRS, and multiple organ dysfunction after burn injury states that breakdown of the 

gut barrier and hyperpermeability leads to the transport of toxic agents derived from gut 

bacteria into the portal circulation and mesenteric lymph(211). Toxic agents can include 

bacterial products like peptidoglycan or endotoxin, which can travel to distant organs to 

cause inflammation and organ failure. In support of this hypothesis, animal models of 

trauma have found that ligation of the mesenteric lymph duct can prevent acute lung and 

renal injury following intraperitoneal injection of LPS and models of hemorrhagic shock in 

rodents(212-214). Similarly, mice given prophylactic antibiotics prior to burn injury reduced 

hepatosteatosis and liver injury markers(215). However, further studies must be done on 

burn injury to connect microbial dysbiosis in the gut to end organ dysfunction.

The gut microbiome is a crucial regulator of the immune system under homeostatic 

conditions, and imbalances, such as during burn injury, can have serious consequences 

on the function of the immune system. As stated previously, it is well-established that a 

healthy gut microbiome is crucial to the development of a healthy and robust immune 

response. Studies on germ-free mice have shown that the microbiome is necessary for 

appropriate development of mucosal immunity. Similarly, peripheral lymphoid organs, such 

as mesenteric lymph nodes and Peyer’s patches are underdeveloped in germfree mice. 

Abnormal IgA and T cell responses are also observed(216, 217). A study of healthy 

volunteers found that the composition of their microbiome is directly correlated to their 

cytokine response as measured by stimulation of their peripheral blood mononuclear 

cells (PBMCs), indicating that differences in alpha or beta diversity correlate directly 

with their immune response(218). Other studies have indicated that dysbiosis can lead to 

altered response in specific immune cells. For example, mononuclear cells isolated from 

patients following antibiotic usage and diminished microbial diversity produced significantly 

decreased levels of TNFα following LPS stimulation(219). In a model of acute kidney injury 

following ischemia and reperfusion injury, supplementation of bacteria metabolites acetate, 

propionate, and butyrate reduced organ damage and inhibited the maturation of DCs, as 

well as inhibiting proliferation of T cells(220). In mouse models of sepsis, fecal microbial 

transplantation (FMT) from healthy littermates improved survival by 70%(221). In a similar 

study, mice receiving FMT from septic patients followed by cecal ligation and puncture 

(CLP) to induce sepsis had more severe liver damage compared to those receiving FMT 

from healthy donors(222). However, the contribution of the microbiome to immunological 

abnormalities following burn injury is not well-understood and lacking in research.
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9 THERAPEUTIC POTENTIAL OF MANIPULATING THE GUT MICROBIOME

Over the years, manipulation of the microbiome has proven a promising therapeutic for 

trauma patients. The earliest studies of critically ill patients found that complications 

including pneumonia, urinary tract infections and sepsis were highly associated with enteric 

pathogens(223). Following this, studies were conducted to identify the benefit of antibiotic 

administration in critically ill patients. The resulting regiment of systemic and enteric 

antibiotics was proposed as selective digestive decontamination (SDD), which would go 

on to be studied in a variety of critically ill patient populations(223). A systematic review 

of studies involving the use of SDD and non-absorbable enteral antibiotics in severe burn 

patients showed reduced incidence of bloodstream Enterobacteriaceae, reduced incidence of 

pneumonia and overall improved survival of severe burn patients(224). However, widespread 

and long-term use of antibiotics can contribute to the propagation of antibiotic resistance and 

chronic disruption of the gut microbiota(55, 56). Further investigation into the complications 

associated with antibiotic use are required to delineate the impact their use may have on 

patients suffering from traumatic injuries.

More recent studies attempt to manipulate the microbiome using more targeted methods 

than general antibiotic use. As an alternative to removing bacterial populations from the 

gut, several researchers are studying the impact of fecal microbiota transplant and probiotic 

administration. FMT involves transfer of fecal matter from a healthy individual into the 

intestinal tract of another. This process attempts to cultivate a healthy microbiota in the 

patient that supports microbiome stabilization and gut function. After gaining increased 

prominence for its successful treatment of Clostridium difficile infections in hospitals, 

FMT is being assessed experimentally as a treatment for a variety of other gastrointestinal 

disorders(225). Probiotics utilize the specific administration of a few beneficial bacterial 

species to bolster commensal populations and promote healthy gut functions. Although 

many preliminary studies have been limited to mouse models, several indicate that FMT 

and probiotics are promising therapeutic options for severe burn patients(226). A recent 

study by Kuethe et al. utilized a mouse model of severe burn injury in which intestinal 

permeability and bacterial dysbiosis are evident at six days post burn. FMT was prepared 

from the cecal contents of control mice and administered via oral gavage twice daily on 

post-burn day two and three. They found that FMT restored mucosal integrity and reduced 

bacterial dysbiosis evaluated on post-burn day six(140). Their study indicates that FMT may 

be a viable therapeutic for severe burn injury, although further studies are required to assess 

its relevance in human patients.

