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Population dynamic models can be used in conjunction with
time series of species abundances to infer interactions.
Understanding microbial interactions is a prerequisite for
numerous goals in microbiome research, including predicting
how populations change over time, determining how
manipulations of microbiomes affect dynamics and designing
synthetic microbiomes to perform tasks. As such, there is great
interest in adapting population dynamic theory for microbial
systems. Despite the appeal, numerous hurdles exist. One
hurdle is that the data commonly obtained from DNA
sequencing yield estimates of relative abundances, while
population dynamic models such as the generalized Lotka–
Volterra model track absolute abundances or densities. It is not
clear whether relative abundance data alone can be used to
infer parameters of population dynamic models such as the
Lotka–Volterra model. We used structural identifiability
analyses to determine the extent to which a time series of
relative abundances can be used to parametrize the
generalized Lotka–Volterra model. We found that only with
absolute abundance data to accompany relative abundance
estimates from sequencing can all parameters be uniquely
identified. However, relative abundance data alone do contain
information on relative interaction strengths, which is sufficient
for many studies where the goal is to estimate key interactions
and their effects on dynamics. Using synthetic data of a simple
community for which we know the underlying structure, local
practical identifiability analysis showed that modest amounts
of both process and measurement error do not fundamentally
affect these identifiability properties.
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1. Introduction

There is considerable interest in applying population dynamic theory to microbial systems to test
hypotheses relating to ecosystem stability, to determine the drivers of dynamics and to predict how
populations will change over time (e.g. to prevent illnesses such as ulcers; cf. [1–9]). While modern
DNA sequencing technologies allow rapid and inexpensive characterization of microbial community
composition and have uncovered enormous microbial diversity, relatively less is known regarding the
interactions governing the population dynamics of constituent members of microbial communities. It
is these interactions that determine which members of a microbial community will flourish, and
understanding them is key to manipulating microbiomes to promote health, designing synthetic
microbial communities to perform tasks and inferring stability to assess risk.

Despite the expectation that population dynamic models should be applicable to microbial
systems, barriers exist to the application of traditional modelling approaches to microbiomes. One
such barrier results from the nature of sequence data, which are used as a proxy for species
abundance. The raw data from high-throughput microbiome samples are a large number of sequence
reads which are grouped by similarity, giving the number of reads belonging to a particular group.
These groups have different meanings depending on the methods employed (e.g. unique sequence
variant, operational taxonomic unit, species) but, for our purposes, can be thought of as different
(pseudo-)species. The number of reads for a group is then divided by the total number of sequence
reads in the sample giving an estimate of relative abundance. In contrast to the relative abundance
estimates obtained from sequence reads, most population dynamic models, including the generalized
Lotka–Volterra (gLV) model, describe absolute abundances or densities rather than sequence
observation rates or relative abundances. Methods exist to convert the relative abundance data to
absolute abundances by estimating absolute abundance from additional data (e.g. qPCR) [8,10,11].
However, such data are not typically collected in microbiome studies and, when collected, are quite
error-prone themselves.

Numerous methods exist to estimate species’ interaction strengths in a gLV model from
microbial time-series data [8,10–15]. The most common technique for estimating parameters is to use a
discrete-time version of the model, and estimate coefficients using gradient matching fit with linear
regression. When formulated in this way, it has been recognized that the design matrix for the
regression is singular [13], because relative abundance data alone do not contain sufficient information
to estimate parameters. As such, methods typically rely on an assumption of constant population size
or additional data on absolute abundance to complement sequence data so that absolute abundances
or densities of each species can be estimated. While interaction strengths have been successfully
estimated in microbial communities by fitting time-series of species’ densities to the gLV model, it is
unknown to what extent relative abundances alone contain information on interaction strengths.

More broadly, the question of how well experimental data can be used to estimate parameters of a
mathematical model can be addressed with parameter identifiability analysis [16–18]. There are two
broad categories of parameter identifiability analysis: structural and practical identifiability. Structural
identifiability is a global property of a model and measurement type. It addresses the extent to which
parameters of the model can be estimated assuming that all observations are error free. Structural
identifiability can be assessed before collecting experimental data. By contrast, the related concept of
practical identifiability depends explicitly on the quality and quantity of experimental data and is a
property of the model and observation type alone. Practical identifiability, which can be defined
globally over the entire parameter space or locally near a critical point of interest, addresses the extent
to which parameters of the model can be estimated given a set of experimental data. Practical non-
identifiability may arise, for example, from poor data quality even when such parameters could be
identifiable with better quality data.

