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The impact of site-specific digital histology
signatures on deep learning model accuracy and
bias
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The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology.
Deep learning (DL) models have been trained on TCGA to predict numerous features directly
from histology, including survival, gene expression patterns, and driver mutations. However,
we demonstrate that these features vary substantially across tissue submitting sites in TCGA
for over 3,000 patients with six cancer subtypes. Additionally, we show that histologic image
differences between submitting sites can easily be identified with DL. Site detection remains
possible despite commonly used color normalization and augmentation methods, and we
quantify the image characteristics constituting this site-specific digital histology signature.
We demonstrate that these site-specific signatures lead to biased accuracy for prediction of
features including survival, genomic mutations, and tumor stage. Furthermore, ethnicity can
also be inferred from site-specific signatures, which must be accounted for to ensure equi-
table application of DL. These site-specific signatures can lead to overoptimistic estimates of
model performance, and we propose a quadratic programming method that abrogates this
bias by ensuring models are not trained and validated on samples from the same site.
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standard component of the diagnosis of nearly all human

cancers is the histologic examination of hematoxylin and

eosin-stained tumor biopsy sections. Histologic char-
acteristics identified by pathologists help characterize tumor
subtypes, prognosis, and at times can predict response to
treatment!. Quantification of more subtle pathologic features can
further discriminate between good and poor prognosis tumors,
such as the quantification of tumor-infiltrating lymphocytes in
breast cancer, but such detailed analysis can be time-consuming
and variable between pathologists?. The increasing availability of
digital histology coupled with advances in artificial intelligence
and image recognition has led to computational approaches to
rigorously assess pathologic correlates associated with a variety of
tumor-specific features. Deep learning is a subdomain of artificial
intelligence, referring to the use of multilayer neural networks to
identify increasingly higher-order image characteristics to allow
for the accurate identification of features of interest. Deep
learning on digital histology has exploded as a potential tool to
identify standard histologic features such as grade>*, mitosis>®,
and invasion”8. Recently, deep-learning approaches have been
applied to identify less apparent features of interest, including
clinical biomarkers such as breast cancer receptor status®?,
microsatellite instability!®!1, or the presence of pathogenic virus
in cancer!2. These approaches have been further extended to infer
more complex features of tumor biology directly from histology,
including gene expression!3-1> and pathogenic mutations!®17,
The predictive accuracy of many of these models has been vali-
dated in external datasets, but studies often rely on single-data
sources for both training and validation.

The Cancer Genome Atlas (TCGA) has been critical for the
development of deep-learning histology models, containing over
20,000 digital slide images from 24 tumor types, along with
associated clinical, genomic, and radiomic data!®. Due to the
propensity of machine learning algorithms to overfit, perfor-
mance is typically reported in a reserved testing set or evaluated
with cross-validation, to avoid biased estimates of accuracy'®.
However, the overfitting of digital histology models to site-level
characteristics has been incompletely characterized and is infre-
quently accounted for in the internal validation of deep learning
models. The genomic batch effects in TCGA and other high-
throughput sequencing endeavors have been well -characterized,
and are the product of the hundreds of tissue source sites con-
tributing samples and the multiple sites for genome sequencing
and characterization?0-22. Histologic imaging data similarly
contain characteristic signatures unique to each tissue submitting
site (Fig. 1). Prior to sectioning, tissue is first fresh-frozen or fixed
in formalin and embedded in paraffin, and each fixation method
generates unique artifacts®3. Slides are then stained with the
eponymous hematoxylin and eosin stains, the color and intensity
of which can vary based on the specific stain formulation and the
amount of time each stain is applied. The digitization of slides
may then vary due to scanner calibration and choice of resolution
and magnification®»2>. Finally, histologic characteristics of
tumors can differ between institutions, due to biological differ-
ences between the patients treated at different centers. Thus,
differences in specimen acquisition, staining, digitization, and
patient demographics all contribute to a unique site-specific
digital histology signature, which could in turn lead to a lack of
generalizability of digital imaging models.

Several methods have been proposed to eliminate these site-
specific signatures to improve the validity of histologic image
analysis, primarily through correcting for differences in slide
staining between institutions?®. This includes methods designed
to reduce color variation across images proposed by Reinhard
et al?’, and methods designed specifically for histology by
Macenko et al.?8. Color augmentation (Fig. 1), where the color

channels of images are altered at random during training to
prevent a model from learning stain characteristics of a specific
site have also been utilized in histology deep-learning tasks2%-30.
Most assessments of stain-normalization and augmentation
techniques have focused on the performance of models in vali-
dation sets, rather than true elimination of the site-specific sig-
nature that may lead to model bias3!32. Here, we describe the
clinical and slide-level variability between sites in TCGA that
constitute site-specific digital histology signatures, and methods
to ensure robust use of internal and external validation to mini-
mize false-positive findings with deep learning image analysis.

Results

Characterization of clinical and digital imaging heterogeneity
in TCGA. Important clinical variables differ across tissue sub-
mitting sites across TCGA. It has been recognized previously that
outcomes and survival vary across sites for a number of cancers33,
but even more fundamental factors differ depending on submit-
ting organization. We compared the distribution of basic demo-
graphics such as age, ancestry, gender, and body weight index and
tumor-specific factors such as stage and histologic subtype. Sites
were included for comparison if they submitted at least 20 tissue
slides. For breast cancer (BRCA TCGA cohort), all demographic
characteristics as well as estrogen receptor status (n=969),
progesterone receptor status (n =966), HER2 expression (n =
847), PAM50 subtype (n=914), TP53 mutational status (n=
1004), immune subtype (n =1002), and 3-year progression-free
survival (n=458)34 varied significantly between cohorts, with
false discovery rate correction and P <0.05 (Fig. 2). We system-
atically applied this approach to five other major solid tumor
types, and demonstrate that multiple impactful clinical features
vary by the site for all tumor subtypes tested—including ALK
fusion status in squamous cell lung cancer (LUSC TCGA cohort,
n=155) and lung adenocarcinoma (LUAD TCGA cohort, n=
112) and human papillomavirus (HPV) status in head and neck
squamous cell carcinoma (HNSC TCGA cohort, n=332)—all
with P<0.05 and significant after FDR correction (Supplemen-
tary Table 1 and Supplementary Fig. 1). Of note, given the
increasing interest in developing survival models based on
pathology, stage varied by the site in all cancer subsets tested, and
3-year progression-free survival (PFS) varied across the site in all
cancers, except lung and colorectal adenocarcinoma.

