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Abstract We investigated the structural characteristics and

antioxidant activities of two types of neutral polysaccha-

rides and two types of acidic polysaccharides from Stro-

pharia rugosoannulata under different drying methods.

Fresh S. rugosoannulata were processed with freeze-vac-

uum drying (FVD) and hot-air drying (HAD). Polysac-

charides from the dried S. rugosoannulata (SRP) were

purified using a DEAE-52 cellulose column to obtain two

types of neutral SRPs (FSRP-1 and HSRP-1) and two types

of acidic SRPs (FSRP-2 and HSRP-2). We found that

drying can affect the structural characteristics and antiox-

idant activities of SRPs. Varied monosaccharide compo-

sitions were found in FSRP-1, FSRP-2, HSRP-1 and

HSRP-2, and HAD-treated SRP had more glucose and less

galactose. The (1 ? 6)-a-D-Galp linkage was the primary

chain in FSRP-1 and HSRP-1, whereas the (1 ? 3)-b-D-
Glcp was the backbone structure in FSRP-2 and HSRP-2.

Our results thus suggest that hot air drying changed the b-
configuration in polysaccharides. FSRP-1, FSRP-2, HSRP-

1 and HSRP-2 had positive ferric ion reducing antioxidant

power and scavenging activities on ABTS? and hydroxyl

radicals, whereas HSRP exhibited a stronger antioxidant

activity than that of FSRP. Hot-air dried S. rugosoannulata

could therefore be recommended as a suitable candidate for

use in the preparation of antioxidant polysaccharides as

functional foods.
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Drying � Characterization � Antioxidant activity

Introduction

Stropharia rugosoannulata is a type of valuable edible

mushroom that is recommended by the United Nations

Food and Agriculture Organization (FAO) for cultivation

in developing countries (Song et al. 2009). S. rugosoan-

nulata is a grass-rotting edible mushroom that has been

rapidly cultivated in China in recent years. S. rugosoan-

nulata has high nutritional value and pharmacological

activities (Yan et al. 2004). In addition, it has been reported

that S. rugosoannulata confers medicinal benefits such as

bacteriostatic activity, antitumor and antioxidant activity

and reducing endoplasmic-reticulum (ER) stress (Wu et al.

2013, 2012; Luo et al. 2006). The functional activities of S.

rugosoannulata are related to its chemical compounds

including polysaccharides, steroids, flavone and lectins

(Zhang et al. 2014; Wu et al. 2011; Yan et al. 2020).

Among these compounds, polysaccharide is the primary

bioactive component, and many types of bioactivity

polysaccharides have been separated from S. rugosoannu-

lata (Liu et al. 2020a).

However, fresh S. rugosoannulata mushrooms are

highly perishable due to their high water content and high

respiration rate. A drying process is often used to reduce

the moisture content of S. rugosoannulata in order to

extend its shelf life. Among various drying techniques, hot

air drying is one of the most popular and frequently used
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drying methods for fruits and vegetables dehydration (Yu

et al. 2020). With the sublimation of ice from frozen

products, freeze-vacuum drying minimizes losses of flavor

and nutritional composition and keeps the organoleptic

properties of the initial fresh products due to the absence of

liquid water and the low temperature used in the dehy-

dration process, which hinder most of deterioration and

microbiological reactions (Rezvankhah et al. 2020). So in

current work, hot air drying was employed to dry S.

rugosoannulata and compared with freeze dried samples.

Freeze-vacuum and hot-air drying techniques are widely

used to produce dried mushrooms, and it has been reported

that the bioactivities of polysaccharides were influenced by

drying methods (Ahmadi et al. 2019). For example,

polysaccharides from Inonotus obliquus mushroom dried

with the freeze drying method are reported to have better

antioxidant ability (Ma et al. 2013). Moreover, Liu et al.

(Liu et al. 2020b) reported that polysaccharides from freeze

dried shiitake mushroom showed stronger antioxidant

activities, and polysaccharides from hot-air dried mush-

rooms exhibited higher immunomodulatory activity.

However, the effects of drying on the structural charac-

teristics and antioxidant activities of polysaccharides from

S. rugosoannulata are unknown.

The objective of this study was thus to investigate the

impact of different drying methods on the structural

properties and antioxidant activities of SRPs. The antiox-

idant activities of SRPs were determined by ferric ion

reducing antioxidant power (FRAP) and scavenging

capacities against ABTS? and hydroxyl radicals.

