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Vital signs, including heart rate and body temperature, are useful in detecting or monitoring 

medical conditions, but are typically measured in the clinic and require follow-up laboratory 

testing for more definitive diagnoses. Here we examined whether vital signs as measured by 

consumer wearable devices (that is, continuously monitored heart rate, body temperature, 

electrodermal activity and movement) can predict clinical laboratory test results using machine 

learning models, including random forest and Lasso models. Our results demonstrate that vital 

sign data collected from wearables give a more consistent and precise depiction of resting heart 

rate than do measurements taken in the clinic. Vital sign data collected from wearables can also 

predict several clinical laboratory measurements with lower prediction error than predictions made 

using clinically obtained vital sign measurements. The length of time over which vital signs are 

monitored and the proximity of the monitoring period to the date of prediction play a critical role 

in the performance of the machine learning models. These results demonstrate the value of 

commercial wearable devices for continuous and longitudinal assessment of physiological 

measurements that today can be measured only with clinical laboratory tests.

A routine clinic visit consists of a physical examination with vital sign measurements and 

blood and urine tests to examine overall health and detect abnormalities due to illnesses such 

as infection or chronic disease1,2. Although vital signs like heart rate, body temperature, 

blood pressure, respiration rate, height and weight do not generally enable a specific 

diagnosis, they are useful for assessing overall health and triaging patients rapidly in both 

routine and emergency settings. Laboratory evaluation of blood and urine, referred to as 

‘clinical labs’, is a less rapid and often more specific method to quantitatively assess health3. 

Traditional clinical examinations have drawbacks that include requirements for in-person 

visits, potentially invasive tests, infrequent sampling, a highly controlled setting, a lack of 

tools to systematically incorporate past visit information, and challenges with interpreting 

clinical measurements at the boundaries of normal values. Studies that examine the 

relationship between vital signs and clinical labs have been limited.

Over the past several years, interest in assessing consumer wearables (wearables) for 

healthcare and longitudinal monitoring has increased4–6. Several groups have demonstrated 

that it is possible to extract accurate information from wearables in both a clinical and ‘real-

world’ environment7–9. Wearables can capture vital signs continuously and longitudinally 

during daily life, but the utility of this continuous information remains in question. Recent 

studies applied machine learning to wearables data to predict cardiovascular10–13 (for 

example, the presence of arrhythmias like atrial fibrillation), diabetic14 and infection 

statuses15 using electrocardiogram (ECG) or photoplethysmogram (PPG) signals from 

wearables. Moreover, individual baselines can be established and deviations assessed as 

possible signs of acute and chronic disease rather than relying on population-based norms8. 

This prior work suggests that wearables may have clinical utility, particularly when 

incorporated into personalized, predictive models. However, the ability of vital signs, and 

particularly those measured by wearables, to predict clinical labs has not been evaluated.

In this study, we explored parameters that would hasten the adoption of wearables into 

healthcare. We first examined whether vital signs measured continuously and remotely by 

wearables (wVS) can accurately represent vital signs measured in the clinic (cVS). We 
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further explored whether vital signs can be used as a non-invasive proxy measurement of 

clinical labs by developing models of the relationship between wVS and clinical labs. 

Finally, we investigated whether increasing model and feature complexity, increasing the 

amount of time monitored, or personalizing models would improve their prediction accuracy 

(Fig. 1a).

Results

Vital signs collected by wearables versus in the clinic

We first explored how well wearables capture baseline physiology by comparing routine 

vital sign measurements from a smart watch with vital signs measured in the clinic using our 

integrative personal omics profiling (iPOP) cohort8,16–19. Fifty-four iPOP participants wore 

an Intel Basis smart watch measuring heart rate, skin temperature, accelerometry and 

electrodermal activity (EDA). The diverse cohort (Supplementary Table 1d) comprising 30 

females (aged 40 to 70 years; mean 56 years) and 24 males (aged 35 to 76 years; mean 58 

years) was clinically monitored for an average of 3.3 years with an average of 42 clinic visits 

per individual during the clinical monitoring period (Fig. 1b)8,16,17. Participants wore the 

smart watch for 343 days on average (s.d. 241 days); an average of 313 days overlapped the 

clinical monitoring period. In the clinic we measured six vital signs (cVS), including heart 

rate and oral temperature (Supplementary Table 1a and Fig. 1c).