We then applied classical descriptive statistics for image
analysis to document the differences in slide image characteristics
across site, calculating first-order statistics and second-order
Haralick texture features for comparison across sites3>36. All
first- and second-order statistics demonstrated variance according
to tissue submitting site among sites, as measured by ANOVA F-
statistic (Fig. 3 and Supplementary Table 2). Similar findings were
seen in the analysis of other cancer subtypes (Supplementary
Fig. 2). Applying stain-normalization techniques at a slide level
for breast cancer improved some first-order characteristics but
measures of dissimilarity for all second-order characteristics (as
measured by F-statistic) remained greater than that of any first-
order characteristics (Fig. 4 and Supplementary Table 2). Of note,
the second-order feature angular second moment remained the
most dissimilar image characteristic (highest F-statistic) with any
form of stain normalization for all cancer types, except lung and
head and neck squamous cell carcinoma (Supplementary Table 2
and Supplementary Fig. 2).

Deep-learning algorithms accurately identify tissue submitting
site. To assess the ability of deep learning to predict tissue sub-
mitting sites, we trained a deep-learning convolutional neural
network based on Xception architecture to predict site3’. To
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Fig. 1 Etiologies of site-specific digital histology signatures, and methods for correction. The submitting institution of a digital histology image can often
be readily detected due to a site-specific signature unique to each institution. A number of factors can contribute to site-specific signatures, ranging from
true histologic and biologic differences between datasets to nonbiologic artifacts, termed batch effect. The batch effect can originate from every step from
the procurement of tissue to digital image creation. Frozen and formalin-fixed specimens will have unique histologic artifacts, the intensity of hematoxylin
and eosin exposure can vary between institutions, and the digitization of slides may result in compression artifacts. A variety of methods have been

developed to mitigate the impact of stain differences between slides. Stain normalization refers to changes in color characteristics to reduce the effect of
staining differences between slides. Augmentation refers to random variations applied to individual tiles during machine learning to prevent overfitting with

regards to the varied characteristic.

assess the accuracy of site prediction, we used threefold cross-
validation stratified by site (Fig. 5a) and calculated the one-versus
rest area under the receiver-operating characteristic (AUROC)
curve (Supplementary Table 2). The slide characteristics used by
such a model to predict site can be illustrated with a UMAP33
representation of final layer activations, with representative slide
tiles selected for each UMAP coordinate— in this case, demon-
strating a hematoxylin-predominant to eosin-predominant color
gradient for patients in TCGA-BRCA (n=1006, Fig. 5b). To
assess the ability of stain normalization and color augmentation
to prevent prediction of site, we repeated this process with nor-
malization or augmentation applied at the tile level for the six
examined cancer subtypes (Supplementary Table 3). Site dis-
crimination was highly accurate at baseline, with an average one-
versus- (OVR) area under the receiver-operating characteristic
curve (AUROC) ranging from 0.998 for clear cell renal cancer
(TCGA-KIRC, n = 508) to 0.964 for TCGA-LUSC (n = 463). For
comparison, AUROC for a neural network model trained to
predict site from the clinical characteristics described in Supple-
mentary Table 1 achieved an average AUROC of 0.623, ranging
from 0.511 in TCGA-LUSC to 0.781 in TCGA-COADREAD
(Supplementary Table 4). Stain-normalization techniques mod-
estly decreased the accuracy of site prediction, but site prediction
remained highly accurate with an average OVR AUROC of over
0.850 with all normalization techniques for all cancers. For all
cancer subtypes tested, the greatest decline in AUROC for site
prediction was seen with one of the two forms of grayscale
normalization. To further evaluate how stain normalization

influences model inference of site, a UMAP and mosaic repre-
sentation of TCGA-BRCA site prediction after Macenko nor-
malization was generated, which did not demonstrate as clear a
color gradient (Supplementary Fig. 4a). The most clearly separ-
able site (A7—Christiana Healthcare) remains the same in both
plots—suggesting that either subtle stain-related differences per-
sist, or other components of its unique digital histology signature
continue to render this site unique from others.

An artificial simulation of site-specific digital histology sig-
natures. As described earlier, there are a variety of putative causes
of site-specific signatures in digital histology (Fig. 1) that may
contribute to highly accurate detection of the tissue submitting
site for a slide. To better describe the relationship between bio-
logical factors (such as true differences between populations) and
batch effect (i.e., nonbiologic differences between histologic
images), we designed a simulation of site-specific signatures using
patients from the University of Pittsburgh, the largest contributor
to the TCGA-BRCA cohort (n =115 ER-positive, n =23 ER-
negative). A single site was chosen as this would theoretically
minimize any batch effect due to site-related differences in sample
procurement, staining, or digitization. We assessed the ability of
deep-learning models to identify 23 random slides from within a
cohort of 69 patients while introducing both a biologic cofounder
(ER status) and stain-related cofounder—representing two dif-
ferent contributors to a site-specific signature. ER status was
chosen as the biologic cofounder as it is highly detectable from

NATURE COMMUNICATIONS | (2021)12:4423 | https://doi.org/10.1038/s41467-021-24698-1 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24698-1

ey
@o,
%,
%
%,
%,
£
%,

000000000000,
000000000000

S

Stage = |
n=998 = Il

N -
X“p<0.001 mm v

- <39
n=1016 mem 40-59
X2p<0001 ™= 60+

Ancestry == EUR

n=94) "= AFR
N - ASIAN
X“p<0001 mmm AVR

Histology mem IDC
n=1017 mm IC

X2 p<0.001

ER

- -
, n=99 IR
X2 p=0003

PR -
n =966 *
- -
X2 p<0.001

HER2
n =847
X2p=0003 T

Subtype ™= Lum
n=914
X2 p<0.001

Immune Subtype ™= C1
n =963
X2 p<0.001

Progression
n =458
X2 p <0.001

BRCA1
n=931
x2p =001

= Mutant
=== None

TP53 =
n=1004 ™= Driver

«2p=0035 = None

000000000000
000000000000,
000000000000,
C00000000D0D0O0-
00 000000000:

