
Adoptive T-cell therapy with IL-12 pre-conditioned low avidity T-
cells prevents exhaustion and results in enhanced T-cell 
activation, tumor clearance, and decreased risk for 
autoimmunity.

Christopher G. Tucker1, Jason S. Mitchell2, Tijana Martinov1, Brandon J. Burbach2, Lalit K. 
Beura3, Joseph C. Wilson1, Alexander J. Dwyer1, Lovejot M. Singh1, Matthew F. Mescher2, 
Brian T. Fife1,*

1Department of Medicine, Center for Immunology, University of Minnesota Medical School, 
Minneapolis, MN

2Department of Laboratory Medicine and Pathology, Center for Immunology, University of 
Minnesota Medical School, Minneapolis, MN

3Department of Microbiology and Immunology, Center for Immunology, University of Minnesota 
Medical School, Minneapolis, MN

Abstract

Optimal ex vivo expansion protocols of tumor specific T-cells followed by adoptive cell therapy 

must yield T-cells able to home to tumors and effectively kill them. Our previous study 

demonstrated ex vivo activation in the presence of IL-12 induced optimal CD8+ T-cell expansion 

and melanoma regression, however, adverse side effects including autoimmunity can occur. This 

may be due to transfer of high avidity self-specific T-cells. In this study, we compared mouse low 

and high avidity T-cells targeting the tumor antigen tyrosinase related protein-2 (TRP-2). Not 

surprisingly, high avidity T-cells provide superior tumor control, yet low avidity T-cells can 

promote tumor regression. The addition of IL-12 during in vitro expansion boosts low avidity T-

cell responsiveness, tumor regression, and prevents T-cell exhaustion. Herein we demonstrate that 

IL-12 primed T-cells are resistant to PD-1/PD-L1 mediated suppression and retain effector 

function. Importantly, IL-12 pre-conditioning prevented exhaustion as LAG-3, PD-1, and TOX 

were decreased, while simultaneously increasing KLRG1. Using intravital imaging, we also 

determined that high avidity T-cells have sustained contacts with intratumoral DCs and tumor 

targets compared to low avidity T-cells. However, with antigen overexpression this defect is 

overcome and low avidity T-cells control tumor growth. Taken together, these data illustrate that 

low avidity T-cells can be therapeutically beneficial if co-cultured with IL-12 cytokine during in 
vitro expansion, and highly effective in vivo if antigen is not limiting. Clinically, low avidity T-
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cells provide a safer alternative to high avidity TCR engineered T-cells as IL-12 primed low 

avidity T-cells cause less autoimmune vitiligo.

Introduction

Immune checkpoint inhibition targeting Programmed Death-1 (PD-1) and Programmed 

Death Ligand-1 (PD-L1) has revolutionized cancer immunotherapy 1. This approach has 

been highly successful, with an overall five year survival rate of 34.2% in melanoma patients 
2. However the majority of patients still do not significantly benefit from targeting this 

pathway. Additionally, checkpoint inhibition is not able to prevent or reverse exhaustion of 

all T-cells within the tumor nor are all T-cells in the tumor highly cytotoxic 3, 4. Finally, 

severe adverse events including autoimmunity can result following checkpoint inhibition 5, 

identifying a critical need for alternative approaches.

Adoptive cell therapy has been a highly sought after cancer immunotherapy approach for 

many years 6. The adoptive transfer of tumor specific T-cells has shown significant clinical 

response rates 7. In fact, for melanoma patients there has been a large effort to isolate 

melanoma specific T-cells from tumors for expansion with IL-2 and reinfusion into patients 
8. This approach has yielded some success (median survival 53.5 versus 3.5 months for 

melanoma without cellular therapy), but is not without off-target side effects and long term 

T-cell exhaustion 9, 10. Thus far, researchers have focused on the isolation and optimization 

of high avidity T-cell receptors (TCRs) for use in adoptive T-cell therapy 11. The possibility 

of these high avidity T-cells recognizing self-antigens and eliciting pathology has been 

demonstrated in the MAGE A3 clinical trials, where up to 40% of patients died from cardiac 

and brain pathology 9, 12. Therefore, the use of low-to-medium avidity TCRs may yield a 

safer, but no less efficacious clinical tumor therapy with less autoimmunity 13–15. Many 

groups, including ours, have investigated the impact of IL-12 priming on anti-tumor effects 
16–22. In addition, alternative cytokines or combinations may be preferred as we and others 

have shown that IL-2 priming alone yields poor effector function from CD8+ T-cells 

resulting in an exhausted or anergic phenotype 17, 23. To overcome this poor effector 

function, we previously reported IL-2 plus IL-12 co-culture was superior to limit tumor 

growth compared to IL-2 plus type 1 IFN during initial T-cell priming 22. Using the high 

avidity ovalbumin specific, OT-1 CD8+ T-cell model and a B16 Ova-expressing melanoma 

tumor cell line, we reported that stimulation with IL-2 plus IL-12 or type 1 interferon (IFN) 

enhanced adoptively transferred T-cell survival and development of optimal effector 

functions 22. We determined that IL-12 differentially programmed CD8+ T-cells to express 

less PD-1, compared to IL-2 alone or IL-2 plus type 1 interferon, allowing IL-12 primed 

cells superior effector function including long term tumor control 22.

While previous reports, including our own, illustrated the significant benefit of adding IL-12 

to the in vitro co-culture conditions, several questions remained. Thus, the objective of this 

current study was to address these questions using a physiologically relevant tumor antigen 

normally expressed in healthy tissue, and compare both a high and low avidity T-cell 

response and exhaustion profile in the context of IL-2 plus IL-12 co-culture. We also 

extended our analysis to evaluate if there was an additive benefit of checkpoint blockade, or 
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enhanced tumor clearance with differential target antigen expression following IL-12 pre-

conditioning, and determined the extent of T-cell exhaustion. Finally, we evaluated the risk 

for autoimmunity using both high and low avidity T-cells for adoptive T cell 

immunotherapy. We hypothesized that low avidity T-cells if optimally activated and 

expanded, could provide durable clinical responses, escape exhaustion, and limit immune 

related adverse events (IRAE) including autoimmunity. To accomplish these goals, we used 

a model system to more closely approximate clinical trials investigating self-antigen specific 

T-cells using TCR transgenic mice that produce CD8+ T-cells of either low or high 

functional avidity: TRP2 high avidity (TRP2high) and the TRP2 low avidity (TRP2low) mice 
24, 25. These TCR transgenic mice produce CD8+ T-cells that are specific for tyrosinase 

related protein 2 (TRP2), ubiquitously expressed in both healthy melanocytes and B16F10 

melanoma cells. We hypothesized that IL-12 cytokine priming would render the lower 

avidity T-cells resistant to exhaustion, with minimal off-tissue pathology. In the current 

study, we determined that IL-2 plus IL-12 priming enhanced low avidity CD8+ T-cell 

proliferation, inflammatory cytokine production and tumor destruction, whereas IL-2 

pretreatment alone did not. Importantly, IL-12 cytokine priming decreased the levels of the 

exhuastion transcription factor TOX and exhaustion surface markers LAG-3 and PD-1 in 

both TRP2low and TRP2high CD8+ T-cells. Using intravital microscopy, we showed that high 

avidity T-cells made stable contacts with intratumoral DCs following co-culture with IL-12 

plus IL-2. Stable interactions of low avidity T-cells required high tumor antigen levels. 