We first compared watch-based measurements of resting heart rate (wRHR; Fig. 1c) with 

clinic-based measurements of heart rate (cHR) by aggregating watch measurements from the 

same time as the clinic visits (7:00 to 9:00) for 1 week, 2 weeks or 1 month before the date 

of the clinic visit. We explored multiple definitions of rest by varying the time windows for 

capturing inactivity (5-, 10- and 60-min intervals with no steps) and found that shorter 

windows were associated with higher wRHR (Fig. 1d), as expected for residual effects of 

activity on heart rate. Intermediate resting periods with no steps for 10 consecutive minutes 

during the 2 weeks before the clinic visit was chosen for all subsequent analyses. For 

wRHR, the median was 71 (s.d. 6.7) beats per minute (bpm) and for cHR, the median was 

71 (s.d. 9.4) bpm (n = 226). For all resting definitions tested, our estimates had negligible 

bias and the variance in wRHR was significantly lower than that in cHR (Fig. 1c,e and 

associated source data), indicating that wRHR are more consistent in measuring the typical 

resting heart rate than the intermittent cHR, presumably because many observations of 

resting heart rate measured longitudinally capture more consistent heart rate values than a 

single measurement in the clinic. Longer wRHR monitoring periods prior to the clinic visit 

resulted in lower variance of wRHR, as expected, and increased similarity between wRHR 

and cHR values (Fig. 1e and associated source data).

Watch-based measurements of resting skin temperature (wRTemp) at the wrist were lower 

than oral temperatures measured in the clinic (cTemp): cTemp = 97.9 ± 0.4 °F; wRTemp = 

89.2 ± 2.2 °F (Fig. 1c and Supplementary Table 1a,c). In contrast to heart rate, clinically 

measured oral temperature was a more consistent and stable physiological temperature 

metric than wearable-measured skin temperature, which, even at rest and with correction for 

ambient temperature, is much more variable. We conjecture that differences between cTemp 
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and wRTemp reflect differences due to the measurement location at the wrist as well as a 

variety of environmental and physiological factors.

wRHR and wRTemp exhibited daily circadian patterns (Fig. 1d and Extended Data Fig. 1a); 

this variation was consistent across resting definitions, indicating that time of day is a key 

factor that affects the variance of day-to-day clinic measurements within an individual, 

consistent with other studies20. Overall, our results indicate that wRHR provide more 

consistent heart rate measurements than do cHR, whereas cTemp are more consistent than 

wRTemp.

Predicting clinical laboratory measurements from wearables.

As our findings indicated that heart rate, skin temperature and physical activity were 

associated with infection and insulin sensitivity8; we explored the concept that clinical labs 

could be modeled using vital signs from wearables or clinic visits. Given that PPG detects 

differences in subcutaneous blood volume, wearable PPG is potentially capable of 

measuring hemoglobin and glycated hemoglobin (HbA1c) levels21,22. Furthermore, EDA 

measures the electrical properties of the skin, which change with epidermal hydration 

status23. Therefore, we examined to what extent wVS can be used to predict specific clinical 

labs (Fig. 1a) using the iPOP cohort. The wVS included heart rate, skin temperature, EDA 

and physical activity (Supplementary Table 1c). The 44 clinical laboratory panels included 

those with diagnostic utility in a primary care setting, such as the complete blood count with 

differential, comprehensive metabolic panel, and cholesterol panel (Fig. 3a and 

Supplementary Table 1b).