Here, we first determine the extent to which time-series of microbiome sequencing data contain
information about parameters of the gLV model using structural parameter identifiability analyses to
systematically account for the compositional nature of the data. We address the question as to
whether relative abundance measurements alone, as obtained by sequencing techniques, can be used
to estimate species interaction strengths in a gLV model. If relative abundance measurements cannot
be used to estimate all species interaction strengths as has been previously suggested, what additional
measurements would be needed to make this possible, and what parameters or combinations of
parameters can be estimated using only relative abundance measurements? We then verify the
structural identifiability results by studying local practical identifiability with synthetic microbial
community time-series data.
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2. Analysis

2.1. Generalized Lotka–Volterra model
Assuming large, well-mixed, closed populations with only two-way interactions between microbes, the
change in density of microbes over time can be described by a system of differential equations where the
dynamics of a focal microbe Ni satisfy

dNi

dt
¼ hiðNiÞ|fflffl{zfflffl}

intrinsic growth or death of Ni

þ
Xn
j¼1

fijðNi;NjÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

growth or death of Ni caused by

interaction with microbe Nj

, (2:1)

for i∈ {1, 2,…, n}, where n is the numberof species in themicrobial community. The function hi(Ni) is the rate
of growth or death ofNi and fij(Ni,Nj) is a functiondescribing the growth or death ofNi caused by interaction
withmicrobeNj. Growth or death ofNi caused by interactionwith exogenous variables (e.g. resource, toxin)
can be added in a similarmanner. Specifying the functions hi(Ni) = ri Ni and fij(Ni,Nj) = βi,jNiNj, anddividing
by Ni yields the classical generalized Lotka–Volterra model

1
Ni

dNi

dt
¼ ri þ

Xn
j¼1

bi,jNj, (2:2)

where the parameter ri is a positive growth rate and the interaction rate βi,j describes how microbe j affects
the growth rate of microbe i. Typically, the parameters βi,i are constrained to be negative so that the carrying
capacity Ki =−ri/βi,i is positive, but this is not required for the structural identifiability analysis.

2.2. Structural identifiability of generalized Lotka–Volterra with relative abundance data
We wish to determine the upper bound on the information contained in a time series of relative
abundance data in relation to the gLV model defined in equation (2.2). As previously mentioned, after
grouping by similarity, sequencing data give estimates of the relative abundance of each group,
whereas equation (2.2) tracks absolute abundances or densities. In this section, we will use existing
methods for structural identifiability analyses to determine the extent to which relative abundance
data can be used to infer population dynamic parameters.

A given model and observation state combination is said to be ‘structurally identifiable’ if it is
possible to uniquely estimate the parameters of the model assuming error-free measurements [19,20].
The goal of structural identifiability analyses is to identify model parameters that cannot be estimated
from a given data type. Moreover, analysis of structural identifiability can reveal parameters or
combinations of parameters that are uniquely identifiable, and can inform the reparametrization of a
model in terms of identifiable combinations of parameters. For the gLV model in equation (2.2), the
structural identifiability problem can be set up as follows: given a noise-free time series of the relative
abundance of each microbe (i.e. Ni/N for all i where N ¼ P

i Ni), determine whether it is possible to
estimate parameters ri and βi,j for all i and j of equation (2.2).

A variety of methods exist to determine structural identifiability of ODE models [16]. We will use a
differential algebraic approach which is relevant for rational-function ODE models such as equation (2.2).
For more details on this method, we refer the reader to Saccomani et al. [20], Audoly et al. [19] and
Eisenberg et al. [21]. To apply this method to the model described in equation (2.2), the idea is to first
algebraically manipulate the system of differential equations into an equivalent system written only in terms
of observable state variables (i.e. the measured data) and their derivatives. The resulting system can be
regarded as a system of differential algebraic equations (DAEs) with polynomial coefficients which, after
dividing by the coefficient of the highest ranking polynomial to make the resulting system monic, leads to
an input–output relation that has identifiable coefficients [21,22]. While this method is theoretically valid for
a microbial community of arbitrary size, the algebra becomes cumbersome for even relatively small
communities. Nevertheless, analyses of communities of small size uncover clearly recognizable patterns that
appear to be broadly applicable to communities of arbitrary size.