When TRP2 was overexpressed in vivo, and IL-12 plus IL-2 were used in vitro, low avidity 

T-cells had improved activation, trafficking, stable contacts with tumor targets and exerted 

tumor control to similar levels as high avidity T-cells. Finally, PD-1 blockade therapy did not 

have an added benefit following adoptive therapy of CD8+ T-cells expanded with IL-2 plus 

IL-12, suggesting this approach would be applicable for patients failing checkpoint therapy 

and could avoid potential autoimmune sequelae. Taken together, low avidity self-specific 

CD8+ T-cells stimulated in vitro with IL-2 plus IL-12 can target and destroy tumors 

expressing sufficient antigen and are resistant to tumor induced exhaustion, thus maintaining 

long term effector function while limiting the induction of autoimmunity.

Materials and Methods:

Mice

C57BL/6 TRP2low and TRP2high TCR transgenic mice were obtained from Dr. Arthur 

Hurwitz [13, 14]. B6(D2)-Tg(CAG-Brainbow1.0)2Eggn/J (Stock: 021011) were crossed to 

C57BL/6 TRP2low, C57BL/6-Tg(UBC-GFP)30Scha/J (Stock: 004353) were crossed to 

TRP2high C57BL/6 mice and CD11cVenus B6.Cg-Tg(Itgax-Venus)1Mnz/J (Stock: 008829) 

were purchased from The Jackson Laboratory. Experiments were conducted under specific 

pathogen-free conditions and performed in compliance with relevant laws and guidelines, 

and with approval of the Institutional Animal Care and Use Committee at the University of 

Minnesota.

Tumor cell lines

B16F10 melanoma cells (RRID:CVCL_0159, ATCC CRL-6475) were maintained in 

complete RPMI 1640 medium (10% FBS + 1X Glutamax™, 1X MEM NEAA, 1 mM 

Tucker et al. Page 3

J Immunol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sodium Pyruvate, 100 units/mL Penicillin, 100 μg/mL Streptomycin and 55 μM 2-ME). 

B16F10 cells were obtained directly from ATCC and passaged less than 10 times, and were 

Mycoplasma negative. The TRP2-teal fluorescent protein (TFP) vector was generated by 

sequential cloning of DCT-pCMV6-ORF vector (Sino Biological) and pCMV6-TFP fusion 

vector creating a TRP2-mTFP expression vector. This construct was introduced to B16F10 

parental cells by lipofectamine transfection and subsequent dilutional cloning, puromycin 

selection and FACS sorting. Clone 2C4 was isolated by flow cytometry based on high levels 

of mTFP expression. A PD-L1-pCMV6-ORF (Sino Biological) was introduced to B16F10 

parental cells by lipofectamine and clone 11G2 was isolated after dilutional cloning and 

hygromycin selection.

In vitro stimulation and adoptive transfer of TRP2high and TRP2low T-cells

Naive TRP2high or TRP2low CD8+ T-cells were purified from spleen and lymph nodes by 

negative selection following the manufacturer’s protocol (StemCell) (Supplemental Fig. C.) 

0.5-2x106 enriched cells were stimulated in flat-bottom 12-24 well plates with anti-CD3 

(Clone 17A3, 50 μg/mL, BioXcell) and rB7-1/Fc chimeric protein (0.8μg/mL, R&D 

Systems) immobilized on the surface (coated 12 hours before adding cells) 26 in the 

presence of 5 U/ml IL-2 (R&D Systems) with or without 10 ng/mL murine rIL-12 (R&D 

Systems), as these cytokine concentrations stimulated optimal development of effector 

function (Supplemental Fig. D). After 72 hours, 1x106 – 5x106 cells were harvested and 

intravenously transferred to recipient mice.

Tumor growth and flow cytometric analysis of T-cells

Mice were injected s.c. with 2.5 × 105 B16F10 cells in the flank, and tumor growth was 

monitored by determining the area with calipers. Tumor-bearing mice received 1x106 – 

5x106 activated TRP2-specific T-cells by adoptive transfer on day 10 post tumor injection. 

Mice were sacrificed at the indicated times, spleens and tumors were isolated and 

homogenized, and lymphocytes from tumor homogenates were enriched on Ficoll gradients 

as previously described 22. Samples were stained with Ghost viability dye (Tonbo 

Biosciences), and antibodies against CD11b (clone M1/70, Thermo Fisher Scientific), B220 

(clone RA3-6B2, Thermo Fisher Scientific), CD19 (clone 1D3, Thermo Fisher Scientific), 

CD4 (GK1.5, Tonbo Biosciences), Thy1.2 (clone 53-2.1, BD Biosciences) CD8α (53–6.7), 

PD-1 (J43) (Thermo Fisher Scientific), LAG-3 (clone C9B7W), KLRG1 (clone 2F1), CD44 

(clone IM7), CD127 (clone A7R34) (Biolegend), fixed and permeabilized with subsequent 

BD Cytofix/Cytoperm™ (BD Biosciences) (2 min at RT, to preserve GFP and tdtomato 

fluorescence) and FOXP3 Fix/Perm Kit (15 min at 4°C, Tonbo Biosciences) and stained 

with antibodies against TOX (clone TXRX10, Thermo Fischer) and T-bet (clone 4B10, 

Biolegend). In separate experiments, tumor and spleen homogenates were incubated for 4 h 

on anti-CD3 coated plates (50μg/mL) in the presence of Golgi block stained with antibodies 

against CD8α (53–6.7), PD-1 (J43) (Thermo Fisher Scientific), LAG-3 (clone C9B7W), 

KLRG1 (clone 2F1), CD44 (clone IM7), CD127 (clone A7R34) (Biolegend), fixed and 

permeabilized with BD Cytofix/Cytoperm™ (BD Biosciences) (to preserve GFP and 

tdtomato fluorescence) and subsequent FOXP3 Fix/Perm Kit stained for IFN-γ (XMG1.2, 

Tonbo), TNFα (clone MP6-XT22), and Ki67 (clone 16A8)(Biolegend) staining was 

performed. Transferred CD8+ T-cells were identified as live, CD8+, GFP+ (TRP2high) or 
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tdTomato+ (TRP2low). Cell counts were obtained using PKH26 reference microbeads 

(Sigma-Aldrich). Data were acquired on FACS Fortessa flow cytometer (BD Biosciences) 

and analyzed with FlowJo software (version 10).