We developed a feature engineering pipeline (Fig. 2a) that converted the longitudinal wVS 

measurements into 153 features (for example, mean heart rate during high intensity activity, 

overnight variability in skin temperature; see Methods and Supplementary Table 2a) and 

used statistical learning models (that is, random forest, Lasso and canonical correlation 

analysis (CCA)) to combine these features and predict clinical labs (Fig. 2b). Of the 44 

clinical labs, we found the highest correlation between the observed and predicted values for 

four hematologic tests (Extended Data Fig. 1b,c). Specifically, the wVS random forest 

models explained 6–21% of the variation in hematocrit (HCT), red blood cell count (RBC), 

hemoglobin (HGB) and platelet count (PLT) values (P < 0.05 with Bonferroni correction; 

Fig. 3b, red triangles). As the random forest models significantly outperformed the Lasso 

(two-sided Wilcoxon signed rank test, P < 1 × 10−5), we chose the random forest models for 

subsequent analysis due to their robustness and performance.

The best predictive features in the wVS models are depicted in Fig. 3c (see also 

Supplementary Table 2b). Surprisingly, the five most important features for predicting HCT, 

HGB and RBC were all, except for one, permutations of EDA. EDA is a wVS that currently 

does not have a corollary clinical vital sign and is measured clinically only in highly 

specialized settings. The non-EDA feature, kurtosis of heart rate during daytime low 

intensity activity, had relatively high importance for predicting HGB. Kurtosis is a measure 

of how many outliers are in the distribution and how extreme these are. The five features that 

best predicted PLT were all based on heart rate, that best predicted absolute monocyte counts 

(MONOAB) were based on steps and skin temperature, and that best predicted HbA1c, 
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fasting plasma glucose, and serum chloride were a combination of skin temperature, steps 

and heart rate, indicating that diverse features from physiological signals are predictive of 

different clinical measures, and that prediction performance is improved by integrating the 

diverse features into a single model.

As individual clinical labs are often correlated, particularly those with related physiological 

processes, we generated summary scores for each of these physiological processes by 

projecting related labs onto a single index. We assigned labs to physiological groups 

(electrolytes, metabolic, cardiovascular, hepatic, immune, hematologic; Fig. 3a) used as the 

outcomes in regularized CCA using the 153 wVS features as predictors (Fig. 3d, 

Supplementary Table 2a and source data for Fig. 3d). The hepatic and hematologic CCA 

models performed best, with wVS explaining 12% and 7% of the variance, respectively (P < 

0.05) (Fig. 3d). Interestingly, the wVS random forest models performed better for the four 

individual hematologic tests compared to the overall hematologic physiology group, 

indicating that there are nonlinear relationships between wVS and HCT, RBC, HGB and 

PLT that are captured by the random forest models but not by CCA. Taken together, these 

results demonstrate that the complex physiological features and indices that we developed 

can reduce a large number of variables to summarize the categorical health24.

Predicting clinical laboratory measurements from wVS and cVS.

The previous analysis revealed a correlation between physiological wearables measurements 

and clinical biochemical and cellular measurements. To determine whether these 

relationships also exist between clinically measured vital signs and clinical labs, and how 

they compare to the wVS and clinical labs associations, we next built models to predict 

clinical labs using cVS measurements (cHR and cTemp) as predictors instead of wVS 

measurements. The number of cVS variables (2) was dramatically lower than the number of 

wVS variables (153) due to the intermittent cVS sampling, compared to the longitudinal and 

continuous wVS sampling and the additional watch sensors (accelerometry and EDA). We 

therefore developed bivariate linear regression and random forest models using the iPOP 

cVS data (Fig. 3b). We found that wVS random forest models significantly outperformed 

cVS random forest and linear models for the vast majority (37) of the 44 clinical labs (two-

sided Wilcoxon rank sum test, P < 1 × 10−5) (Extended Data Fig. 1b,c and source data for 

Fig. 3a), presumably because wearables capture variation in vital signs for an extended 

period before the laboratory test, whereas clinical vital signs provide only a single moment 

snapshot. Different time windows for computing wVS features yield substantially different 

model performance (Fig. 4a). Moreover, features such as standard deviation or kurtosis are 

highly predictive in several of the wVS models (Supplementary Table 3b), and these metrics 

do not exist in cVS models.