Materials and methods

Dried S. rugosoannulata preparation

Fresh S. rugosoannulata mushrooms purchased from

Chengdu (Sichuan Province, China) were separately

dehydrated by freeze-vacuum drying and hot-air drying

processes. One group of mushroom samples was treated

with a freeze dryer (SCIENTZ-30ND, Ningbo Xinzhi

Instrument Factory, Ningbo, China) for 48 h, while the

other group of samples was prepared using a drying oven

(Changzhou Yineng Instrument Factory, Changzhou,

China) for 6 h at 50 �C. After the drying process, the two

types of dried mushrooms had a moisture content of

approximately 10% in wet basis.

Extraction and purification of SRPs

The dried mushrooms were treated with petroleum ether to

remove any crude fat. 500 mL of distilled water was then

added to 20 g of defatted sample for the extraction of

polysaccharides using the microwave assisted extraction

method (Liu et al. 2016). Next, the polysaccharide was

precipitated with anhydrous ethanol and deproteinated by

the Sevag method. Finally, the crude polysaccharide sam-

ples were obtained by lyophilization for 48 h.

The crude polysaccharide (200 mg) was dissolved in

deionized water and subjected to a DEAE-52 column

(3.6 9 20 cm) (Liu et al. 2020b). The column was then

stepwise eluted with deionized water and a 0.3 M sodium

chloride solution. According to the absorbance of 490 nm

(DuBois et al. 1956), the first fraction eluted with distilled

water was collected followed by collection of the second

fraction that was eluted with 0.3 M NaCl. Finally, the

obtained polysaccharides samples were dialyzed for 24 h

and freeze-dried for further study.

Monosaccharide analysis

FSRP-1, FSRP-2, HSRP-1 and HSRP-2 were hydrolyzed

for the measurement of monosaccharide compositions

using our reported method (Liu et al. 2020a). Briefly, each

sample (10 mg) was hydrolyzed for 4 h with 4.0 M tri-

fluoroacetic acid at 120 �C. Next, 1-phenyl-3-methyl-5-

pyrazolone (PMP) was added to react with the hydrolysate.

The derivatives of monosaccharides were then determined

by a high performance liquid chromatography system

(HPLC, Agilent, United States) with a C18 column (SHI-

SEIDO, 4.6 mm 9 250 mm 9 5 um) at a wavelength of

245 nm. Solvent A was phosphoric solution (0.1 M) with a

pH value of 6.9, and solvent B was acetonitrile. The ratio

of solvent A to B was 0.82: 0.18 with a flow rate of

1.0 mL/min.

Fourier-transform infrared spectra (FT-IR) analysis

FSRP-1, FSRP-2, HSRP-1 and HSRP-2 were mixed with

potassium bromide powder to prepare pellets for the

detection of FT-IR spectra using a Nicolet Nexus 470

spectrometer (Thermo Nicolet, United States). The spectra

of SRPs were recorded in the range of 4000–400 cm-1

(Liu et al. 2016).

NMR spectra analysis

FSRP-1, FSRP-2, HSRP-1 and HSRP-2 were dissolved in

D2O for the detection of 1H NMR and 13C NMR spectra

using a Bruker Avance Neo NMR spectrometer (Bruker

Corporation, United States) at 600 MHz (Liu et al. 2020b).

The spectra data were recorded at 25 �C by standard

Bruker software.
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Antioxidant activity evaluation

ABTS? radical scavenging capacity assay

The scavenging capacities of FSRP-1, FSRP-2, HSRP-1

and HSRP-2 on ABTS•? were determined with our

reported method (Liu et al. 2020b). The ABTS•? solution

(180 lL) was first mixed with various concentrations of

sample solutions (20 lL). The mixed solution was kept at

room temperature for 5 min and then the absorbance was

assayed at 734 nm. The scavenging capacity of SRPs on

ABTS•? was measured using a scavenging rate (%) with

the Eq. (1):

Scavenging rate %ð Þ ¼ 1 � A1 � A2ð Þ=A0½ � � 100

ð1Þ

Here, the absorbance of the control (deionized water) is

A0, the absorbance of the ABTS•? sample is A1, and the

absorbance of the blank sample (without ABTS•?) is A2.