We begin by analysing the structural identifiability of the two-species gLV model

X0 ¼ r1X þ b1,1X
2 þ b1,2XY,

Y0 ¼ r2Yþ b2,1XYþ b2,2Y
2

and N0 ¼ X0 þ Y0,

9>>=
>>; (2:3)
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where X represents the absolute abundance of the first species, Y the absolute abundance of the second

species, N =X + Y the total abundance of microbes in the community, and the prime symbol indicates
derivatives with respect to time. Note that N, X and Y are all time-dependent (e.g. N(t)), but we are
suppressing the time notation for brevity. Ideally, we would like to use measurements of relative
abundances to estimate parameters of (2.3). To check identifiability, we rewrite equations (2.3) in
terms of the measurable quantities (relative abundances). Let x =X/N and y =Y/N be relative
abundance of microbes X and Y, respectively. Differentiating x with respect to t yields

x0 ¼ X0N�1 � XN�2(X0 þ Y0): (2:4)

Utilizing X =Nx and Y =N(1− x) and equation (2.4), equations (2.3) can be rewritten in terms of relative
abundances and N as

x0 ¼ x(1� x)N
(r1 � r2)

N
þ (b1,1 � b1,2)xþ (b2,2 � b2,1)(1� x)þ (b1,2 � b2,1)

� �
,

y0 ¼ �x0

and N0 ¼ N(�r2(x� 1)þ r1xþN(b2,2(x� 1)2 þ x(b1,2 þ b2,1 � (�b1,1 þ b1,2 þ b2,1)x))):

9>>>>=
>>>>;

(2:5)

Solving the first equation in (2.5) for N yields

N ¼ (r1 � r2)(x� 1)xþ x0

(x� 1)x(b2,2 þ b1,2(x� 1)� (b1,1 � b2,1 þ b2,2)x)
: (2:6)

Substituting equation (2.6) and its derivative into the N0 equation in equations (2.5) and collecting
terms yields

0 ¼ x00(x3((b2,1 � b2,2)� (b1,1 � b1,2))

� x2((b2,1 � 2b2,2)� (b1,1 � 2b1,2))

� x(b2,2 � b1,2))

� x02(2x2((b2,1 � b2,2)� (b1,1 � b1,2))

� x((b2,1 � 2b2,2)� (2b1,1 � 3b1,2))þ b1,2)

� x0(x3(r1b1,1 þ r2b2,2 þ (r1(b2,1 � 2b2,2)� r2(2b1,1 � b1,2)))

� x2(r1b1,1 þ 2r2b2,2 þ (r1(b2,1 � 4b2,2)� 2r2(b1,1 � b1,2)))

� x(2r1b2,2 � r2(b1,2 þ b2,2)))

� x5(r1 � r2)(r1(b2,1 � b2,2)� r2(b1,1 � b1,2))

þ x4(r1 � r2)(r1(2b2,1 � 3b2,2)� r2(2b1,1 � 3b1,2))

� x3(r1 � r2)(r1(b2,1 � 3b2,2)� r2(b1,1 � 3b1,2))

� x2(r1 � r2)(b2,2r1 � b1,2r2): (2:7)

Dividing equation (2.7) by the leading-order coefficient ((β2,1− β2,2)− (β1,1− β1,2)) produces an input–
output DAE strictly in terms of x00, x0 and x whose coefficients are identifiable. Finally, we check
whether coefficients of the DAE have a unique solution by considering an alternative set of
parameters (a1, a2, a3, a4, a5, a6) that produces the same output. Doing so gives the following result:
r1 = a1, r2 = a2, β1,1 = (a3/a6)β2,2, β1,2 = (a4/a6)β2,2 and β2,1 = (a5/a6)β2,2. Thus, r1 and r2 are identifiable
using relative abundance data, while βi,j are not identifiable; however, βi,j are identifiable up to a
constant. Reparametrizing model (2.3) in terms of carrying capacities does not fundamentally change
results; the growth rates are identifiable while interactions and carrying capacities are identifiable up
to a scaling factor.