Anti-PD-1 injections

Anti—PD-1 mAb (clone J43) was purchased from BioXcell. Mice received 200 μg (i.p.) anti

—PD-1 or PBS control on D1 post TRP2 cells transferred, and then every other day for a 

total of 3 injections.

Cytotoxicity assay

5x104 B16F10 or 2C4 tumor cells were plated in 12 well tissue culture treated plates 

overnight. 5x105 activated TRP2low or TRP2high T-cells (5:1 ratio) were added to the wells 

with tumor targets. 12 hours later, tumor cells and T-cells were removed from the plates and 

stained with antibodies directed at PD-L1 (MIH5, Thermo Fisher Scientific), CD44 (IM7), 

CD8α (53–6.7), Thy1.2 (53-2.1) as well as a Live/Dead stain (Tonbo Biosciences). Cells 

were fixed and permeabilized with the Tonbo FOXP3 staining kit (TNB-0607) and stained 

intracellularly for active Caspase-3 (BD Biosciences). Percentage of tumor cells that were 

killed was determined as the percentage of active Caspase-3 positive gated events. Data were 

collected on a BD Fortessa and analyzed using FlowJo software (version 10).

2-Photon tumor imaging

Large tumors were harvested on day 3 post T-cell transfer into warm RPMI 1640 containing 

10% FBS and mounted on a coverslip. Movies were acquired using an MP5 two-photon 

microscope TCS (Leica) equipped with a Mai Tai HP DeepSee lasers (SpectraPhysics), an 

8,000-Hz resonant scanner, a 25× 0.95 NA objective, two non-descanned detectors and two 

HyD detectors. During imaging, continuous oxygenated DMEM high glucose media lacking 

phenol red (Hyclone) was exchanged in the 37 degree heated chamber containing the 

sample. Tissue was excited at 930nm and multiple fluorophores were imaged using the 

custom dichroic mirrors with the following collection filters: mTFP and second harmonic 

generation (435-485nm), GFP (500-520nm), Venus (520-555nm), and tdTomato 

(565-605nm). Data were spectrally unmixed with LASF software (Lecia version 3.1.0) and 

processed with Imaris software (Bitplane version 9.2.1) [16]. TRP2high and TRP2low cell 

motility were tracked by Imaris Spots and manually confirmed. mTFP tumors and Venus 

CD11c dendritic cells were identified by Imaris surfaces and TRP2 contacts were 

determined by distance transformations of the surfaces. For each individual animal, we 

collected 30 min movies of at least two different locations within the tumor separated by at 

least 1 mm. Within each of these macroscopic locations, we imaged 3-4 positions 

concurrently. These individual positions were separately analyzed and averaged to identify 

typical cell behavior. Data presented in the figures are representative for the typical cell 

behavior observed across all mice for each condition and cell transfer situation. Each dot in 

the motility measurement graphs represents one cell.
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Autoimmune Vitiligo

Autoimmune vitiligo was assessed using two distinct approaches. In the first protocol, 

OT-1xUBC-GFP or WT B6 mice were given 5x106 TRP2highGFP or TRP2lowtdtomato T-

cells primed in vitro with IL-2 plus IL-12, and seven days later given 200μg poly I:C 

subcutaneously in the flank. Fourteen days after transfer, mice were given 50 μg of TRP2 

peptide subcutaneously in the flank with 200μg polyI:C. Mice were monitored weekly for 

vitiligo induction. In the second protocol, OT-1xUBC-GFP or WT B6 mice were given 

5x106 TRP2highGFP or TRP2lowtdtomato T-cells primed in vitro with IL-2 plus IL-12 and 

the mice were monitored weekly for vitiligo.

Statistical significance

Statistical analyses (paired or unpaired Student’s t-test; One-Way ANOVA with Tukey post-

hoc test) were performed in Prism 8.0.1 (GraphPad). P-values lower than 0.05 were 

considered significant. Graphs show mean ± standard error of the mean.

Results

IL-2 plus IL-12 co-culture during initial T-cell priming improves high and low avidity TCR 
transgenic CD8+ T-cell inflammatory cytokine production and tumor killing

Previous studies have demonstrated poor CD8+ T-cell effector function and tumor clearance 

after adoptive transfer following in vitro priming in the presence of IL-2 alone 27. Our 

previous study used T-cell receptors (TCRs) specific for the model antigen ovalbumin (Ova) 

expressed in tumor cells and determined that the addition of IL-12 together with IL-2 during 

the in vitro priming phase overcame the defect and provided superior anti-tumor effects 22. 

However, previous studies did not determine if IL-12 differentially impacted low or high 

avidity T-cells, and whether IL-12 primed T-cells could eliminate tumors expressing self-

antigens. Thus, in the current study we evaluated T-cells of high and low TCR avidity 

targeting a protein naturally expressed in both healthy melanocytes and in B16F10 

melanoma cells called tyrosinase related protein 2 (TRP2). To test this, we harvested T-cells 

from TCR transgenic mice that produce CD8+ T-cells of either low (TRP2low) or high 

(TRP2high) avidity 24, 25. TRP2high T-cells displayed approximately an 8-fold higher 

sensitivity to antigen when cultured with IL-2 (Supplemental Fig. 1A). This increased 

antigen sensitivity was not due to increased TCR expression from TRP2high T-cells as 

TCRbeta levels were similar between TRP2low and TRP2high T-cells (Supplemental Fig. 1B, 

left). We first investigated whether IL-2 or IL-2 plus IL-12 cytokine treatment differentially 

impacted TRP2high or TRP2low TCR CD8+ T-cells. To test this, enriched naïve CD8+ T-cells 

(>97% pure, Supplemental Fig. 1B, right) were expanded in vitro with anti-CD3 and 

recombinant B7-1 in the presence of IL-2, with or without IL-12 co-culture. We determined 

that IL-12 significantly increased CD44 expression, albeit only a slight change was noted 

(Fig. 1A). The expression of TH1 transcription factor T-bet increased significantly with IL-2 

plus IL-12 co-culture in both high and low avidity T-cells (Fig. 1B). The high avidity cells 

produced more IFNγ when cultured with IL-2 alone compared to low avidity T-cells (Fig. 

1C, Supplmental Fig. 1C). However, IL-2 plus IL-12 cytokine co-culture during priming 

enhanced IFNγ production in both low avidity T-cells and high avidity T-cells compared to 

IL-2 alone (Fig. 1C). As we previously reported, co-culture with IL-2 plus IL-12 did not 
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substantially increase the expression of the inhibitory receptor PD-1 on high avidity CD8+ T-

cells 22 (Fig. 1D). However there was an increase in PD-1 expression in low avidity T-cells 

following IL-2 plus IL-12 co-culture compared to IL-2 alone (Fig. 1D). The low avidity T-

cells had less PD-1 compared to the high avidity T-cells with IL-2 plus IL-12 directly post in 
vitro activation (Fig. 1D). Next, we investigated the cytolytic potential of TRP2 specific T-

cells against melanoma (B16F10) target cells, as the B16F10 cell line endogenously 

expresses the TRP2 melanocyte target antigen. We investigated direct cytolytic potential of 

TRP2low and TRP2high CD8+ T-cells in vitro by developing a killing assay to simultaneously 

analyze both the T-cells and the target tumor cells undergoing active apoptosis. While 

B16F10 cells die in culture over time, only a small (~2.3%) percentage of cells express 

active caspase-3 (Supplemental Fig. 1D). This indicates that B16F10 cells did not die by 

apoptosis when cultured alone, but rather by another form of cellular death such as necrosis. 