MAP3K1 =
n=1004 ™= Driver

N
X2p=0317 one

Tissue Submitting Site

000000000000,

%
%
o
O,
72

000000000000
000000000000

©

000000000000,
000000000000

3
Y%

S

%
Py

000000000000
000000000000,
000000000000

000000000000000O0

Fig. 2 Demographics and tumor characteristics of breast cancer across sites with 20 or more slides in TCGA. Each row represents a demographic,
clinical, or tumor characteristic of patients in TCGA-BRCA. The chi-squared test was performed to quantify heterogeneity between sites, with the listed P
values corrected for a false discovery rate of 0.05. A number of features display marked heterogeneity—for example, only two sites (ILSBio and Christiana)
submitted patients where the majority had disease progression within 3 years. IGC International Genomics Consortium, MSKCC Memorial Sloan
Kettering Cancer Center, GRCC Greater Poland Cancer Center, EUR European, AFR African, AMR Native American, IDC invasive ductal carcinoma,

ILC invasive lobular carcinoma.

histology, and the University of Pittsburgh dataset has a rea-
sonable number of positive and negative samples. We varied the
ER negativity of the 23 target slides from 0 to 100%, whereas the
remainder of the slides were maintained as ER-positive (Sup-
plementary Fig. 5 and Supplementary Table 5). Similarly, we
applied an artificial staining artifact to 0-100% of the target slides,
whereas the remainder of the slides were unaffected. While the
accuracy of target feature prediction increased monotonically
when the target feature became more strongly ER-negative, this
relationship no longer held as the stain artifact was applied to
more slides. In addition, stain-normalization techniques did not
abrogate the impact of the artificial stain artifact, with a reduction
from an AUROC of 1.00 when 100% of target slides had staining
artifact, down to a minimum AUROC of 0.934 with grayscale
stain normalization. The accuracy at baseline and reduction with
grayscale normalization mirrors the ranges of AUROCs seen with
site prediction, further suggesting that batch effect, as opposed to
biologic subpopulation differences, are the predominant cause of
highly accurate site prediction by deep-learning models.

Preserved-site cross-validation—a quadratic programming
solution. Naturally, if a deep-learning model can distinguish sites
based on nonbiologic differences between slide staining patterns
and slide acquisition techniques, models designed to predict
certain clinical variables could instead learn staining variability or
other site-specific features. This is analogous to the Husky versus
Wolf problem, where a deep-learning model distinguishes

pictures of these two canines based on the fact that more wolves
are pictured in the snow—rather than physical differences
between the two animals, leading to a potential lack of external
validity®®. A similar problem can also occur if true biologic
subpopulation differences (rather than batch effect) are correlated
with the outcome of interest, but only in specific sites. To evaluate
the dependence of deep-learning model accuracy on site-specific
digital histology signatures, we propose comparing models
trained to assess features of interest using two different methods
of cross-validation (Fig. 5¢). We can correct for biased results by
ensuring sites are isolated to a single data fold, or preserved site
cross-validation. However, if submitting sites within a dataset are
randomly split into equal-sized groups for cross-validation, it is
likely that a feature of interest would not be evenly represented
among these groups, resulting in biased estimates of accuracy?’.
Optimal stratification for k-fold cross-validation while isolating
each site to an individual k-fold can be achieved using convex
optimization/quadratic programming?!. In other words, an
optimization problem can be constructed with the goal of
equalizing the proportion of patients with/without a feature of
interest across each fold. We applied this method of cross-
validation to all outcomes listed in Fig. 2 and Supplementary
Table 1. Notably, our method of preserved site cross-validation
produces perfect stratification (all subgroups with identical dis-
tribution to standard cross-validation) in 55% (32/58) of out-
comes tested (Supplementary Table 6). Meaningful imbalances,
where the distribution of patients differed from perfect stratifi-
cation by over 10 for a subgroup in any fold was seen in 12% (7/
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Fig. 3 Variation of image characteristics in breast cancer digital histology across TCGA. Sites contributing at least 50 slides are included (n = 607 slides,
7 sites), demonstrating that image variation is not solely a function of small sites that infrequently contributed to TCGA. a First-order characteristics for
red, green, and blue are shown in their respective colors. b Haralick second-order textural features also vary by submitting site. STD standard deviation,

ASM angular second moment, GPCC Greater Poland Cancer Center.

58) of outcomes. All of these meaningful imbalances occurred in
the TCGA-COADREAD dataset, where a smaller number of sites
contributed to patients.

Impact of site-specific digital histology signatures on deep-
learning model performance. To further characterize the influ-
ence of site-specific signatures on deep-learning model perfor-
mance, we trained convolutional neural network models with
standard and preserved-site cross-validation to predict the pre-
viously described demographic, clinical, and genomic outcomes
across six cancer subtypes using the dataset splits as highlighted
in Supplementary Table 6. For 58 features evaluated, the average
decrease in AUROC between standard and preserved-site cross-
validation was 0.069 (range: —0.042 to 0.291). We assessed which
models had a significant decline in performance using a one-sided
t-test, and again repeated this assessment with stain-
normalization and augmentation techniques, using an FDR of
0.05 for significance testing. Of the 56 features which were pre-
dictable with standard cross-validation, 51 (91.1%) had a decline
in AUROC with preserved-site cross-validation, and 20 (35.7%)
were no longer significantly detectable (Fig. 6a and Supplemen-
tary Tables 7 and 8). A similar proportion of predictable features
had a decline in AUROC with other methods of stain normal-
ization/augmentation, ranging 84.6% with grayscale (Fig. 6b) to
89.1% with heavy HSV augmentation. Interestingly, the percen-
tage of features that were no longer accurately detected with
preserved-site cross-validation decreased modestly with normal-
ization/augmentation, ranging from 17.5% with Macenko nor-
malization to 26.8% with Reinhard normalization.