We performed similar analyses for three-, four- and five-species gLV models and found similar
identifiability results (electronic supplementary material, Mathematica Notebook). Parameters ri are
identifiable, while βi,j are only identifiable up to a scaling factor. We conjecture that this is true for
communities of arbitrary size.
2.3. Local practical identifiability in a synthetic community
Here, we use synthetic data to illustrate the structural identifiability results and to test whether modest
amounts of process and measurement error affect local practical identifiability. We created two simple
three-species synthetic communities that, according to the structural identifiability analysis in the



Table 1. Parameter values used in numerical simulations.

parameter value 1 value 2

r1 6 6

r2 4 4

r3 2 2

β1,1 −0.05 −5
β1,2 0.15 15

β1,3 −0.20 −20
β2,1 −0.01 −1.0
β2,2 �0:026 �2:6

β2,3 0.05 5.0

β3,1 0.10 10

β3,2 −0.10 −10
β3,3 �0:0148 �1:481

X1(0) 10 0.10

X2(0) 14 0.14

X3(0) 4 0.04

N(0) 28 0.28
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previous section, should yield identical relative abundance time series (table 1). We numerically solved
equations (2.3) with parameters in table 1 using the function ode with the default lsoda method in the
deSolve R package. As suggested by the structural identifiability results, both sets of parameter values
yield identical relative abundance time series (figure 1).

We first created synthetic data with error and then sampled the likelihood surface near the true
parameter values to check whether the likelihood surface has a maximum near the true parameter
values. Process error was added to the synthetic data using stochastic differential equations. We used
a Wiener process (Brownian motion) to model environmental noise to the system [23]

dNi ¼ Ni ri þ
Xn
j¼1

bi,jNj

0
@

1
Adtþ si

ffiffiffiffiffi
Ni

p
dWi, (2:8)

where σi scales the variance of the Wiener process (dWi), which is N (0,
ffiffiffiffiffi
dt

p
)-distributed random noise.

After addition of the process error, we subsequently added measurement error to the stochastically
modelled relative abundances to simulate the aggregation of sequence reads to relative abundance. To
do this, we drew random proportions from a Dirichlet distribution having concentration parameters
ai ¼ V ~Ni=

P
i
~Ni, where the tilde indicates the population sizes simulated by equation (2.8), and V

scales the error magnitude (V is roughly equivalent to the amplicon read count). Simulation of data
with process and observation error was performed using the pomp function in the POMP R package
[24]. Simulated relative abundance data were generated for parameter values 2 (table 1) with σi = 0.1
for i = 1, 2, 3 and V = 500.

Next, we checked local practical identifiability near the correct parameter values. We are interested in
determining whether a likelihood ridge exists such that the solution could travel outside the basin of
attraction of the true parameter set. To sample the likelihood surface, we used POMP’s particle
Markov chain Monte Carlo (pMCMC) algorithm (cf. [25]), starting the algorithm near the correct
parameter values. We tested local practical identifiability for three scenarios: two scenarios with
initial population given in table 1 and a third scenario where the initial population size was N0 = 1.
The third scenario was performed to demonstrate that relative changes in population size can be
inferred from relative abundance data (i.e. N(t) � N0N̂(t), where the hat denotes the estimated
population size); that is, the population size relative to initial population size can be estimated. The
fitting was performed following the suggested protocol for the POMP software [24]. We assumed that
every sample had V = 500 amplicon read counts that were then divided with respect to the relative
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proportions of each species; accordingly, we specified that read counts (measurements) were
multinomially distributed. The time-step (dt) for the random process error was 0.001. A prior uniform
distribution was placed on each parameter, ρ, such that the likelihood surface was defined on
U(r� 0:4jrj, rþ 0:4jrj). The MCMC algorithm was first run for 2000 iterations with 200 particles used
for filtering at each iteration. During these iterations, proposals were drawn using a multivariate-
normal, adaptive, random walk where the covariance matrix of MVN was defined as a diagonal
matrix with non-zero elements corresponding to

ffiffiffiffiffiffiffi
0:1

p � jrj; after 100 iterations, a scaled empirical
covariance matrix based on the accepted proposal was used. Once the first 2000 iterations finished,
the MCMC sampler was restarted and run for another 2000 iterations using the empirically
determined covariance matrix from the previous 2000 iterations. After sampling was completed, the
final 2000 iterations were thinned by keeping only every 50th sample, resulting in 40 proposals from
which to estimate the summary statistics for each parameter.