When T-cells were added to the culture, 1.7±0.6 % of target cells were killed by TRP2low T-

cells, while TRP2high T-cells killed tumor cells killed at a significantly higher rate of 

4.8±2% (Fig. 1E). IL-2 plus IL-12 co-culture during priming increased TRP2low T-cells 

ability to kill tumor targets (6±2.6%), making them more comparable to TRP2high T-cells 

(Fig. 1E). IL-12 co-culture also significantly improved the TRP2high T-cells ability to kill 

targets in vitro (8.3±3.2%) (Fig. 1E). We next tested the ability of antigen specific T-cells to 

kill tumor targets in vivo after adoptive transfer of T-cells following in vitro stimulation with 

IL-2 plus IL-12. B16F10 tumor mass was first measured at 10 days post inoculation in 

C57BL/6 mice. TRP2low or TRP2high avidity T-cells expanded for three days in vitro with 

IL-2 with or without IL-12 were adoptively transferred to tumor bearing mice on day 10 post 

tumor inoculation. At this stage the B16F10 tumors are large (>50mm2) and vascularized 28. 

Without intervention, these tumors result in uniform death of the recipient mice by 

approximately D20 (Supplemental Fig. 1E). Transfer of IL-2 primed TRP2low cells did not 

control tumors and mice had to be euthanized by day 20 post tumor inoculation (Fig. 1F). 

IL-2 primed TRP2high cell transfer resulted in delayed B16F10 tumor growth, but not 

enhanced survival (Fig. 1G and 1H). Importantly, adoptive transfer of high avidity TRP2 

CD8+ T-cells co-cultured with IL-12 significantly delayed tumor growth while low avidity 

TRP2 CD8+ T-cells trended towards protection (Fig. 1I–1K). However, high avidity T-cells 

were superior to low avidity T-cells in controlling tumor growth with increased survival (Fig. 

1J–1K). We additionally observed increased infiltration for both TRP2high and TRP2low with 

IL-12 cytokine priming (Supplemental Fig. 1F). Taken together TRP2high CD8+ T-cells co-

cultured with IL-12 plus IL-2 delayed B16F10 melanoma growth and enhanced recipient 

survival.

Pre-conditioning low and high avidity T-cells with IL-12 co-culture prevents T cell 
exhaustion.

We next assayed tumor infiltrating T-cell effector functionality. Following a 4-hour re-

stimulation ex vivo with anti-CD3, half of the TRP2low T-cells cultured in IL-2 exhibited an 

exhausted profile as early as 3 days post transfer, expressing high levels of PD-1 

(Supplemental Fig. 1G) and very little IFNγ production directly ex vivo or with anti-CD3 

re-stimulation (Fig. 2A and 2B, Supplmental Fig. 1H). The addition of IL-12 co-culture 

during priming increased IFNγ production ex vivo to some extent, but more significantly 

following anti-CD3 (Figure 2A and 2B). A similar trend was seen at day 9 (Fig. 2C and 2D). 

Tucker et al. Page 7

J Immunol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further investigation into the effector status of TRP2low and TRP2high T-cells revealed 

altered expression of the transcription factor T-bet. Both TRP2high and TRP2low T-cells 

showed increased T-bet expression when IL-12 was present during priming (Fig. 2E). We 

then investigated production of TNFα of both TRP2low and TRP2high T-cells post anti-CD3 

re-stimulation. We observed a significant increase in TNFα production with IL-12 addition 

during priming (Fig. 2F). IL-2 primed TRP2low T-cells produced very little TNFα, but this 

increased significantly with IL-12 priming (Fig. 2F). A similar trend was noted in TRP2high 

T-cells. Both TRP2high and TRP2low T-cells increased KLRG-1 expression with IL-12 

priming (Fig. 2G). We assessed the percentage of transferred cells producing both IFNγ and 

TNFα, an indicator of strong effector function with high cytolytic potential, and noted that 

IL-12 priming significantly increased the percentage of multi-cytokine producing T-cells for 

both TRP2low and TRP2high cells (Fig. 2H). Taken together, IL-12 primed TRP2low and 

TRP2high cells had increased cytokine production and activation marker expression 

compared to IL-2 primed counterparts. We next wanted to investigate the extent of T-cell 

exhaustion imposed on both high and low avidity T-cells following tumor infiltration.

IL-12 enhanced anti-tumor effects are not improved with PD-1 blockade.

PD-1 signaling has been implicated in functional deficits in tumor infiltrating T-cells and 

anti-PD-1 immunotherapy has been shown to re-invigorate anti-tumor immunity 29. 

Signaling through PD-1 reduces T-cell contact time with target cells by preventing the TCR 

induced stop signal 30. To investigate if PD-1 was responsible for the deficits of TRP2low T-

cells we first compared PD-1 levels of IL-2 alone or IL-12 plus IL-2 co-culture primed 

TRP2 specific T-cells. In vivo, we observed that early (day 2-3) post transfer, PD-1 levels 

were reduced from pre-transfer in vitro levels, and IL-12 cytokine co-culture had no impact 

on the expression levels (Fig. 3A). However, at day 9 post adoptive transfer, TRP2low and 

TRP2high T-cells primed with IL-2 plus IL-12 had a significant reduction in PD-1 compared 

to IL-2-primed T-cells alone (Fig. 3B). Upon further investigation we observed a significant 

decrease in the inhibitory receptor LAG-3 in both tumor infiltrating TRP2low and TRP2high 

T-cells (Fig. 3C). We next investigated intracellular levels of TOX in IL-2 versus IL-12 

primed cells, as TOX has been shown to be expressed by exhausted cells, promote LAG-3 

and PD-1, and inhibit KLRG-1 expression 31, 32. Consistent with reduced exhaustion, we 

observed a significant decrease in TOX with IL-12 plus IL-2 co-culture (Fig. 3D). Taken 

together, these results suggested that IL-12 co-culture enhances anti-tumor immunity by 

limiting and/or preventing T-cell exhaustion.

To test whether PD-1/PD-L1 pathway regulates effector function of TRP2high or TRP2low 

cells, we investigated if PD-1 blockade provided any additional benefit for tumor clearance. 

