Skip to main content
. 2021 Jul 6;9(7):e24796. doi: 10.2196/24796

Table 2.

Comparison of performance of the Gradient Boosting Decision Tree machine learning (XGBoost) and logistic regression models.

Variable XGBoosta model Logistic regression model
Training, mean (SE) Test, mean Training, mean (SE) Test, mean
Positive predictive value 0.505 (0.099) 0.362 0.441 (0.110) 0.285
AUCb 0.956 (0.015) 0.898 0.943 (0.022) 0.892
Accuracy 0.917 (0.032) 0.918 0.884 (0.049) 0.883
Sensitivity 0.845 (0.021) 0.877 0.874 (0.039) 0.901
Specificity 0.960 (0.016) 0.919 0.946 (0.025) 0.882
F-measure 0.370 (0.107) 0.513 0.306 (0.110) 0.434

aXGBoost: Gradient Boosting Decision Tree machine learning.

bAUC: area under the receiver operating characteristic curve.