Testing local practical identifiability using parameters from the two scenarios in table 1 indicates that
modest amounts of observation and process error do not fundamentally affect the identifiability
properties of the gLV model with relative abundance data in this synthetic community (figure 2;
electronic supplementary material: R Markdown File). Because the simulated data were generated with
process and observation error, there are deviations between the model fits and the simulated data. Yet
the estimated parameters stay within a basin of attraction near the true parameters. Using only relative
abundance data and an initial population size, most parameter estimates were within approximately
20% of their true value. Surprisingly, testing local practical identifiability using an initial population
size of one indicates that the relative interaction rates—that can be estimated using relative
abundance data—provide ample information to estimate relative changes of absolute abundance over
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time (figure 3). Put differently, total abundance relative to initial total abundance can be reasonably
estimated from a time series of relative abundances of all microbes in conjunction with a gLV model.
Of course, if the model is misspecified, or data sufficiently sparse, such estimation may not be possible
for a given study system.
3. Discussion
As a simple and general model that describes how interactions shape population dynamics of
communities, the gLV is a natural candidate model for interpreting microbial time-series data
[5,6,13,26]. To date, fitting the gLV model to time series requires either (i) assuming a constant
population size so that the gLV model can be fit directly to relative abundance data; or (ii) performing
additional measurements to obtain absolute abundances. We find that such assumptions or additional
data are not strictly necessary. Using structural identifiability analysis and numerical simulations, we
have shown that relative abundance data alone contain sufficient information to obtain relative rates
of interaction. The ability to estimate the topology of an interaction network with only relative
abundance time-series data would greatly expand the range of datasets available to interpret with
dynamic models, as estimates of absolute abundances are typically unavailable. In many studies,
estimating relative interaction rates may be sufficient, as it would still allow for the identification of
the key microbial interactions that provide services and drive dynamics. Moreover, if additional
information on absolute abundance can be obtained (e.g. through qPCR or optical density
measurements) to complement relative abundance data, our results indicate that the parameters of a
gLV model can be uniquely identified. Such additional information need not be obtained at each time
point; even one measurement of absolute abundance can, in theory, be used as the key piece of
information to anchor the parameters giving identifiable estimates.

Just because the relative interaction rates are structurally identifiable with relative abundance data
does not mean that they are practically identifiable for all systems, nor does it mean that estimating
such parameters will be straightforward. The large number of parameters in systems with many
species may preclude accurate parameter estimation in the absence of prior information on parameter
values. Even for smaller communities, some parameters may not be practically identifiable due to the
nature of the specific system. For example, if a species never gets near its carrying capacity, the
carrying capacity may not be well estimated. Similarly, the number of data points is not the only
determinant of the amount of information contained in a time series. Time series in which
populations exhibit large changes in population sizes due to, for example, perturbations, typically
contain more information regarding interactions than time-series of species at steady state. Our local
practical identifiability analysis of a small system shows that in principle modest amounts of noise do
not preclude parameter estimates. Yet in general, the level and type of noise also clearly dictates the
ability to accurately estimate interaction parameters. For example, poor sequencing depth can increase
measurement error and yield poor estimates of parameters. At best, fitting data from a large system
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that is noisy and sparsely sampled would lead to poor fits and large confidence intervals. At worst, it

could lead to a good fit of an entirely incorrect set of parameters and incorrect biological conclusions.
As with any statistical method, care must be taken when estimating parameters of the gLV model.

Developing a better understanding of how microbes interact with each other and their environment is
required for numerous goals in microbiome research including detecting dysbioses, manipulating
microbiomes to promote healthy function and preventing disease, and designing synthetic microbial
communities for specific tasks. Such an understanding can be facilitated by interpreting data in
conjunction with appropriate mathematical models. Some microbial communities may be better
modelled with more complex formulations than the gLV model that incorporate additional factors, for
example, higher-order interactions, indirect resource-mediated interactions, time-varying interactions,
and various forms of stochasticity. The optimal level of detail to be included in such a model probably
depends on numerous factors including the complexity of the microbial community, the level of
understanding of the underlying dynamics, the structure of noise in the data and the goals of the study.

Regardless of the underlying model structure, population dynamic models must be adapted to use
common forms of data, such as the relative abundance data obtained from high-throughput
sequencing. We have found that when fit to a common population dynamic model, the generalized
Lotka–Volterra model, a time series of relative abundance data contains information on relative
interaction strengths. Moreover, relative interaction rates provide ample information to estimate
relative changes of absolute abundance over time. Such findings provide critical information for
designing temporal studies aimed at inferring microbial interaction networks, and greatly expand the
number of studies amenable to such analysis. Specifically, we have shown that qPCR data—to convert
relative abundance into absolute density—are not strictly necessary to obtain such networks. By
appropriately connecting mechanistic models like the gLV with relative abundance data, we can
potentially tease apart meaningful interactions governing microbial population dynamics.
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