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Abstract

Despite major advances in breast cancer imaging there is compelling need to reduce unnecessary 

biopsies by improving characterization of breast lesions. This study demonstrates the use of 

machine learning to enhance breast cancer diagnosis with multimodal ultrasound. Surgically 

proven solid breast lesions were studied using quantitative features extracted from grayscale and 

Doppler ultrasound images. Statistically different features from the logistic regression classifier 

were used train and test lesion differentiation by leave-one-out cross-validation. The area under the 

ROC curve (AUC) of the grayscale morphologic features was 0.85 (sensitivity = 87, specificity = 

69). The diagnostic performance improved (AUC = 0.89, sensitivity = 79, specificity = 89) when 

Doppler features were added to the analysis. Reliability of the individual training cycles of leave-

one-out cross-validation was tested by measuring dispersion from the mean model. Significant 

dispersion from the mean, representing weak learning, was observed in 11.3% of cases. Pruning 

the high-dispersion cases improved the diagnostic performance markedly (AUC 0.96, sensitivity = 

92, specificity = 95). These results demonstrate the effectiveness of dispersion to identify weakly 

learned cases. In conclusion, machine learning with multimodal ultrasound including grayscale 

and Doppler can achieve high performance for breast cancer diagnosis, comparable to that of 

human observers. Identifying weakly learned cases can markedly enhance diagnosis.
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I. Introduction

Breast cancer is currently the most common cancer in American women, except for skin 

cancers. It is estimated that about 266,120 new cases of invasive breast cancer will be 

diagnosed in women in 2018 [1]. Breast cancer is also the second leading cause of cancer 

death in women. The chance that a woman will die from breast cancer is about 1 in 37 

(2.7%) [2]. Despite all recent advances in diagnostic breast imaging, particularly in 

screening, mammography yield for biopsy is still, low leading to a large number of false 

positives and associated expenses and inconveniences to patients.
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Regardless of its many advantages, the quality of ultrasound suffers from its intrinsic speckle 

noise and low contrast. To compensate for these limitations, various studies have 

demonstrated the use of digital image processing techniques and computer-aided diagnosis 

to improve detection rate and increase specificity [3–5]. Such methods improve tumor 

detection and reduce background noise to improve image contrast of the tumor relative to 

the surrounding tissue, to better differentiate benign from worrisome lesions. These 

advances also enable more objective and precise description of lesion shape and texture and 

result in a large number of quantitative features or biomarkers. The emerging field of 

radiomics involving extraction and analysis of a large number of quantitative features with 

high throughput from medical images is being increasingly used for medical diagnosis [6]. 

Our previous studies have assessed ultrasound grayscale and Doppler vascular features 

independently to characterize breast lesions. In this study we use radiomics, where grayscale 

and Doppler features are used together, for a comprehensive analysis of breast lesions. An 

approach based on measuring dispersion is outlined to identify weakly learned cases, and 

their effect on diagnostic performance is evaluated.

II. Materials and Methods

A. Data and Image acquisition

Grayscale and color Doppler images for 160 biopsy-proven breast lesions acquired from the 

institutional database were analyzed quantitatively. The study was approved by the 

institutional review board. The grayscale images for each mass consisted of five to seven 

views of the lesion in radial and anti-radial planes. For the same lesions, two to three color 

Doppler vascular images were analyzed on average.

B. Quantitative feature extraction

For each grayscale ultrasound image, the lesion was manually traced by an experienced 

clinician (Figure 1). The observer was blinded to the histological classifications of the 

lesions. Eight features describing grayscale, shape and coarseness of the margin were 

automatically computed from the traced margin. These features were extracted by 

partitioning the lesion into 5-degree sectors and then comparing the difference between the 

inside and the outside of each sector [7]. The features used in the analysis included 

brightness difference at the margin, margin sharpness, angular variation in brightness at the 

margin, depth-to-width ratio, axis ratio, tortuosity, radius variation, and elliptically 

normalized skeleton.

Color Doppler images were analyzed in three concentric regions using an IDL program 

developed in-house for vascular analysis (Figure 2). The three regions were lesion center, 

rim, and the surrounding tissue. The same observer manually outlined the lesion margins on 

all images, and the computer used this margin to automatically derive the three regions so 

that they were equal in area. Quantitative Doppler analysis involved two steps. First, the 

color bar for each directional flow in the Doppler image was divided into 100 equal levels. 