Transgenic T-cells were activated with IL-2 plus IL-12 as before and transferred into mice 

bearing D10 tumors. Starting on D1 post transfer, anti-PD-1 was given and mice were 

monitored for tumor growth and survival. We determined that PD-1 blockade did not 

provide any additional benefit to TRP2low or TRP2high recipient mice (Fig. 3E and 3F). In 

fact there were no differences in survival when mice were treated with TRP2 high or low 

avidity cells with/without PD-1 inhibition (data not shown). Additionally we addressed 

PD-1/PD-L1 inhibition using a tumor target with constitutively high PD-L1 expression to 

mitigate off target effects with the anti-PD-1 antibody and directly test the interactions of 
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PD-L1 expression on the tumor cells with PD-1 on the T-cells. The parental B16F10 cell line 

expresses very little PD-L1 in vitro at baseline (Supplemental Fig. 2A), thus we generated a 

B16F10 cell line that expressed constitutive PD-L1 driven by the cytomegalovirus (CMV) 

promoter. We isolated a clone (11G2) which expressed nearly 1,000 fold PD-L1 compared 

to parental cell line and remained stable over multiple passages (Supplemental Fig. 2A). We 

then inoculated mice with 11G2 and waited 10 days for the tumors to become established. 

After 10 days, in vitro activated TRP2low or TRP2high T-cells co-cultured with IL-2 plus 

IL-12 were adoptively transferred into 11G2- or parental B16F10-tumor bearing mice. We 

observed no differences in survival between transfer of TRP2low or TRP2high T-cells into 

11G2 or B16F10-tumor bearing mice (Fig. 3G and 3H and data not shown). Taken together, 

these data suggest that IL-2 plus IL-12 pre-conditioning of both low and high avidity T cells 

reduces PD-1 expression at late time points following adoptive transfer, and that this 

reduction of PD-1 renders IL-12 primed tumor reactive CD8+ T-cells resistant to PD-1:PD-

L1 mediated suppression.

IL-12 co-culture restores the ability of low avidity T-cells to traffic to the tumor site but 
does not promote strong interactions with intratumoral DCs or tumor cells

Given that IL-12 priming improved CD8+ T-cell functionality both in vitro and in vivo, we 

next evaluated the effect of IL-12 on T-cell proliferation, trafficking, and dynamic 

functionality in vivo. We hypothesized that TRP2low T-cells might have a proliferation or 

trafficking defect, or poor cellular interactions with either intratumoral dendritic or tumor 

cells compared to TRP2high T-cells. To test this, we first measured BrdU incorporation in 

TRP2low and TRP2high transferred cells after day 2 in the tumor itself or in the periphery. 

Supplemental Fig. 2B demonstrates that there are similar levels of BrdU in both sites 

indicating equal proliferation. To track low and high avidity TRP2 T-cells in vivo directly, 

we co-transferred TRP2highUBQ-GFP T-cells (green fluorescent protein) and TRP2lowACT-

tdTomato T-cells (red) into CD11c-YFP (yellow fluorescent protein) recipient mice that had 

been inoculated with B16F10-mTFP (monomeric teal fluorescent protein) tumor cells ten 

days prior. We then harvested the mice on D13 post tumor inoculation (at day 3 post T cell 

infusion) and performed ex vivo two-photon microscopy. We first quantified TRP2high and 

TRP2low cells that migrated to the tumor to determine if TCR avidity had an impact on 

cellular trafficking to the tumor site. We did not find a defect in the TRP2low T-cells ability 

to traffic and infiltrate the B16F10 tumors with IL-12 plus IL-2 priming (Supplemental Fig. 

1F). However, TRP2low T-cells and TRP2high T-cells cultured with IL-2 alone did not 

effectively traffic to the tumor as tumor infiltriation was equally poor in both groups 

(Supplemental Fig. 1F). Using two-photon microcopy we analyzed T-cell velocity, track 

displacement, and quantified the contact time of TRP2high and TRP2low T-cells with both 

CD11c+ DCs and mTFP+B16F10 tumor cells given the finding that IL-12 co-culture could 

correct the trafficking defect of TRP2low T cells. We observed no significant differences in 

average velocity within the tumor microenvironment between TRP2high and TRP2low CD8+ 

T-cells after IL-12 priming (Fig. 4A). We then analyzed all of the contacts made by 

TRP2high and TRP2low T cells we measured a significant decrease in the contact time 

between TRP2low T-cells and tumor infiltrating DCs and with B16F10 tumor cells compared 

to TRP2high CD8+ T-cells (Fig. 4B). However, TRP2high and TRP2low cells exhibited 

different types of contacts with both CD11c+ DCs and B16F10 tumor cells (Fig. 4C and 
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4D). There were instances of stable contacts of TRP2high and TRP2low where the cells were 

confined and engaged with the tumor/DC throughout the imaging time (Fig. 4C and 

supplemental movie 1). There were also occurrences where TRP2high and TRP2low cells 

made transient contacts with targets and were less confined in their migratory path (Figure 

4D and supplemental movie 1). This potentially indicates that the decreased tumor control 

we observed with TRP2low CD8+ T-cells could be due to less productive contact with targets 

to provide a killing signal.

Antigen overexpression combined with IL-12 co-culture of low avidity T-cells prevents 
exhaustion and allows effective T-cell activation and stable contacts with tumor targets.

We next tested the hypothesis that low avidity CD8+ T-cells have a competitive disadvantage 

when target antigen is limited in the tumor microenvironment. To address this concept, we 

generated a tumor cell line with increased and constitutive TRP2 expression. We used the 

CMV promoter and enhancer to drive the expression of a TRP2-mTFP fusion protein. After 

transfection of the B16F10 parental line and subsequent dilutional cloning, we identified a 

stable clone, termed 2C4. For this activation assay we used splenocytes from either TRP2low 

or TRP2high mice and co-cultured the T-cells with plate bound 2C4 or parental B16F10 cells. 

We observed that 2C4 co-culture significantly increased activation and proliferation of both 

TRP2low and TRP2high T-cells (Supplemental Fig. 2C). mTFP was included in the vector to 

allow visualization of the tumor cells by two-photon microscopy, along with simultaneous 

imaging of GFP (TRP2high), tdTomato (TRP2low) and Venus (CD11c+ DCs). We then 

investigated in vitro cytotoxicity of TRP2low and TRP2high CD8+ T-cells targeting 2C4 

tumor cells compared to parental B16F10 tumor cells. Similar to parental B16F10 with 2C4 

we measured a significant increase in the cytotoxic potential of TRP2low T-cells when cells 

were primed with IL-12 compared to IL-2 alone (Supplemental Fig. 2D, Left). Interestingly, 

TRP2high and TRP2low T-cells killed 2C4 tumor target cells equally well (Supplemental Fig. 