Of demographic features, the accuracy of genomic ancestry*?
prediction declined drastically with preserved-site cross-valida-
tion in a number of disease subtypes regardless of normalization/
augmentation, including TCGA-BRCA (n =905, AUROC 0.798
versus preserved-site  AUROC of 0.507, P<0.001), TCGA-
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COADREAD (n =483, AUROC 0.883 versus 0.795, P <0.001),
and TCGA-LUSC (n =422, AUROC 0.789 versus 0.504, P<
0.001). Accuracy of age prediction in the TCGA-COADREAD
cohort also declined with preserved-site validation (n =541,
AUROC 0.605 versus 0.479, P <0.001), as did stage prediction in
both lung cancer cohorts (TCGA-LUSC n =474, AUROC 0.537
versus 0.466, P <0.001; TCGA-LUAD n =468, AUROC 0.599
versus 0.521, P<0.001). As one might expect—these demo-
graphic features are often as strongly indicative of disease
outcome as pure biologic factors—and outcome prediction
demonstrated a significant impact of site-specific signatures in
multiple disease cohorts. Performance declined significantly for
prediction of 3-year PFS in the TCGA-LUSC (n =227, AUROC
0.589 versus 0.485, P<0.001) and TCGA-HNSC (n=272,
AUROC 0.614 versus 0.548) cohorts.

The detection of standard histologic features was less perturbed
by preserved-site cross-validation—with no difference in accuracy
with the prediction of HER2 status in TCGA-BRCA and of grade
in TCGA-HNSC. Other histologic features remained largely
unaffected by preserved-site cross-validation—with minimal
decreases in AUROC—including prediction of lobular versus
ductal histology in TCGA-BRCA, prediction of estrogen, and
progesterone receptor status in TCGA-BRCA and prediction of
grade in TCGA-KIRC. Prediction of mucinous histology for
TCGA-COADREAD, however, did decline with preserved-site
cross-validation at baseline (n = 578, AUROC 0.788 versus 0.712,
P<0.001) and with all forms of normalization/augmentation.
Nonetheless, this decline was not dramatic and mucinous
histology remained detectable with preserved-site cross-
validation.

There has been increasing interest in using deep learning to
detect non-intuitive features directly from histology, including
our previously described work on detection of genetic driver
mutations directly from histology!®—raising the question of
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Fig. 4 ANOVA F-statistic for first- and second-order image
characteristics for breast cancer histology in TCGA. Variance in first- and
second-order image characteristics between tissue submitting sites in the
breast cancer TCGA dataset (n = 888 slides over 14 sites) is assessed with
ANOVA. The ANOVA F-statistic is listed for multiple methods of stain
normalization, with the lowest F-statistic (least variability) with any method
of normalization indicated in the rightmost column. Stain normalization
does not completely resolve first-order stain variability (by F-statistic), and
minimal impact is seen on second-order Haralick features. STD standard
deviation, ASM angular second moment.

whether the accurate prediction of some of these features in
TCGA may be due to recognition of site-specific signatures rather
than histologic characteristics driven by these mutations. We
analyzed a subset of the driver mutations that were accurately
predicted in our previous work and found that the majority were
unaffected/minimally affected by preserved-site cross-validation,
including TP53 and MAP3K1 in TCGA-BRCA, BRAF in TCGA-
COADREAD, TP53 in TCGA-HNSC, and STK11 and TP53 in
TCGA-LUAD. However, several mutations were no longer
accurately detectable, including PIK3R1 in TCGA-LUSC (n =
458, AUROC 0.614 versus 0.386, P <0.001), RHOA in TCGA-
HNSC (n =443, AUROC 0.733 versus 0.470, P<0.001), and
RNF43 in TCGA-COADREAD (n = 556, 0.688 versus 0.494, P <
0.001). The detection of other genomic features was also
dependent on site-specific signatures, including ALK fusion
detection in lung cancer (TCGA-LUSC n =270, AUROC 0.678
versus 0.404, P <0.001; TCGA-LUAD n =231, AUROC 0.637
versus 0.417, P<0.001) and immune subtype3* detection in half
of the cancers analyzed.

To further explore why some features exhibit a decline in
accuracy, we produced a UMAP and mosaic map of two features
in TCGA-BRCA: (1) ancestry, which correlates with site and
declined substantially in accuracy (Supplementary Fig. 4b); and
(2) BRCA mutational status, which correlates poorly with site and
remained detectable with preserved-site cross-validation (Supple-
mentary Fig. 4c). Although the most readily identifiable site (A7,
Christiana Healthcare) clusters closely in both, it is not as
distinctly separate from other sites in the BRCA UMAP, and a
less clear color gradient with BRCA as opposed to ancestry

prediction. This suggests that site-specific histologic patterns
weigh less heavily in the decision-making for BRCA mutational
status, whereas they may contribute to the prediction of ancestry,
resulting in the marked decline with preserved-site cross-
validation.

We can further demonstrate that models are weighting the
unique histologic pattern of individual sites in making predictions
by evaluating model performance within specific sites where
patient demographics do not match the overall dataset (Supple-
mentary Fig. 6). We take as an example the slides submitted by
the University of Chicago for TCGA-BRCA, the only site where
patients of African ancestry comprise the majority of samples. We
hypothesized that false-positive predictions of genomic African
Ancestry*? would be significantly higher with standard cross-
validation than with preserved-site cross-validation, as models
with standard cross-validation may for example learn that the
University of Chicago staining pattern is associated with a high
rate of African American ancestry. For patients in the validation
data folds, false-positive predictions for African ancestry
(measured at the tile level, n = 2206 tiles, 20 patients, 17 with
African ancestry, 3 with European ancestry) are significantly
higher for standard cross-validation balanced by ancestry, as
compared to preserved-site cross-validation (Fig. 6b and
Supplementary Table 9). In other words, standard cross-
validation in TCGA inaccurately classifies European patients
from a site with predominant African ancestry, as the decision is
likely related to nonbiologic site-specific signatures in this multi-
site repository.