Each level was assigned a velocity value between 0 and v max (maximum velocity) based on 

the position of the color level in the color bar, to create a color scale. The second step was to 

use the color scale to detect pixels with flow (colored pixels). The number of colored pixels; 
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the mean velocity of flow, through each colored pixel; and the total number of pixels 

enclosed within each region, were measured. These measurements were used to determine 

vascular fraction area (A), mean flow velocity index (VI) and blood flow volume index 

(FVI) with the formulas as described earlier [13].

C. Learning model construction and evaluation

The grayscale features with patient age and measured vascularity parameters were used to 

train and test the classification model using a logistic regression classifier. Cross-validation 

was performed using a round-robin (leave-one-out) approach: N–1 samples of the N samples 

in the data were trained to predict the behavior of the remaining sample, and the process was 

repeated until each sample had been the test case. From each cross-validation, performance 

of learning was computed by measuring dispersion of logistic regression coefficients from 

the mean.

Probability of malignancy was compared with the biopsy results to perform ROC analysis 

using MedCalc [Version 17.9, Ostend, Belgium]. The area under the ROC curve (AUC), 

sensitivity (Se), and specificity (Sp) at Youden index for each ROC curve were used for 

evaluating diagnostic performance of the classification model.

C. Identification of weak learning and selective pruning

To achieve high diagnostic performance, it is important that the probability estimates of the 

machine learning classification scheme are reliable. The term “reliability” refers to internal 

consistency in the measurements: masses with similar image characteristics should yield 

similar probability estimates. In cross-validation by the leave-one-out method (LOOM), all 

but one case are used to iteratively train models on the holdout case. Since each training 

cycle differs by only one sample and the number of cases in the analysis is generally large 

(N≫1), it is expected that the input-output function is perturbed by only a small amount δ 
between different learning sets, that is, LOOM assumes small perturbations. In such a 

circumstance, a significant deviation of the input-output function of a learning set from the 

expected value in LOOM cross-validation (a large δ) signifies that the training for the set is 

not consistent with the other learning sets of the group, so the set is an outlier and/or the 

logistic regression was a weak learner with respect to these cases. Cases that caused weak 

learning were identified by summing the dispersion in the coefficients of logit probability 

from the mean values of the coefficients. Weak cases were defined as those with top-ten-

percentile dispersion (low confidence), and were pruned. ROC analysis on the residual cases 

was repeated to assess the influence of weak learning on the final diagnostic assessment.

III. Results

The mean age of patients was (41.82 ± 12.55) significantly lower in patients with benign 

lesions when compared to those with malignant lesions (57. 66 ± 10.78) (Figure 3, p < 0.05).

A. Quantitative imaging features

Table 1 compares the magnitude of the quantitative computerized ultrasound features of all 

the malignant lesions with those of benign lesions. Of the various features studied, one 
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margin, two shape, and three vascularity features showed statistical difference between the 

two subtypes (p < 0.05). Margin sharpness difference confirms that the margins of malignant 

lesions are less defined than those of the malignant subtype: MS was 54.22 ± 11.1 vs 60.07 

± 9.02. The smaller value of elliptically normalized skeleton (ENS) in benign lesions, 1.14 ± 

0.20, compared to malignant, 0.15 ± 0.03, indicates that malignant shapes are more irregular 

(p = 0.00005). Marked difference in Doppler vascular features was observed between 

malignant and benign lesions. Color Doppler vascular fraction area (AI), mean flow velocity 

index (VI), and flow volume index (FVI) in the lesion were all substantially higher for 

malignant lesions compared to benign.

B. Performance of diagnostic models

Figure 4 and Table 2 demonstrate the diagnostic performance measured by Area under ROC 

curve, as well as sensitivity and specificity for GS features both alone and when CD is added 

and after pruning. When CD measurements were included, the performance of ML improved 

to AUC of 0.89 ± 0.03, with sensitivity and specificity of 79 and 89.

This level of performance is comparable to that of human observers. The high level of 

performance by machine learning further improved when weak learner cases were identified. 

Using dispersion measurement as a metric for the quality of training, 18 training cycles out 

of 160 (11.3%) were found to be weak. Pruning these cases improved diagnostic 

performance to AUC of 0.96 (Sen 92, Spe = 95).

C. Selective pruning

18 cases showed high dispersion values from the mean and were excluded from the final 

diagnostic assessment. The diagnostic performance improved markedly to 0.96 with 

sensitivity and specificity (Figure 4).