Hydroxyl Radical Scavenging Capacity Assay

The scavenging capacities of FSRP-1, FSRP-2, HSRP-1

and HSRP-2 on hydroxyl radical were assayed using the

method reported by Jiang et al. (2014). Various concen-

trations of the sample solution (50 lL) were mixed with

FeSO4 (50 lL 9 mM), salicylic acid (50 lL 9 mM), and

H2O2 (50 lL 20 mM). Next, the reaction was kept at 37 �C
for 1 h and the absorbance was measured at 510 nm. The

scavenging capacity of SRPs on hydroxyl radicals was

determined as a scavenging rate (%) with the Eq. (2):

Scavenging rate %ð Þ ¼ 1� A1 � A2ð Þ=A0½ � � 100

ð2Þ

Here, the absorbance of the control (deionized water) is

A0, the absorbance of sample and hydroxyl radical is A1,

and the absorbance of the sample blank (without hydroxyl

radical) is A2.

Ferric ion reducing antioxidant power (FRAP)

analysis

The FRAP values of FSRP-1, FSRP-2, HSRP-1 and HSRP-

2 were measured using a reported method (Benzie and

Strain 1996). First, 10 mM of 2,4,6-Tris (2-pyridyl)-s-tri-

azime (TPTZ) solution, 20 mM FeCl3 solution, and

300 mM acetate buffer (pH 3.6) were mixed at a volume

ratio of 10:1:1 to prepare the FRAP working solution.

Next, the FRAP working solution (180 lL) was mixed with

5 lL sample solution and incubated for 5 min at room

temperature, and various concentrations of FeSO4 were

used as the control group. The incubation solution was then

determined at an absorbance of 593 nm. The FRAP values

of the four types of SRPs were expressed as equivalent

concentrations of FeSO4 (mM Fe2?/mg).

Statistical analysis

All analyses were performed in triplicate, and the results

were given as mean ± standard deviation. The variance

analysis was performed using one-way analysis of variance

with an assay of differences (Duncan’s test, P\ 0.05).

Results and discussion

Purification of SRPs

The crude polysaccharide from S. rugosoannulata was

purified using a DEAE-52 cellulose column based on the

acidic group levels in samples (Liu et al. 2016). As shown

in Fig. 1, two main polysaccharide fractions from FVD

treated mushrooms were separately collected with deion-

ized water and 0.3 M of NaCl solution. Similar results

were also reported in the purification of polysaccharides

from four kinds of mushrooms (Yan et al. 2019). The

neutral polysaccharide fraction eluted with distilled water

was named FSRP-1. However, the acidic polysaccharide

fraction eluted by 0.3 M NaCl solution was named FSRP-2

(Fan et al. 2012a). A similar result for HAD treated

mushrooms is shown in Fig. 1. The two separated fractions

named HSRP-1 and HSRP-2 were collected. Next, through

concentration, dialysis and lyophilization, the four types of

SRPs including FSRP-1, FSRP-2, HSRP-1 and HSRP-2

were obtained for further study.

Fig. 1 Elution profile of SRP on DEAE-52 chromatography column

with gradient of NaCl solution (0 and 0.3 M)
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Monosaccharide compositions analysis of SRPs

The HPLC profile of the standard monosaccharides and

hydrolyzed FSRP-1, FSRP-2, HSRP-1 and HSRP-2 are

shown in Fig. 2. Four kinds of monosaccharides including

the mannose (tR = 13.072 min), glucose (tR-
= 26.546 min), galactose(tR = 30.811 min) and arabinose

(tR = 34.985 min) were detected in the four types of SRPs.

The results indicated that FSRP-1, FSRP-2, HSRP-1 and

HSRP-2 were all heteropolysaccharides. Liu et al. (2020a)

also determined that glucose, galactose and mannose were

the primary monosaccharide components in the SRPs. In

addition, the monosaccharide compositions of mushroom

Fig. 2 HPLC chromatogram of

standard monosaccharides

(a) and hydrolyzed FSRP-1 (b),
FSRP-2 (c), HSRP-1 (c) and
HSRP-2 (e). Peak identities:

Mannose (1), Ribose (2),

Rhamnose (3), Glucuronic acid

(4), Galacturonic acid (5),

Glucose (6), Galactose (7),

Xylose (8), Arabinose (9), and

Fucose (10)
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polysaccharides were mainly reported to be glucose,

galactose and mannose (Morales et al. 2019).