Discussion
We have demonstrated that site-specific digital histology sig-
natures exist within TCGA across multiple cancer types, and
inadequately controlling for the ease in which deep-learning
models detect sites results in biased estimates of accuracy.
Although stain normalization can remove some of the perceptible
variation and augmentation can mask differences in color,
second-order image characteristics are unaffected by these
methods, and stain normalization does not resolve the ability of
deep-learning models to accurately identify a tissue submitting
site. When predicting demographic, clinical, and genetic features
with preserved-site validation, a consistent decrease in accuracy is
seen despite perfect stratification of features of interest in the
majority of cases. The effect size is small for the majority of
features and is absent for most features with a clear histologic
basis such as tumor histologic subtype and grade. Conversely, we
demonstrated that prediction of other clinically relevant features
such as progression-free survival for squamous lung cancer and
head and neck cancer, as well as genomic features such as certain
driver mutations, ALK fusion status, and immune gene expres-
sion for certain cancers, are significantly driven by site-specific
signatures—despite any form of normalization/augmentation.
Demographic features have a less straightforward histologic
basis, but it is not unreasonable to expect that some can be
detected from histology. For example, young age is correlated
with high-grade tumors and older age associated with lobular
histology in breast cancer®3. A clear biologic link between eth-
nicity and histology has been demonstrated in breast cancer—
with higher tumor grade, more frequent triple-negative receptor
status, and recurrent genetic differences in genome-wide asso-
ciation studies characterizing African American breast
cancer?-47. However, we have demonstrated that deep-learning
models trained on multisite repositories such as TCGA may base
predictions on the histologic signatures of submitting sites, rather
than intrinsic tumor biology, when these site-specific signatures
are correlated with the outcome of interest. Demographic features
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Fig. 5 Model development for the site and feature prediction for patients in TCGA. a To predict tissue submitting site, data is split into threefolds, with
each site represented equally in all folds. Cross-validation is then performed, where a model is trained on two of the datasets and performance is assessed
on the third dataset. This process is repeated threefold for an averaged performance metric. b UMAP representation of final activation weight vector of the
model trained to recognize submitting site in TCGA-BRCA (n =1006 slides). Each point on the left figure represents the centroid tile from a single slide.
The nearest tile to each UMAP coordinate is visualized on the right, demonstrating a clear gradient from tiles that demonstrate predominant hematoxylin
staining to those demonstrating predominant eosin. ¢ We assess the impact of including slides from a tissue submitting site within both the training and
validation sets on the prediction of a variety of clinical, genomic, and demographic features, using two methods of generating folds for cross-validation.
First, we split the data into threefolds, stratifying by the feature of interest, irrespective of site. For a comparator, we split the data into threefolds where
each site is isolated into a single fold, with the secondary objective of equalizing the ratio of features in each fold.

such as genomic ancestry, which varies greatly from site to site
due to differences in catchment areas of hospitals, may be par-
ticularly susceptible to such bias. This is evidenced by the fact that
ancestry is predictable in TCGA-BRCA with standard but not
preserved-site cross-validation, and predictive accuracy for
ancestry declined significantly with preserved-site cross-valida-
tion for most cancer subtypes. This poses a challenging ethical

dilemma for the implementation of deep-learning histology
models. It has been well documented that women of African
ancestry with breast cancer have a poorer prognosis that is not
completely accounted for by stage and receptor subtype?$49,
Contributing factors may include delays in treatment initiation
and inadequate intensity of therapy®’, and more research is
needed to disentangle the biologic and nonbiologic factors
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Fig. 6 Impact of site-specific digital histology signatures on deep-learning model accuracy and bias. a The distribution of the average difference in

AUROC with standard and preserved-site cross-validation for various clinical, genomic, and demographic features (n = 58 features) for six cancer subtypes
in TCGA is shown (pictured graphic for baseline models without normalization/augmentation). The decrease in AUROC is statistically significant for a
number of features (one-sided t-test, illustrated on y axis with false discovery correction, as described in Supplementary Table 7) for a subset of features.
Jitter is added to ease visualization, although significance/insignificance of individual findings is preserved. b The same graph is provided for grayscale stain
adjustment (for which the smallest changes in AUROC were seen). ¢ False-positive prediction of European ancestry and African ancestry for patients

within the University of Chicago dataset (measured at the tile level, n = 2206 tiles from 20 patients, 17 with African ancestry, 3 with European ancestry) for
models trained with standard and preserved-site cross-validation. The presented bars illustrate the proportion (e.g., the number of tiles falsely predicted to
be European divided by the total number of tiles predicted to be European), with error bars signifying the estimated standard deviation of the proportions.
PFS progression-free survival, HSV hue saturation value.
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contributing to disparities in prognosis. As deep-learning models
are able to infer patient ancestry from site-specific signatures,
models must be carefully implemented in an equitable fashion to
avoid recapitulating the pre-existing inequities in cancer carel.
Further study within single-site repositories, or repositories where
tissue is stained and digitized at a single center, may promote
more accurate modeling of demographic factors with deep
learning.

When developing predictive histologic models for a large
number of features, external validation of every finding can be
impractical/infeasible. Furthermore, adequate external validation
datasets may not be readily available for rare cancer subtypes. As
such, multiple studies have trained and validated models using
TCGA with no external validation or only partial validation in a
subset of cancer types. Such studies include genetic mutation
prediction in multiple cancer types!®17:2%, prediction of grade in
clear cell renal cancer®?, prediction of breast cancer molecular
subtype>3, the prediction of gene expression!3, or correlation of
histology and outcome2>>%, Survival outcomes are particularly
challenging to develop rigorous models for using histology from
TCGA, and model performance may be falsely elevated not only
by the disparate outcomes across sites, but also the site-level
differences in critical factors relevant to survival such as stage and
age. Studies demonstrating histologic discrimination of survival
and recurrence in glioblastoma®2>4, renal cell cancer®?, and lung
cancer®® patients from TCGA which lack external validation
cohorts may therefore have biased estimates of the outcome.
Prediction of survival may also suffer from this bias®® even when
correcting for age, stage, and sex, as other factors that vary by the
site also contribute to the outcome, ranging from the ethnicity of
enrollees to the treatment available at academic vs community
centers. Given that traditional image and textural characteristics
vary between sites in TCGA, it is likely that non-deep-learning
prognostic studies that predict outcome from traditional image
analysis features may suffer from a similar bias®’. Although
prognostic models without external validation must be carefully
scrutinized, a number of studies have shown that deep-learning
prognostic models can maintain strong performance in external
datasets for cancers such as colorectal cancer’®> and
mesothelioma®0. Of course, a number of models initially tested in
TCGA without preserved-site cross-validation have maintained
accurate prediction in external validation cohorts, such as pre-
diction of microsatellite instability or BRAF mutations in colon
cancer! 16, Notably, in our study, preserved-site cross-validation
demonstrated that both BRAF status and MSI status remained
detectable without substantial decline with most forms of nor-
malization. However, models developed to predict several other
driver mutations suffered significant declines in performance/
were no longer detectable. Similarly, in a study by Fu et al., 0-32%
of genetic alterations predictable in TCGA-BRCA were no longer
detectable in two external cohorts?®. It must be noted that the
prevalence of some of the genomic alterations evaluated in this
study was rare, and thus they may be more susceptible to changes
in predictive accuracy just due to random chance rather than
from site-specific digital histology signatures. Nonetheless,
preserved-site cross-validation may show promise as a tool to
identify which features are unlikely to survive the test of external
validation prior to extensive additional resource commitment.