IV. Discussion

Our previous studies using computer-extracted features have been primarily on evaluating 

grayscale characteristics of lesion margins [8, 9]. The features are extracted by partitioning 

the lesion into N sectors and then comparing the difference between the inside and the 

outside of each sector. Consistent with clinical assessments, the quantitative grayscale 

features show malignant masses to have less distinct margins, whereas benign masses are 

characterized by regular and smoother margins [10]. With quantitative margin features it is 

feasible to achieve diagnostic performance as measured by AUC of 0.85 to 0.90 for solid 

masses. In the present study we achieved a performance (AUC = 0.85) comparable to earlier 

studies with margin features. Since a different cohort of subjects was used these results 

demonstrate the reproducibility of our approach. To improve the diagnostic performance, we 

proposed the use of additional features that provide information on different tumor attributes 

such as vascularity. Angiogenesis and abnormal vessel formation are usually linked with 

malignant neoplastic changes in breast lesions. Studies assessing the vascularity of breast 

lesions on Doppler ultrasound have shown higher vascularity in malignant masses than in 

benign masses [11, 12]. Consistent with these prior studies, vascularity measures in this 

study were higher in malignant lesions. Including the vascularity features with grayscale 
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features in training and testing improved diagnostic performance to AUC of 0.89, a 4.7% 

increase. This is a significant improvement, towards a perfect AUC of 1.

This study also explored the influence of quality of learning during the training cycle on the 

diagnostic outcome. Leave-one-out (LOO) cross-validation is essentially a small 

perturbation approach, so it is to be expected that individual training cycles of LOO are very 

similar. Dispersion of an individual training cycle from the mean or from any other reference 

is a measure of the reliability of the training cycle in assessing probability of the event. For 

example, high-dispersion cases indicate that weak learners were used. When the weakly 

learned cases were pruned from the analysis, a near-perfect diagnosis of AUC=0.96 was 

achieved. That is, the significant drop in diagnostic performance at AUC down to 0.89 is 

attributable weak learners. Apparently, a small change in the training data of the individual 

training cycles alters the interactions between the data points significantly, enough to 

influence the learning optimization process, thereby leading to inconsistent models and 

ambiguous predictions. Future studies emphasizing reliability testing of the training could 

provide a means to achieve near-perfect diagnostic performance.

V. Conclusion

Machine learning with multimodal ultrasound including grayscale and Doppler can achieve 

high sensitivity and specificity for breast cancer diagnosis that is comparable to the 

performance of human observers. The importance of this result is that it suggests that 

computerized assessment can be used as independent observer. Identifying cases that cause 

weak learning can markedly enhance the diagnosis. Implementation and further validation of 

this approach using a larger dataset has a potential to reduce unnecessary breast biopsies.
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Fig. 1. 
B-mode ultrasound images of a malignant lesion showing the manually outlined tumor 

margin for quantitative extraction of grayscale features.

Sultan et al. Page 7

IEEE Int Ultrason Symp. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
A color Doppler image of a malignant lesion showing the three regions selected for 

quantitiave vascular analysis.
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Fig. 3. 
The age difference between malignant and benign tumor cases.
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Fig 4. 
ROC curves comparing the diagnostic performances of grayscale features, grayscale with 

Doppler features, and weakly learned cases pruned.
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Table 1:

Magnitude of the quantitative computer-derived features of malignant and benign lesions.

Margin sharpness Skelton Norm Depth to Width Vascular fractional area Flow velocity Flow volume

Malignant 54.22 ± 11.14 0.15 ± 0.03 0.83 ± 0.27 4.66 ± 7.27 0.85 ± 0.65 2.62 ± 3.40

Benign 60.07 ± 9.02 1.14 ± 0.2 0.71 ± 0.19 1.67 ± 2.57 0.44 ± 0.58 0.85 ± 1.49

p-value 0.0007 0.0412 0.0015 0.0023 0.0001 0.0002
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Table 2.

The diagnostic performance measured by the area under ROC curve (AUC), as well as sensitivity and 

specificity, for GS features alone; for grayscale and Doppler features; and for selected cased with weakly 

learned cases pruned.

Grayscale Grayscale + Doppler Selected cases

AUC (± SE) 0.85 ± 0.03 0.89 ± 0.03 0.96 ± 0.01

Sensitivity 0.87 0.79 0.92

Specificity 0.69 0.89 0.95
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