As shown in Table 1, the dominant monosaccharide of

the four types of SRPs was all glucose. However, FSRP-1,

FSRP-2, HSRP-1 and HSRP-2 had different molar ratios

for the four kinds of monosaccharides. FSRP-1 and HSRP-

1 (neutral polysaccharides) had molar ratios of

1:7.70:25.39:2.46 and 1:4.34:31.02:1.53, respectively.The

molar ratios in FSRP-2 and HSRP-2 (acidic polysaccha-

rides) were 1: 6.20:19.19:3.55 and 1:5.63:13.79: 0.37,

respectively. A decrease in glucose and an increase in

mannose levels were found in the acidic polysaccharides.

Compared with the FVD treatment, higher levels of glu-

cose and lower levels of galactose were found in the HAD

treated SRPs. Similar results were also reported in bamboo

polysaccharides (Chen et al. 2019). The degradation of

galactose might be related to the higher temperature or

oxygen content in the HAD process. Our results indicated

that the monosaccharide ratios of polysaccharides were

influenced by drying pretreatments. The monosaccharide

compositions in other mushroom polysaccharides were also

reported to be changed by drying methods. Ma et al. (2013)

also reported that the treatments of freeze drying, hot air

drying and vacuum drying changed the monosaccharide

(rhamnose, arabinose, mannose, galactose and glucose)

compositions of polysaccharides from Inonotus obliquus

mushroom. Due to the different modes of water loss in S.

rugosoannulata during FD (sublimation) and HD (evapo-

ration) process, the bound water of the SRPs may be dif-

ferent (Huang et al. 2021a), which may affect the

monosaccharide compositions.

FTIR spectroscopy measurements of SRPs

The infrared spectra of FSRP-1, FSRP-2, HSRP-1 and

HSRP-2 are shown in Fig. 3. The absorption peaks at

3410 cm-1 were related to the hydroxyl groups in SRPs.

The two peaks of 2925 cm-1 and 2360 cm-1 were due to

the C-H stretching vibrations in SRPs (Chen and Huang

2019). The broad absorption bands with strong intensities

at 1640 cm-1 were shown for C = O (Yang et al. 2020),

and the weak peaks around 1540 cm-1 indicated that

FSRP-1, FSRP-2, and HSRP-1 had combined proteins. The

C-O stretching vibration of carboxyl groups was shown at

about 1421 cm-1. The vibration of S = O shown at

1150 cm-1 was the presence of sulfates in FSRP-1, FSRP-

2 and HSRP-1 (Wang et al. 2018). The two peaks around

1077 cm-1 and 1045 cm-1 were due to the galactose and

glucose in the SRPs. This result was consistent with the

monosaccharide compositions analysis (Table 1). Yang

et al. (2018) also reported that the band at approximately

1070 cm-1 showed the presence of galactose. The diag-

nostic absorption peak at about 803 cm-1 would suggest

that FSRP-2 and HSRP-1 had a-type glycosidic linkages of
galactose (Shi et al. 2017). Based on the FT-IR analysis,

Table 1 Monosaccharide

composition of polysaccharides

from dried S. rugosoannulata

Sugar components (molar ratio) Polysaccharide samples

FSRP-1 FSRP-2 HSRP-1 HSRP-2

Arabinose 1 1 1 1

Galactose 7.70 6.20 4.34 5.63

Glucose 25.39 19.19 31.02 13.79

Mannose 2.46 3.55 1.53 2.37

Fig. 3 FT-IR spectrum of FSRP-1, FSRP-2, HSRP-1, and HSRP-2
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the preliminary structures of SRPs were not changed by

different drying methods. Similar results of polysaccha-

rides from Hohenbuehelia serotina (Li et al. 2016) and

Medicago sativa L. (Shang et al. 2021) were also reported.