We recommend a series of best practices for deep-learning
studies on histology using TCGA or other combined datasets of
multiple hospital sites. First, the variation of outcomes of interest
should be reported across included sites. This will allow an
assessment of the potential impact that site-specific signatures can
have on accuracy. In addition, knowledge about the distribution
of outcomes on the training and testing sites can allow for
accurate assessment of model performance, as AUROC is an

uninformative marker for heavily imbalanced datasets, where the
precision-recall curve can be more informative®!. Even if per-
formance stands the test of external validation, models may retain
the biases learned from institutional staining patterns. Thus, if
outcomes of interest vary heavily across sites, further prospective
validation at individual institutions may be necessary before
implementation.

If variation of outcomes is seen across sites within a multisite
repository, models should not be trained and assessed for accu-
racy on patients from the same contributing site. As we have
demonstrated, including a site within both the validation and
training datasets results in biased estimates of accuracy. The tried
and true gold standard for any artificial intelligence endeavor is
external validation, which also ensures that not only site level but
dataset level digital histology signatures are not driving model
performance®2, However, adequate external validation datasets
are not frequently available, and it is important to accurately
assess the promise of models at an early stage before significant
time is spent in further research and investigation. We propose
using convex optimization/quadratic programming as demon-
strated in this study to identify the split of sites to allow optimal
stratification of features of interest. This can also be applied to
linear features by stratifying the feature of interest into mean-
ingful subgroups or quartiles prior to optimization.

Finally, stain-normalization and color augmentation techni-
ques should still be used to improve model accuracy in external
validation and implementation. Although normalization and
augmentation do not prevent models from learning site-specific
characteristics, several studies have reported greater validation
accuracies with the use of such techniques3!32. It is likely that
these techniques eliminate some but not all of the reliance that
deep-learning models have on staining differences; by making the
differences in slide characteristics more subtle, models may be
more likely to pick up on biologically relevant factors. In our
study, Macenko stain normalization maintained the greatest
proportion of features that remained detectable with preserved-
site cross-validation. However, the best method of augmentation/
normalization to eliminate these biases varies by dataset/feature
of interest. Forms of grayscale normalization may better eliminate
stain and site detection, but likely discards some relevant biologic
information and may impact predictive accuracy®. Similarly,
although attempting to normalize second-order image char-
acteristics derived from the gray level co-occurrence matrix may
render sites more indistinguishable, such characteristics are clo-
sely associated with intrinsic tumor biology and must likely be
preserved for deep-learning applications®4.

Our findings are not without limitations. In this work, we
present a comprehensive description of pixel-level characteristics
across sites in TCGA using classical image analysis techniques,
however other factors likely contribute to the detectable differ-
ences between sites. It is likely that other higher-order image
characteristics contribute to the site-level differences, such as
Gabor, wavelet packet, and multiwavelet features?*, However,
extensive characterization of all described textural characteristics
is not necessary to demonstrate the presence of site-specific
digital histology signatures and the impact this has on model
performance.

Our method of generating preserved-site cross folds success-
fully stratified patients by outcomes of interest for the majority of
features examined, but there were some notable outliers in the
TCGA-COADREAD dataset. For example, stratification of
mucinous histology in TCGA-COADREAD was far from perfect
and could lead to the slight decline in predictive accuracy for
mucinous histology seen with preserved-site cross-validation.
Other features such as microsatellite instability (MSI) were also
poorly stratified—in the case of MSI status, one validation fold
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contained over three-fourths of available patients because one
organization contributed the majority of samples where MSI
status was known. However, for MSI status, poor stratification did
not significantly affect performance when tested with preserved-
site cross-validation—consistent with the fact that MSI status has
a well-proven histologic basis!?. This limitation does not apply
for the majority of features evaluated, and preserved-site cross-
validation can likely be applied to most multisite histology
repositories.

Multiple methods for assessment of statistical significance have
been proposed for AUROC analysis, including seminal work by
DeLong et al.%>. However, application to the aggregate of pre-
dictions using DeLong’s method fails to capture the variance in
predictive accuracy seen when training with different subsets of
data, and also is not extensible to multicategorical models such as
those we used for submitting site and stage prediction. Boot-
strapping as per Hanley and McNeil® is also highly utilized, but
in our preliminary analyses, we had planned to assess model
performance without bootstrapping. As the number of features
we planned on analyzing grew, we updated our analytic plan to
include bootstrapping as described to allow for reasonable esti-
mates of significance with false discovery correction, as well as to
mirror the methods of our group’s prior work in genomic feature
detection, allowing for better comparison to these results!®.