Bifidobacterium are important butyrate producing bacteria that have been shown to promote 

gastrointestinal health in a variety of human studies, including alleviating symptoms of 

IBS and antibiotic associated diarrhea(227). As mentioned previously, Bifidobacterium are 

among the SCFA producing bacterial species that are significantly reduced in severe burn 

patients(48). Although there are currently no comprehensive human studies in the use 

of Bifidobacterium in severe burn patients, a mouse study by Wang et al. reveals that 

administration of Bifidobacteria after burn injury reduced intestinal mucosa damage and 

bacterial translocation(228). Utilizing a mouse model, Zhang et al. identified significantly 

reduced abundance of the butyrate producing bacteria Clostridium butyricum (C. butyricum) 
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following burn injury, which correlated with reduced fecal butyrate and increased intestinal 

permeability. Oral administration of C. butyricum 24 hours after burn injury enhanced 

butyrate levels and reduced intestinal damage and permeability(229). In addition to the 

administration of butyrate producing bacteria, treatment of mice with sodium butyrate also 

protects against severe burn induced intestinal permeability and promotes the expression of 

intestinal epithelial cell tight junction proteins(146). Additionally, sodium butyrate treatment 

reduced acute lung injury and systemic inflammation after severe burn in a rat model(230). 

Therefore, the therapeutic targeting of butyrate production via probiotic administration 

appears to be a promising area of research in severe burn injury. However, it is important 

to note that not all bacterial strains and treatment regimens have been found to provide 

positive effects. In a human study of severe burn patients, prophylactic administration of 

Lactobacillus acidophilus and Lactobacillus rhamnosus was not associated with improved 

patient outcomes(231). Consequently, additional research is required to fully understand the 

potential of targeting the microbiome in therapeutics for burn injury and the mechanisms 

underlying the impact individual bacteria have on gut barrier function.

10 FUTURE DIRECTIONS AND PERSPECTIVES

Altogether, there is much that is still unknown about the contribution of the microbiome and 

microbial changes in the context of burn injury. Recent studies are elucidating the changes 

observed in the gastrointestinal microbial population in acute traumatic injuries, however, 

their effect on the subsequent immune response and recovery from burn injury are still 

understudied. Although dysbiosis, overgrowth of potentially harmful bacteria, breakdown in 

the intestinal barrier, and aberrant immune responses have been documented following burn 

injury, the causal relationship between these components requires further investigation and 

study. Current studies indicate that the reservoir of gastrointestinal microbes is a contributor 

to end organ damage across the body, including the lungs, liver, and kidneys. Recent work 

in inflammatory disease states have suggested that pre- and probiotics may be an avenue for 

further exploration in treating acute trauma patients. Similarly, beneficial bacterial SCFAs 

may be another area of potential therapeutic development. Studies of the microbiome in the 

context of acute trauma, such as burn injury, are likely to provide a rich source of potential 

therapeutic targets or agents. In addition, more studies should be conducted to understand 

mechanistically how the microbiome contributes to immune responses and dysfunction after 

burn injury.
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Figure 1. Categorization of burn wound injury.
In addition to wound size, the depth of tissue affected by burn injury contributes to the 

wound categorization, treatment and patient outcomes. Burn that are restricted to the 

epidermis are considered superficial and categorized as first-degree burns. Second-degree 

burns are partial thickness injuries that penetrate varying depths below the epidermis and 

into the dermis. Once the burn injury penetrates the entire dermal layer and begins to 

effect the subcutaneous fat layer, the injury is classified as a third-degree burn. These are 

considered full-thickness burns and result in the destruction of nerve endings which make 

the wound pain-free. However, burns of this depth require careful management and surgery 

to support healing and prevent wound infection. A burn that penetrates further and damages 

the underlying muscle, and even bone, are classified as fourth-degree burn. An injury of 

this severity often results in permanent damage to the tissue and possible amputation of the 

injured area.
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Figure 2. Representation of the intestinal barrier and gut microbiome under healthy and burn
injured conditions.
Under healthy conditions, the intestinal barrier is intact and composed of intestinal epithelial 

cells (IEC) that are tightly bound together by tight junction proteins. Goblet cells that 

produce mucus (light green) and enteroendocrine cells (yellow) are interspersed between 

IECs. In the intestinal crypt, there are intestinal stem cells (blue) that continuously replicate 

and regenerate IECs that are shed in the lumen. Paneth cells (orange) producing anti

microbial peptides (AMPs). M-cells (purple) are continuously testing luminal contents 

for uptake by any resident antigen presenting cells. Under the IEC barrier is the lamina 

propria, which contains a variety of immune cells, including dendritic cells, monocytes, 

and T/B cells (blue). Secretory IgA is continuously passed into the lumen to maintain 

homeostatic conditions with the microbiome. Under healthy conditions, there is a large 

diversity of intestinal microbiota with few pathogenic species. With burn injury (right panel), 

there is a loss of tight junction proteins and the mucus barrier, along with increased IEC 

apoptosis, leading to a leaky gut. Increased inflammatory cell infiltration by neutrophils 

and macrophages leads to production of reactive oxygen species (ROS) and further damage 

of the barrier, allowing for intestinal bacterial and bacterial products to translocate into 

systemic circulation. Furthermore, there is overgrowth of pathogenic bacterial species and 

loss of bacterial diversity in the lumen. This image was adapted from Hammer et. al, 
Alcohol Res. 2015;37(2):209-22.
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Figure 3. Representation of end organ injury and dysfunction following burn injury and 
microbial dysbiosis.
Both burn and dysbiosis are known to perturb the normal function of the gastrointestinal 

system. Factors altered in burn injury include barrier dysfunction, gut motility, and bacterial 

translocation into systemic circulation. This contributes to end organ dysfunction, including 

hepatic damage, lung injury, and pneumonia. Finally, burn injury and bacterial dysbiosis/

translocation is linked to aberrant immune function, including neutrophil infiltration into 

various tissues, reactive oxygen species (ROS) and inflammatory cytokine production, and 

lymphocyte dysfunction. Burn injury itself is linked to dysbiosis, however, further work is 

needed to understand the contribution of microbial dysbiosis and its impact on deleterious 

outcomes for burn patients, as well as its impact on their recovery.
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