NMR Spectroscopy Analysis of SRPs

The NMR technique has been utilized in food systems to

determine the chemical structure of polysaccharides (Yang

and Yang 2020; Pizzoferrato et al. 2000). Figure 4 shows

the 1H NMR and 13C NMR spectra of FSRP-1, FSRP-2,

HSRP-1 and HSRP-2. The typical peak distributions of

polysaccharides (dH3.4–5.4 ppm and dC 60–110 ppm)

were found in SRPs (Wang et al. 2014). The strong signals

in the dH5.04, 5.03 ppm and dC93.18 ppm regions of the

FSRP-1 were due to the anomeric protons of a-D-Galp,
whereas the b-D-Glcp generally occurred at the d4.84,
4.49, and 4.48 ppm shifts. HSRP-1 was detected to have

three chemical shifts of d5.04, 5.03 and 4.84 ppm, but the

signals at d4.49 and 4.48 ppm were not determined, indi-

cating that the HSRP-1 had lower levels of b-D-Glcp than

that of the FSRP-1. Huang et al. (2021b) also used the

corresponding areas in the NMR spectrum to determine the

levels of b-D-glucose. The signals in the dC72.47, 72.11,
71.08, 69.65, and 60.47 ppm suggested that the primary

chain in the both of neutral SRPs was (1 ? 6)-a-D-Galp
linkage (Maity et al. 2013). Moreover, FSRP-1 had side

both chains of (1 ? 6)-b-D-Glcp and (1 ? 3)-b-D-Glcp,
whereas HSRP-1 only had side chain of (1 ? 3)-b-D-
Glcp. After hot-air drying, the increased ratio of 1,3-link

residues may be due to the fact that 1,3-links are more

likely to formed during the high temperature drying pro-

cess than 1,6-links (Gan et al. 2021). The a type of gly-

coside was also previously reported in mushroom

polysaccharides (Tang et al. 2020). For FSRP-2, the strong

signals at about dH4.84 ppm and dC102.96 ppm showed

the b-D- Glcp, and the weak signal at dH4.98 ppm showed

the a-D-Galp, whereas the b-D- Glcp was the dominant

glycoside bond. Similar 1H NMR and 13C NMR chemical

shifts were also determined in HSRP-2, while the signal at

d4.84 ppm was stronger than that of FSRP-2, indicating

that the HSRP-2 had higher levels of b-D-Glcp. The signals
in the dC75.52, 72.99, 69.43, 68.20, and 60.61 ppm suggest

that the (1 ? 3)-b-D-Glcp linkage was the primary chain

in the acidic polysaccharides (FSRP-2 and HSRP-2), and

both had side chains of (1 ? 4)-a-D-Galp. In general, our

results suggested that food drying pretreatments could

chang the sugar configurations of SRPs. After the hot-air

drying process, the neutral polysaccharides had a higher b-
configuration level, whereas the acidic polysaccharides had

a lower one. The results were in agreement with Gan et al.

(2021), who reported that the drying process affected the

configurations of longan polysaccharides.

Effects of drying on antioxidant activities of SRPs

ABTS? radical scavenging activity of SRPs

The ABTS•? scavenging abilities of FSRP-1, FSRP-2,

HSRP-1 and HSRP-2 are shown in Fig. 5a. The scavenging

rates of FSRP-1, FSRP-2, HSRP-1 and HSRP-2 reached

84.62%, 79.01%, 83.86.52%, and 99.70%, respectively, at

a concentration of 5 mg/mL. The results indicated that the

four types of polysaccharides had positive ABTS•? scav-

enging abilities. Among the four types of SRPs, HSRP-2

had the highest ABTS•? scavenging activity which might

be due to its higher level of b-D-Glcp compared to that of

the other SRPs. It has also been reported that the scav-

enging capacities of polysaccharides were affected by the

glucoside bond type (Shi et al. 2013). The IC50 values of

FSRP-1, FSRP-2, HSRP-1 and HSRP-2 were determined at

1.02, 1.38, 0.89 and 0.93 mg/mL, respectively. The results

indicated that HAD treated samples had stronger scav-

enging abilities than the samples treated by FVD. We

suggested that the scavenging activity of SRPs on ABTS•?

was affected by drying pretreatments, and the hot-air dry-

ing process would thus improve the ABTS•? scavenging

abilities of SRPs. However, Wu et al. (2014) reported that

polysaccharides from Agaricus blazei Murrill obtained by

FD method showed higher scavenging activity on ABTS

radicals than that of HD method.