Timing and personalization improve accuracy of models.

We reasoned that temporal change in physiology was a likely contributor to unexplained 

variance in our models. Hence, we explored whether varying the duration or proximity of 

monitoring improved the prediction of clinical labs from wVS. Relevant time scales for 

monitoring clinical laboratory biomarkers vary by physiological processes. For example, 

blood glucose responds to dietary stimulus within minutes, whereas HbA1c reflects overall 
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blood glucose over several months. Therefore, to find the optimal duration of monitoring by 

wearables, we analyzed clinical laboratory models using wVS collected at set time windows 

proximal to the clinical laboratory test date (Fig. 4a). We found that most of the top models 

perform best with features calculated from shorter time periods before the laboratory test 

date (for example, HCT, RBC, HGB and MONOAB random forests), and for some 

laboratory tests the time window has only a minor impact on model accuracy (for example, 

HGB Lasso model) (Fig. 4a and Extended Data Fig. 2a). The Lasso model performed 

slightly better with longer timescales than the random forest model (Fig. 4a and Extended 

Data Fig. 2a). Of the physiological categories (Fig. 3a), the hematologic category performed 

best using a shorter monitoring period, with R values of 0, 0.093, 0.130 and 0.411 with wVS 

from 1 month, 1 week, 3 days and 1 day before the clinic visit, respectively.

Another likely source of unexplained variance in the clinical laboratory models is inter-

subject variability (Extended Data Fig. 3a). To address the potential reduction in 

performance caused by inter-subject variability, we developed personalized models to 

account for differing individual baselines (Figs. 4 and 5a). As more historical data 

(simultaneous clinical labs and vital signs) were required to build personalized models than 

were available in the iPOP cohort, we used the Stanford EHR (SEHR) dataset (28,694 

individuals, 38,058 observations) to build models that used longitudinal data for an 

individual (213 patients with ≥50 observations). We developed cVS personalized models 

(multivariate linear and random forest) that used a patient’s personal mean of the clinical 

labs as a baseline prediction for that patient, and calculated patient-specific parameters to 

model individual variability around that personal baseline (Fig. 5a,b). Personalized models 

explained, on average, 43% more variance than population-level models (two-sided 

Wilcoxon signed rank test, P < 1 × 10−5).

As a proof of principle for building personalized health models, we conducted a case study 

with a relatively healthy and frequently sampled iPOP participant who had sufficient 

wearables and clinical vital sign measurements to potentially establish accurate personalized 

cVS and wVS models of HCT (Fig. 4b). We explored how the number of observations and 

the duration of monitoring affect the variance explained by a personalized model, how 

personalized model accuracy changes over time, and how the change in accuracy is related 

to the dynamically changing health of an individual.

As expected, the performance of the personalized models for the case study varied over time, 

and health events caused shifts that required updated clinical information to re-establish high 

performance (Fig. 4b). The individual’s personalized HCT wVS model outperformed the 

personalized cVS model 84% of the time (Fig. 4b). We found that personalized models built 

using more observations or from a dense monitoring period had increased accuracy if the 

monitoring period was of appropriate length. For the HCT cVS model, 10 sequential clinic 

visits were needed to observe an R improvement from near zero to 0.74 (Fig. 4c). We also 

found that the personalized models often performed comparably to the population-level 

models if the prior observations were not in close proximity to the test that we aimed to 

predict (Fig. 4c). Thus, in contrast to our initial hypothesis, more visits did not always 

equate to more accurate models because the timespan of observations was often longer and 

therefore included observations that were more distanced in time from the clinic visit with 
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the relevant laboratory test. A more complex modeling scheme is required to effectively 

incorporate all available data; for example, by down-weighting observations that are distant 

from the clinical visit.