2D, Right). We next investigated whether antigen overexpression would restore TRP2low T-

cells ability to establish and maintain tumor cell and DC contacts within the tumor 

environment. We inoculated CD11c-Venus mice with 2C4 tumors and adoptively transferred 

in vitro activated TRP2low and TRP2high CD8+ T-cells on D10 post tumor inoculation. We 

harvested the mice on D3 post T cell transfer and used ex vivo two photon microscopy to 

analyze dynamic functionality of CD8+ T-cells within 2C4 tumors. Similar to B16F10 we 

observed significant increases in infiltration with IL-12 addition during priming in 2C4 

tumors for both TRP2low and TRP2high T-cells (Supplemental Fig. 2E). Results in Figure 4 

demonstrate that there is no difference in the T-cell velocity for TRP2low or TRP2high CD8+ 

T-cells in the 2C4 tumor environment (Fig. 4E). Increased expression of TRP2 erased the 

contact deficiency between TRP2low and tumor targets or intratumoral DCs compared with 

TRP2high T-cells (Fig. 4F), this is in contrast to previous experiments with endogenous 

levels of antigen (Fig. 4B). We next compared all the contacts between 2C4 and parental 

B16F10-mTFP that lasted longer than 5 min in duration as those would be more likely to be 

a productive contact (Figure 4G and 4H). We found, there was no difference with TRP2high 

cells ability to interact with intratumoral DCs (Fig. 4G). However, TRP2low T-cell 

interactions with tumor infiltrating DCs there was a significant increase in the T/DC contacts 

when TRP2 was overexpressed (Fig. 4G). Most striking was the difference observed 

between TRP2low and TRP2high CD8+ T-cells had a significantly increased ability to form 
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stable contacts with the TRP2 overexpressing 2C4 tumors targets compared to parental 

B16F10 (Fig. 4H), indicating that IL-12 co-culture along with high and constitutive tumor 

antigen expression corrected the TRP2low defect. Taken together, these data demonstrate that 

the overexpression of TRP2 antigen on the tumor cell allows stable contacts for IL-2 plus 

IL-12 primed TRP2low CD8+ T-cells.

Antigen overexpression combined with IL-12 co-culture of low avidity T-cells prevents 
exhaustion and allows effective tumor clearance and has decreased risk for autoimmunity.

Since overexpression of TRP2 improved the ability of low avidity CD8+ T-cells to form 

stable contacts, we investigated if this prolonged interaction correlated with increased 

survival and enhanced tumor clearance. To test this, mice were implanted with 2C4 tumors 

and treated with IL-2 plus IL-12 in vitro activated TRP2low and TRP2high CD8+ T-cells. 

TRP2low cells significantly delayed tumor growth (Fig. 5A) and enhanced survival (Fig. 5C). 

Transfer of TRP2high CD8+ T-cells into 2C4 tumor-bearing mice also protected recipient 

mice (Fig. 5B and 5C). Both low and high avidity T cell transfer resulted in enhanced 

survival of 36% (5/14) and 36% (5/14) of mice at day 30 post tumor inoculation (Fig. 5C). 

In both groups some mice were cured and eradicated the tumor, but the majority of the mice 

had to be euthanized by day 42 (Fig. 5C). Given this result, we next investigated the 

phenotype of tumor infiltrating lymphocytes present in 2C4 tumors. KLRG1 expression was 

significantly higher in TRP2high T-cells with IL-2 priming alone, and was not further 

increased with IL-12 priming in TRP2high T-cells contrary to B16F10 tumors, although it 

was increased in TRP2low T-cells (Figure 5D). With IL-2 alone, T-bet expression was higher 

in TRP2high T-cells compared to TRP2low T-cells, but interestingly, T-bet expression was not 

significantly different between TRP2high and TRP2low T-cells with IL-12 priming. This is in 

contrast to parental B16F10 tumors (Figure 5E). We found that TRP2low and TRP2high T-

cells expressed high levels of TOX with IL-2 priming alone in 2C4 tumors. Again, this was 

significantly reduced with IL-12 present during priming in both populations of T-cells, 

suggesting IL-12 prevented the exhaustion phenotype (Figure 5F). IL-12 cytokine was 

therefore necessary for optimal TRP2low T-cell priming in 2C4 tumors, but not necessary for 

TRP2high T-cell priming. Taken together, IL-12 plus sufficient tumor antigen levels corrected 

the defects for low avidity cells to become fully activated, control tumors, prolong survival 

and prevent exhaustion. Finally, we wanted to assess the potential for autoimmunity 

following IL-12 primed adoptive T-cell therapy, as high avidity T-cells primed with IL-12 

have previously been shown to have enhanced self-reactivity 13. Recipient mice received 

IL-2 plus IL-12 primed TRP2low or TRP2high cells and were examined for development of 

autoimmune vitiligo by monitoring fur and skin depigmentation as a loss of melanocytes. 

Shown in Figure 5G are representative mice from TRP2high, TRP2low, and no transfer 

recipient mice illustrating significantly less autoimmunity in TRP2low (1/12) compared to 

(10/14) for TRP2high recipients. We determined that there was a lower risk for autoimmune 

vitiligo following transfer for IL-2 plus IL-12 primed TRP2low cells compared to TRP2high 

cells (Figure 5G and Supplemental Fig. 2F).
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Discussion:

This study advances our understanding of the mechanisms of tumor induced T-cell 

exhaustion and how adoptive CD8+ T-cell therapy can be optimized for maximal cancer 

survival benefit. Herein we demonstrate that low avidity tumor reactive CD8+ T-cells are 

defective compared to high avidity T-cells when stimulated with IL-2 alone. Low avidity T-

cells with IL-2 provide poor tumor control, have limited effector capability, exhibit poor 

cytotoxicity, fail to infiltrate tumors effectively and have an exhausted phenotype in the 

tumor environment. In contrast, high avidity T-cells are able to provide moderate tumor 

control, and survive within the tumor environment, however, they too exhibit an exhausted 

phenotype. Co-culturing CD8+ T-cells with IL-12 cytokine plus IL-2 during in vitro priming 

erases the deficits for low avidity T-cells and generates strong effector CD8+ T-cells that are 

resistant to exhaustion. IL-12 primed low avidity CD8+ T-cells are able to destroy tumor 

tissue, provide host survival and sustain themselves within the tumor environment, 

especially when the antigen is abundantly expressed. Finally, adoptive T-cell transfer of low 

avidity cells results in lower frequency of irAE including autoimmune vitiligo. High avidity 

CD8+ T-cells also have enhanced anti-tumor effects and decreased exhaustion when co-

cultured with IL-12, however, subsequent autoimmune vitiligo is more prevelant with high 

avidity T-cells. Taken together, IL-12 plus IL-2 pre-conditions low avidity T-cells for 

enhanced proliferation, trafficking, activation, cytokine production, stable contacts with 

tumor targets, tumor clearance, and decreased T-cell exhaustion while still remaining safe.

IL-12 suppression of PD-1 within the tumor environment has been previously reported for 

high avidity T-cells 22, but the impact on low avidity T-cells had not been explored. 