Our study focuses on correction and analysis of slide stain
differences, which is just one component of potential contributors
to the site-specific signatures seen in TCGA (Fig. 1). It is likely
that some of the declines in performance seen with preserved-site
cross-validation could also be due to differences in specimen
processing, slide scanning, or subpopulation differences between
enrolling sites. For example, other studies describe that JPEG
quality had a strong confounding effect on classification tasks in
TCGA?>. We attempted to minimize the influence of resolution
on our findings by sampling slides in our deep-learning models at
a fixed pixel to um ratio, but we did not directly assess the ability
of deep-learning models to detect compression. Several of our
findings support slide stain differences as a primary etiology of
site-specific signatures in TCGA. First, a UMAP of final layer
activations for site prediction as well as other highly affected
features in TCGA-BRCA highlights that an azurophilic to eosi-
nophilic gradient (Fig. 5b). This suggests that stain variation is
one of the most important distinguishing elements used in the
prediction of these features, although there may be confounding
between staining pattern and JPEG compression artifact. Even
basic first-order imaging characteristics such as average red,
green, and blue values vary significantly between sites with all
methods of stain normalization (Fig. 4), suggesting that stain
differences may still play a role in differentiation between sites.
Nonetheless, second-order image characteristics vary more than
these first-order characteristics—and further study of the impact
of staining, choice of slide scanner, and method of sample
acquisition on image characteristics can further elucidate the
drivers of these differences. When varying both subpopulation
differences (ER status) and slide staining in a set of target slides,
the influence of slide staining abnormalities clearly predominates
and reduces the impact of biologic differences on accuracy
(Supplementary Fig. 5). Thus, when significant slide staining
differences are present (as seen in Fig. 5b), the influence of bio-
logic differences is likely minimal. Furthermore, the pattern of
decline of the artificial stain shift mirrors what was seen with stain
normalization for site detection (Supplementary Table 3), sug-
gesting that the use of stain normalization does not eliminate the
effect of stain differences. Although the etiology of the decline in
performance with preserved-site validation 1is debatable,
preserved-site cross-validation may provide valuable insight into
performance on external datasets when site-specific staining,

scanning, specimen processing, or subpopulation differences are
present. However, it must be noted that preserved-site cross-
validation has the potential to negate true biologic associations
between histology and features of interest if these associations are
only present in a single site. We have also only chosen a subset of
proposed stain correction methods, but there have been other
approaches that may further reduce the intrasite variability in
staining. An unsupervised learning approach to normalizing
stains has been proposed, but did not outperform augmentation
in test datasets3!. Adversarial networks may also allow for models
to avoid learning undesirable characteristics of datasets®”.

In summary, we have demonstrated that digital histology in
TCGA carries a multifactorial site-specific signature that is
characteristic of the tissue submitting site. This signature can be
easily identified by deep-learning models and can lead to an
overestimation of model accuracy if multiple sites are included in
both the training and validation datasets. We have demonstrated
that this site-specific signature can lead to the appearance of
accurate prediction of clinical findings ranging from progression-
free survival, gene expression, genetic mutations, and ancestry
with standard cross-validation. Care should be taken to describe
the distribution of outcomes of interest across sites, and if sig-
nificant, a submitting site should be isolated to either the cohort
used for training or for testing a model. A quadratic program-
ming approach can maintain optimal stratification while still
isolating submitting sites to either training or validation datasets.

Methods

Patient cohorts. Patient data and whole-slide images were selected from six of the
tumor types from TCGA with the highest number of slides available to better
identify site-specific digital histology signatures. Tumor types included breast
(BRCA)%8, colorectal (COAD and READ - with data combined for sites enrolling
to both cohorts)®, lung squamous cell carcinoma (LUSC)”?, lung adenocarcinoma
(LUAD)71, renal clear cell (KIRC)72, and head and neck squamous cell carcinoma
(HNSC)73. Slides and associated clinical data were accessed through the Genomic
Data Commons Portal (https://portal.gdc.cancer.gov/). Ancestry was determined
using genomic ancestry calls provided by Carrot-Zhang and colleagues, with
computation as described in their work#2. Immune subtypes were used from the
work published by Thorsson et al.3*. Informed consent was obtained for all par-
ticipants in TCGA, and ethics oversight is described at https://www.cancer.gov/
about-nci/organization/ccg/research/structural-genomics/tcga/history/policies.

Image processing and deep-learning model. Scanned whole-slide images of
hematoxylin and eosin-stained tissue were acquired in SVS format from TCGA.
Each slide was reviewed by a pathologist for manual annotation of the area of the
tumor using QuPath version 0.12, to ensure ink or other non-cancer artifacts did
not influence slide-level statistics®2. For analysis of first-order and second-order
image characteristics, slides were downsampled to 5 microns per pixel or
approximately x2 magnification. For deep-learning applications, the tumor region
of interest is tessellated into 299 x 299 pixel tiles for evaluation, each representing a
302 x 302 um area of histology, effectively generating an optical magnification of
x10. A more in-depth description of our preprocessing methodology is publically
available (https://doi.org/10.5281/zenodo.3694994). An average of 1% of slides was
excluded for quality issues as described in Supplemental Table 6. Convolutional
neural network models are written in Python 3.8 with TensorFlow 2.3.0, using the
Xception model architecutre’ pre-trained on the ImageNet database’4. The final
fully connected layer of Xception is replaced by a single fully connected hidden
layer with width 500, followed by a softmax layer for prediction. This architecture
is analogous to what is used in other large pan-cancer studies of TCGA to allow
comparison of our findings to such studies!®1%2>. Models were trained over 3
epochs of data, using the Adam optimizer”>, with a learning rate of 1079, a batch
size of 32, sparse categorical cross-entropy loss, and no L2 regularization or
dropout. For the prediction of cancer sites using clinical tumor characteristics
alone, a similarly structured neural network was used with a single hidden layer
with a width of 500.

Each tile is assigned a label associated with the outcome of interest. Tile libraries
were also balanced by category to eliminate bias, with downsampling such that the
number of tiles for each target category was equivalent. Stain normalization and
augmentation are applied to individual tiles at the time of training and assessment.
Macenko and Reinhard normalization is applied as previously described?”:? using
a publically available implementation”®, grayscale refers to direct slide conversion
to grayscale, and “grayscale normalized” refers to conversion to grayscale with
histogram equalization””. Both light and heavy levels of hue saturation value (HSV)
augmentation was applied, with light augmentation multiplying each of these three
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channels by a scalar from 0.9 to 1.1, and heavy augmentation multiplying the hue
and saturation channels by a random scalar from 0.7 to 1.3. In addition, further
augmentation through random tile rotation is performed, and further
normalization ensures inputs have a mean of zero and a variance of one. Models
are trained with threefold cross-validation, learning from two splits of the data and
then evaluated on the third split (Fig. 5). Deep-learning model training and
evaluation was performed on 16 deep-learning-specific NVidia Tesla V100s
graphical processing unit (GPU) nodes within a HIPAA-compliant environment.