Another key finding was that the ability to build an accurate model for an individual varied 

based on their health fluctuations. In the SEHR dataset, individuals with the most clinic 

visits are also those that are the most sick, and the dynamic nature of their personalized 

model performance may reflect their dynamic health status (Extended Data Fig. 2b)25. 

Interestingly, dramatic decreases in personalized model accuracy coincided with major 

health events (for example, myocardial infarction, emergency department visit or viral 

illness), suggesting that major shifts in physiology can influence the quality of the model 

(Fig. 4b and Extended Data Fig. 2b), and in turn that changes in model performance can 

signal major health events. So far, such large-scale analysis of variability in health has been 

possible only in sick populations, because data on healthy individuals are usually sparse. 

With wearables, we can also analyze health variations in healthy populations.

Discussion

Here we demonstrate that (1) heart rate vital signs collected from wearables provide a more 

consistent depiction of resting heart rate than measurements taken in the clinic; (2) wVS are 

associated with several clinical labs, with hematologic clinical laboratory tests most 

consistently predictable using wVS models; (3) specific physiological features are associated 

with clinical features (for example, EDA and HCT) providing insights into links between 

clinical biochemical tests and physiology; (4) in the majority of cases, wVS models 

outperform cVS models; (5) the amount of time monitored, the proximity of the monitoring 

period to the date of prediction, and health events play a critical role in the accuracy of the 

models; and that (6) personalized models perform significantly better than population-level 

models. These findings build upon our previous study in which we found that it is possible 

to determine personal vital sign baselines and detect illness from wearables8, and hence are a 

starting point for improved diagnostics using wearables.

cHR are used to monitor acute and chronic health status, including infection, anemia, 

hypoxia and cardiovascular disease risk26. Previous studies demonstrated that single clinic 

visits do not sufficiently capture average heart rate among patients with cardiovascular 

disease and hypertension20,27. We demonstrate that circadian heart rate variations cannot be 

captured through intermittent clinic visits, and therefore cHR taken at different times of day 

are of limited utility for tracking health over time. Heart rate variations throughout the 

course of the day are an important consideration given that most clinic visits do not occur at 

the same time of day, complicating the interpretation of cHR20.

Calculating wRHR over varying time and activity thresholds revealed that wRHR decrease 

with longer durations of inactivity. Current cHR guidelines only require 5 min of rest and do 

not account for physical activity or stress levels immediately prior to the clinic visit. We also 

found that wRHR are more representative of typical resting heart rate than intermittent cHR, 

and that longer monitoring periods for capturing wRHR decreased variance. This 

underscores the importance of time window selection for individual ‘baselining’. This 
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window will vary for different types of physiological measurements depending on how 

much variability is expected, how variation occurs over time, and how measurements covary 

with other factors (for example seasonality). This information can be collected and factored 

into wearables measurements in the future.

Although in the past clinical labs were routinely collected at annual visits, there has been a 

shift from routine collection due to lack of evidence of benefit28. Using prediction models to 

pre-screen for risk of abnormal labs may enable providers to better identify those who might 

benefit from laboratory testing, avoiding the cost and effort of performing routine clinical 

laboratory testing on all patients. Presently, we do not anticipate diagnostic use of the 

current models; however, they can be used to suggest further clinical testing. These models 

could also be extremely useful in an emergency room setting, as information about the risk 

for abnormal clinical labs could be available the moment that the patient arrives.

We found that the majority of wVS models outperform cVS models, presumably because 

wVS provide more measurements throughout the duration of monitoring and the ability to 

engineer more complex model features (Extended Data Fig. 3b). The finding that the 

variance of wRHR is lower than that of cHR, combined with our previous validation studies 

that compared wRHR with simultaneous clinical gold standard measurements5,8, 

demonstrates that many longitudinal observations of resting heart rate enable us to capture 

more consistent HR values than could be captured in a clinic.