Hydroxyl radical scavenging activity of SRPs

The hydroxyl radicals scavenging activities of FSRP-1,

FSRP-2, HSRP-1 and HSRP-2 are shown in Fig. 5b.

Generally, FSRP-1, FSRP-2, HSRP-1 and HSRP-2 showed

potential scavenging activities against hydroxyl radicals.

The scavenging activities of FSRP-1, FSRP-2, HSRP-1 and

HSRP-2 increased to 50.58%, 62.69%, 52.18% and

97.55%, respectively, when the sample concentration

reached 10 mg/mL. This result was lower than that of

polysaccharides from shiitake mushrooms (Wang et al.

2015), but higher than that of polysaccharides from Lepista

nuda mushrooms (Shu et al. 2019). Moreover, the IC50

values of FSRP-1, FSRP-2, HSRP-1 and HSRP-2 were

9.85, 5.38, 9.35, and 2.87 mg/mL, respectively. The

hydroxyl radicals scavenging activities of SRPs was in the

order of: HSRP-2[ FSRP-2[HSRP-1 & FSRP-1. The

results indicated that the neutral polysaccharides (HSRP-1

and FSRP-1) showed lower hydroxyl radicals scavenging

activities that those of acidic polysaccharides (HSRP-2 and

FSRP-2). Previous results also reported that the acidic

polysaccharides from mushrooms had a higher antioxidant

activity (Liu et al. 2016). Our results suggested that the

scavenging capacity of acidic polysaccharides from S.

rugosoannulata might be improved by hot-air drying
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pretreatment. However, the hydroxyl radical scavenging

activity of polysaccharides from Ganoderma lucidum was

reported to increase after freeze drying process (Fan et al.

2012b).

Ferric ion reducing antioxidant power (FRAP)

of SRPs

The ferric ion reducing antioxidant powers (FRAP) of the

four types of SRPs are shown in Fig. 5c. FSRP-1, FSRP-2,

Fig. 4 1H NMR (a) and 13C

NMR (b) spectra of FSRP-1,

FSRP-2, HSRP-1, and HSRP-2
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HSRP-1 and HSRP-2 were determined with FRAP values

of 28.96, 50.47, 43.66, and 75.12 mM Fe2?/mg, respec-

tively. Our results indicated that the FRAP of the four types

of SRPs decreased in the order of: HSRP-2[ FSRP-

2[ FSRP-1[ FSRP-1 (P\ 0.05). The results suggested

that the FRAP activity of neutral polysaccharides was

lower than that of the acid polysaccharides. Similar results

wee also reported for Ganoderma lucidum polysaccharides

(Shi et al. 2013). Compared with freeze-vacuum drying, the

ferric ion reducing antioxidant power of SRPs was

improved by the HD process.

Overall, FSRP-1, FSRP-2, HSRP-1 and HSRP-2 dis-

played potential antioxidant activities. HSRP-2, having a

high b-D-Glcp level, showed the strongest antioxidant

activity among the four types of polysaccharides. Our

results indicated that hot-air drying process improved the

antioxidant activities of polysaccharides from S.

rugosoannulata, and acid polysaccharides would be the

primary antioxidant polysaccharides. Similar results were

also reported about polysaccharides from Taraxacum

mongolicum (Li et al. 2021). The antioxidant activities

changes of SRPs could be due to the varied enzyme

activities in S. rugosoannulata during drying process,

polysaccharides-related enzymes were activated by hot-air

drying pretreatment (Chen et al. 2018).

Conclusion

In this study, four types of polysaccharides including two

neutral polysaccharides (FSRP-1 and HSRP-1) and two

acidic polysaccharides (FSRP-2 and HSRP-2) were puri-

fied from S. rugosoannulata treated by FVD and HAD. The

monosaccharide composition, chain conformations, and

antioxidant activities of polysaccharides from S.

rugosoannulata were altered by food drying process. The

neutral SRPs had a primary chain of (1 ? 6)-a-D-Galp
while the acidic SRPs had a primary chain of (1 ? 3)-b-D-
Glcp. Hot-air drying treatment enhanced the antioxidant

activities of SRPs, especially the acidic SRPs. We would

thus recommend preparing biological polysaccharides from

dried S. rugosoannulata treated by the HAD process.

However, the bioactive mechanism and structure–activity

relationships of SRPs are envisaged by future in vivo

experiments.
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