Statistics and reproducibility. To quantify differences between categorical clinical
features across sites, a Chi-squared test is used for sites submitting over 20 slides,
with significance determined using a false discovery rate (FDR) of 0.05 with the
Benjamini-Hochberg method applied individually to each cancer subtype (Sup-
plementary Table 1). The 20 slide cutoff was chosen for these descriptive analyses
to prevent variance metrics from being driven by sites submitting small numbers of
slides that may be skewed due to sampling errors. The number of patients analyzed
and degrees of freedom for each analysis is described in Supplementary Table 1.
The variability in site-level image characteristics is quantified in this same set of
sites, using the ANOVA F-statistic to measure variation for each individual image
characteristic, with degrees of freedom equal to one less than the number of
included sites, with the same FDR (Supplementary Table 2). First-order statistics
are calculated from individual red, green, and blue pixel values across images, and
include mean, standard deviation, skewness, kurtosis, and entropy, the latter being
calculated as follows:
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Similar values for calculated features were seen for angles of 0°, 45°, 90°, and
135° so reported values for second-order features are averaged across these four
angles. Second-order image characteristics were calculated using the python scikit-
image library, version 0.18.078.

Deep-learning model predictions are assessed with the area under the ROC
curve (AUROC), averaged over the threefolds generated for cross-validation.
Confidence intervals and statistical testing were computed using a x10
bootstrapped experiment. For multicategorical models (such as the prediction of
the tissue submitting site of a slide, or prediction of Stage I vs II vs III disease), the
reported AUROC values are the one-versus rest AUROC, calculated using the
Scikit-learn library, version 0.23.2.

For the prediction of tissue submitting sites, deep-learning models were trained
using the aforementioned architecture. Comparisons between average OVR
AUROC for prediction of site with different methods of stain normalization was
performed with a two-sided paired t-test with two degrees of freedom and an FDR
of 0.05, and comparisons to assess if average AUROC was greater than random
chance (AUROC 0.50) were performed with a one-sided ¢-test with an FDR of 0.05
and two degrees of freedom (Supplementary Table 3).

Deep-learning models were also trained in a series of artificial experiments to
predict a simulated feature of interest within the University of Pittsburgh dataset
(n =115 ER-positive, n = 23 ER-negative). Models were trained to detect 23
patients with a varied percentage of ER positivity (0-100%) and varied percentage
of stain alteration (0-100%, as per Supplementary Fig. 5 and Supplementary
Table 5). The stain alteration consisted of a 0-5% increase in hue, saturation, and
value. These patients were combined with 46 ER-positive patients with no stain

alterations, and accuracy of prediction of the feature of interest was assessed with
average AUROC with threefold cross-validation.

Accuracy for prediction of clinical variables is reported with standard cross-
validation—stratifying by site, and with preserved-site cross-validation—where
each site is isolated to a single fold, and secondarily stratifying by the site. In other
words, for standard cross-validation, all sites are merged into a single dataset, and
folds are created without respect for site, such that classes are balanced and three
equal folds are produced. Conversely, for preserved-site cross-validation, the
dataset is divided into several folds, such that patients from a single site are all
contained within the same fold. The split of sites is also selected to ensure the
distribution of patients in each fold with respect to the outcome of interest is
reflective of the larger population. To calculate k-folds for preserved-site cross-
validation, we define the following convex optimization problem. If m,  is a binary
variable indicating if site s is a member of fold ¢, and n, is an integer indicating the
number of samples from the site in the categorical feature class f, then we seek to
minimize the mean squared error of divergence from perfect stratification:
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We used CPLEX v12.10, IBM to solve the optimal solution of Egs. (9) and (10)7°.
Our code used for fold generation for preserved-site cross-validation is available
from https://github.com/fmhoward/PreservedSiteCV®0.

We assess the impact of site-specific signatures on model accuracy across 58
features for the 6 aforementioned cancer types using both standard and preserved-
site validation—the cross-validation folds and sample sizes used in this assessment
are listed in Supplementary Table 6. To assess if site-specific signatures reduce the
performance of models, we used a one-sided t-test with four degrees of freedom to
compare standard and preserved-site cross-validated AUROCs. One-sided t-test
was chosen given the distribution in Fig. 6a which suggests that preserved-site
validation does not improve model accuracy. To assess if a model significantly
predicts a feature of interest, we assess if reported AUROC values for the two
methods of cross-validation are greater than random chance (0.50) using a one-
sided t-test. For example, in some cases, a feature may be accurately predicted with
no stain normalization, but is no longer accurately predicted with grayscale
normalization. Thus, there may be a decline in performance with preserved-site
cross-validation with no stain normalization, but no decline in performance with
grayscale normalization (as neither model can make any accurate predictions in
grayscale). Both comparisons are performed for all methods of stain normalization,
with an FDR of 0.05 for each feature analyzed (Supplementary Tables 7 and 8).
Comparisons between the false-positive rates for African ancestry in TCGA-BRCA
were performed using a chi-squared test at a tile level with one degree of freedom
and an FDR of 0.05 (Supplementary Table 9).

To ensure reproducibility, computer code used to support the main findings of
this work was run in duplicate with equivalent results, including the subdivision of
sites into groups for cross-validation using the provided software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data from TCGA including digital histology and the clinical and genetic annotations
used are available from https://portal.gdc.cancer.gov/ and https://cbioportal.org.
Annotations for immune subtypes are available from the published work of Thorsson
et al.3* (https://doi.org/10.1016/j.immuni.2018.03.023), and annotations for genomic
ancestry were directly obtained from the work of Carrot-Zhang et al.#? (https://doi.org/
10.1016/j.ccell.2020.04.012). Annotations for driver mutations are available from https://
github.com/jnkather/DeepHistology. All other results in support of this manuscript are
available from the corresponding author upon reasonable request. Source data are
provided with this paper.

Code availability
Our code used for fold generation for cross-validation is available from https://github.
com/fmhoward/PreservedSiteCV0.
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