Moreover, the mechanism by which IL-12 cytokine signaling suppresses PD-1 expression is 

not completely understood. It is hypothesized that T-bet suppresses the transcription of PD-1 

by preventing transcriptional machinery from binding the PD-1 locus 33. Indeed, IL-12 

primed low and high avidity CD8+ T-cells express more T-bet following in vitro activation 

(Fig. 1B). Normally PD-1 is upregulated following T-cell activation and the translocation of 

NF-ATc1 to the nucleus where it interacts with the Pdcd1 promoter 34. Upon activation, 

naïve T-cells transition to effector cells and the Pdcd1 locus is demethylated to facilitate 

transcription. The site is remethylated as antigen is cleared, but remains demethylated in 

exhausted CD8+ T-cells during chronic viral infection 35. IL-12 primed low and high avidity 

CD8+ T-cells also express more T-bet when isolated from the tumor environment at later 

time points (Fig. 2E). This increased T-bet expression could disrupt PD-1 transcription and 

translation over time, thus preventing T-cell enhaustion. A potential mechanism for 

differential regulation of PD-1 re-expression might be due to the differences in the level of 

demethylation/re-methylation of the pdcd1 locus by IL-12. At early time points after in vivo 
transfer, this level of PD-1 remains high on both IL-2 and IL-12 plus IL-2 primed T-cells. 

However, at late time points, T-cells receiving IL-12 cytokine have significantly lower PD-1 

expression compared to IL-2 alone primed T-cells (Supplemental Fig. 1G). This decreased 

PD-1 correlated with increased T-cell effector function and ability to respond to TCR stimuli 

and tumor antigen. IL-12 priming increases effector function by both increasing effector 

cytokines as well as preventing exhaustion within the tumor environment. This reduction of 

PD-1 was associated with reduced LAG-3 and TOX expression. The transcription factor 
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TOX has recently been shown to be integral for inducing and maintaining T-cell exhaustion 

by upregulating inhibitory receptors LAG-3, PD-1, and TIGIT and inhibiting activation 

markers such as KLRG-1 31. Our data is consistent with a recent report by Page et al. 36 

demonstrating that the DNA-binding factor TOX was induced in CD8+ T-cells during an 

lymphocytic choriomeningitis virus infection. In this study, Page and colleagues showed that 

TOX expression was inhibited by the addition of interleukin-12 in a T-bet and Eomes 

dependent fashion. This result is consistent with our findings and offers a potential 

mechanism for the effects of IL-12 in vitro priming.

It was surprising that neither PD-1 blockade nor PD-L1 overexpression altered tumor 

clearance after IL-12 co-culture (Fig. 3). We would have predicted a benefit of targeting this 

inhibitory pathway given the residual, ableit low level of PD-1 on IL-12 primed tumor 

specific T-cells (Fig. 3). However, this was not the case and these data suggest that there is 

no additive benefit of checkpoint therapy following adoptive T-cell therapy with IL-12 pre-

conditioned cells in the B16F10 tumor model. This result could obviate the need to give 

checkpoint blockade in addition to IL-12 primed T-cell adoptive therapy in the clinic, thus 

limiting the unintended autoimmunity and irAE associated with PD-1/PD-L1 checkpoint 

blockade. It also suggests that patients that have failed PD-1 immunotherapy would be 

potential candidates for an IL-12 plus IL-2 co-culture adoptive T-cell therapy.

Antigen availability is a major factor impacting T-cell functionality within the tumor 

environment. It is interesting that TRP2 antigen overexpression increased low avidity T-cells 

ability to control tumor growth and ameliorated the differences between high and low 

avidity T-cell effector function and expression of T-bet, KLRG1 and TOX. We attributed 

these to altered T-cell trafficking and dynamic cellular interactions (direct contact time) 

within the tumor microenvironment between the effector T-cells and the targeted tumor cells 

themselves 37. This result is in contrast to the study by Dougan et al. where low and high 

avidity T-cells provided comparable tumor control 38. Their model utilized the adoptive 

transfer of naïve low or high avidity T-cells and a different target antigen, tyrosinase related 

protein-1 (TRP1). Differences in antigen availability could explain our contrasting findings. 

TRP1 and TRP2 could be expressed at distinct levels in melanocytes or within the B16F10 

tumors 39. There may also be a different level of transcription for TRP2 compared to TRP1. 

In fact, during melanogenesis the transcript level of TRP2 is very low in unstimulated 

melanocytes 40. Moreover, cell culture conditions can significantly alter transcript levels 41. 

Previous studies have demonstrated differential regulation of melanogenesis with different 

hormones or cytokines 40. In fact, IFNγ can decrease melanocyte protein expression, and we 

do not yet know if this has any differential effect on TRP2 compared to TRP1 expression or 

transcript control within tumor cells or healthy melanocytes 42. If this is true, it would 

suggest that TRP1 antigen is expressed at higher levels in B16F10 melanoma compared to 

the TRP2 antigen. In this situation, both low and high avidity T-cells specific for TRP1 

would respond optimally and clear tumors, as was reported 38. In our situation, TRP2 

overexpression enhanced tumor killing and host survival after low and high avidity T cell 

transfer, mirroring the findings with cells targeting TRP1 (Fig. 4 and 5). Additional tumor 

microenvironment conditions could be explored to enhance MHCI and tumor antigen 

presentation. Taken together, these data would suggest a threshold effect, where sufficient 

antigen could yield maximal T-cell function. An alternative explanation could be peptide 
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binding to MHCI, and TRP1 may be more stable or persist longer in the context of MHCI 

compared to TRP2. This enhanced stability and MHCI presentation would allow sustained 

or enhanced availability for responding low and high avidity T-cells. Finally, differential 

Aire regulation of TRP1 and TRP2 in the thymus may allow more effective immune 

rejection of melanoma for these two targets 43. Our study highlights the importance of 

testing for sufficient antigen availability and stability for optimal T-cell function and tumor 

clearance. This information could be highly informative and predictive of a successful 

adoptive T-cell transfer.

The clinical benefits of IL-12 have been previously explored to boost anti-tumor immune 

responses 22, 44–46. While systemic IL-12 therapy was promising in mouse models of cancer, 

clinical delivery of systemic IL-12 therapy in humans has been complicated by extreme 

toxicity and even death 46. This toxicity prevented systemic IL-12 use in the clinic and 

hampered further exploration of this cytokine in adoptive cell therapy. Strauss and 

colleagues have tested an alternative strategy to administer IL-12. In a Phase I safety study, 

they administered a fusion protein containing bioactive IL-12 with an antibody that binds to 

histones on free DNA fragments, targeting regions of tumor necrosis 47. We propose an 

alternative and only add IL-12 while pre-conditioning T-cells during the in vitro priming of 

T-cells, not systemically. Currently in the clinic, most therapy protocols use IL-2 alone 

during activation, generation of effector T-cells and during infusion to increase survival and 

homeostasis of adoptively transferred T-cells (reviewed in 48–50). Along this line, several 

groups have investigated the use of differential cytokine priming or in vivo expression of 

cytokines within the tumor microenvironment with variable success 16, 18–21, 51. In most 

cases the field has focused on high avidity T-cell studies using IL-12. High avidity T-cells 

also pose a significant risk for autoimmunity 15, especially if the tumor target contains non-

mutated self-antigens 52. Our data suggests that IL-2 alone generates exhausted CD8+ T-

cells with poor effector function (Fig. 1). Therefore, the addition of IL-12 with IL-2 is 

necessary, especially for low avidity T-cells (Fig. 5). Pre-conditioning with IL-12 improves 

proliferation, trafficking, activation, cytokine production, stable contacts with tumor targets, 

tumor clearance, and decreased T-cell exhaustion. This method would eliminate potential 

toxicity of systemic IL-12 while still providing the therapeutic efficacy that IL-12 cytokine 

promises with decreased risk of developing autoimmunity.
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Key Points

• Low Avidity T-cells provide poor tumor control, and exhibit an exhausted 

phenotype.

• IL-12 cytokine priming corrects low avidity T-cell defects and prevents 

exhaustion.

• Low and high avidity T- cells function equivalent with increased tumor 

antigen.
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Figure 1: IL-12-primed CD8+ T-cells have superior effector function and tumor killing capacity 
compared to IL-2-primed cells.
Naïve CD8+ T-cells were enriched from spleen and lymph nodes from TRP2low or TRP2high 

mice and cultured on plates coated with 50 μg/mL anti-CD3 and 0.8 μg/mL recombinant 

B7-1 and 5 IU/mL recombinant human IL-2 and/or 10 ng/mL IL-12 for three days. Cells 

were analyzed for (A) CD44, (B) T-bet, (C) IFNγ or (D) PD-1 by flow cytometry. (A-D) 

n=12 for each condition from one representative experiment. Similar results were observed 

in three independent experiments (E) Activated T-cells were co-cultured for 12 hours with 

B16F10 tumor target cells at a ratio of 5:1 (Effectors:Targets) to determine in vitro killing 
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capacity. B16F10 target cells were analyzed for anti-active caspase-3. Compiled data from 6 

independent experiments. (F) B16F10 tumor bearing mice were treated with 5x106 IL-2 

activated TRP2low (G) TRP2high cells , or (I) TRP2low , (J) TRP2high activated in the 

presence of IL-2 plus IL-12. Mice were followed for tumor growth and survival (H and K). 

Individual mice are shown in panels F, G, I, J, with the combined survival shown in panels H 

and K. Data are from two independent experiments. ns = not statistically different, 

**=p<0.001, ***=p<0.0001.
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Figure 2: IL-12 priming prevents exhaustion in the tumor environment.
(A-D) IFNγ production by TRP2 reactive T-cells on (A,B) day 3 or (C, D) day 9 post 

transfer into tumor bearing mice. TRP2highUBQ-GFP T-cells and TRP2lowACT-tdTomato T-

cells were isolated from the tumor environment and analyzed directly ex vivo for (A, B) 

IFNγ or (E) T-bet or (G) KLRG-1 or after 4 hour stimulation with plate bound anti-CD3 for 

(B, D) IFNγ, (F) TNFα, or dual expression of (H) TNFα and IFNγ. Culture conditions and 

subsequent ex vivo stimulation are shown in the table below the plots. Compiled data from 
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three experimental replicates, n= 3-6 per condition. Ns = not statistically different, 

**=p<0.001, ***=p<0.0001.three isolated FACS experiments.
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Figure 3: IL-12 co-culture prevents T-cell exhaustion which is not enhanced by PD-1 blockade.
(A-B) PD-1 expression on TRP2 Low and High T-cells isolated from the tumor from three 

independent experiments on either D2-3 (A) or D9 (B). (C) LAG-3 and (D) TOX expression 

in TRP2low and TRP2high T-cells isolated from the tumor on D9 post adoptive transfer. (E-F) 

Mice were treated with 1x106 IL-2 + IL-12 primed TRP2low or TRP2high T-cells and then 

given 200μg of anti-PD1 or PBS control on D1, 3 and 5 post transfer. Mice were followed 

for tumor growth. (G-H) Mice were inoculated with B16F10 or PD-L1 overexpression 

(11G2) tumor cells and adoptively transferred with 1x106 IL-2 + IL-12 primed T-cells and 
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followed for tumor growth over time. Data are from two independent replicates. ns = not 

statistically different. **=p<0.001, ***=p<0.0001.

Tucker et al. Page 25

J Immunol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Antigen overexpression restores the ability of IL-12 primed low avidity T-cells to make 
sustained contacts with tumor targets.
(A-H) CD11c-YFP mice received B16F10-TFP or 2C4 tumors. Ten days after inoculation, 

mice received 5-10x106 IL-2 plus IL-12 TRP2low and TRP2high T-cells. 72 hours after 

adoptive T-cell transfer, mice were euthanized and tumors were removed and analyzed by 

two-photon microscopy. (A, B) T-cells were identified with Brainbow tdTomato (TRP2low) 

or UBC-GFP (TRP2high) expression and analyzed using Imaris software for average velocity 

and contact time in B16F10 tumors. (C, D) Representative images showing TRP2low and 

TRP2high T-cell contacts with tumor cell surfaces using tracks. Purple tracks represent 
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sustained contact with the T-cell and tumor cell, while red tracks represent no-contact 

between T-cells and tumor targets at the timepoint on the track. Two photon microscopy was 

performed on ex vivo 2C4 tumors and (E) velocity and (F) contact time with dendritic cells 

or tumor targets. (G-H) Contact decay was analyzed between TRP2low or TRP2high and (E) 

YFP+ DCs (F) or TFP+ tumor targets. Contacts lasting less than five minutes were excluded 

from analysis. Data are from two independent replicates. ns = not statistically different, 

**=p<0.001, ***=p<0.0001.
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Figure 5: Antigen overexpression ameliorates effector function differences of IL-12 primed low 
or high avidity T-cells.
(A-C) A murine TRP2-TFP tumor clone that expressed stable and high levels of TRP2-TFP 

(2C4) was inoculated into recipient mice and 1x106 IL-2 + IL-12 primed TRP2low or 

TRP2high T-cells or PBS control (no T cell transfer) were adoptively transferred on D10 post 

tumor inoculation. Mice were followed for (A-B) tumor growth and (C) survival. Data from 

three independent experiments. (D-F) 2C4 tumors and spleen were harvested on D8 post 

adoptive T-cell transfer and lymphocytes were analyzed for (D) KLRG-1 and intracellular 

expression of (E) T-bet and (F) TOX by flow cytometery. Data are from three independent 
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replicates. ns = not statistically different, **=p<0.001, ***=p<0.0001. (G) OT-1xUBC-GFP 

or WT B6 mice were given 5x106 IL-2 plus IL-12 in vitro primed TRP2highGFP or 

TRP2lowtdtomato T-cells mice were followed for vitiligo induction. Incidence is shown 3 

months after adoptive transfer. Data from two independent experiments pooled incidence.
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