Among the 44 laboratory tests, there are a few groups of tests that are strongly correlated, 

and several models were found to predict the correlated tests. However, no laboratory tests 

are redundant, and even strongly correlated laboratory tests have distinct clinical 

applications. For example, although there is great heterogeneity among our predictive 

models of clinical labs, we consistently found that two components of the complete blood 

count clinical lab panel—HCT and HGB—were best predicted from vital signs alone. These 

two tests are strongly correlated, but they are derived differently and contain complementary 

information. HGB is a direct measurement of hemoglobin, whereas HCT is calculated from 

RBC count and mean corpuscular volume. Wearable-measured EDA was a strong predictor 

of HCT, HGB and RBC, consistent with existing literature on sympathetic activation and 

hemoconcentration29. In the outpatient setting these models may help to identify individuals 

who would benefit from screening for anemia as well as those suffering from dehydration. 

The potential to detect dehydration using wearables may be particularly useful in older 

adults who are at heightened risk of dehydration due to age-related physiological changes, 

including decreased thirst30. Hospitalizations for dehydration are extremely costly and are 

considered by US Medicare to be preventable31. The potential of wearables to establish a 

reliable baseline and detect changes from the baseline may be a valuable tool to address this 

problem and other emerging uses in older people (for example, fall detection). Given that 

one in five people in the United States regularly wears a smartwatch, and their use is 

increasing, there will often be sufficient data for practical implementation of these methods 

by physicians.

PPG uses light absorption by hemoglobin to calculate heart rate, and therefore we expected 

that HGB would be the most likely test to be predictable by PPG-based heart rate 
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measurements. Indeed, we found that the wVS heart rate features comprised 20–40% of the 

most-predictive features in our best HGB model, whereas cVS, which does not use PPG, 

could only explain 2–7% of the variance in HGB measurements.

Daytime and night-time high intensity activity were strong predictors of fasting plasma 

glucose, as were wRHR and wRTemp. This is consistent with our previous work showing 

that the difference between daytime and night-time wRHR and daily steps are associated 

with insulin resistance8. Although the random forest method does not illustrate direction of 

prediction and only ranks the feature importance, we infer that high daytime activity may be 

associated with better fitness, an important factor in glucose control. On the other hand, high 

night-time activity may be disruptive of circadian rhythms, which is also important to blood 

glucose control. Daytime physical activity and skin temperature changes during physical 

activity were predictive of MONOAB, as might be expected given that these become 

disrupted during infection. Additional research will help to uncover the underlying 

biological mechanisms of the relationship between biomolecular measurements and 

physiological signals.

Although we were able to build useful models of clinical chemistry from wearables data in 

our relatively small iPOP cohort, the cohort size was limited. Therefore the models that we 

developed here, although predictive, are less generalizable to the overall population. To 

obtain similar results in another specified group of patients, models should be trained on 

data from those cohorts in which the model is intended to be applied. In the future, larger 

datasets like the Health eHeart Study32 and the All of Us Research Initiative that capture 

both clinical information and simultaneous wearables information will dramatically improve 

the field of digital biomarker development and training of models on specific populations. 

Such datasets may also support the development of more accurate, but also more complex 

and potentially less interpretable deep learning models. Here, we aimed to develop accurate 

yet interpretable models because understanding the logic underlying a model’s output is 

critical in the clinical setting.

As technology advances, present-day clinical labs may be frequently measured outside of 

the clinic33,34. There have been several successful examples of continuous monitoring of 

clinical labs via wearable biosensors; for example, continuous blood glucose35,36, cortisol37, 

and sweat analyte38 monitors. These sensors are not without challenges as they require 

access to bodily fluids, often through invasive methods, and usually require frequent 

recalibration. We anticipate that in the future, using new wearables that measure additional 

parameters such as systolic and diastolic blood pressure and respiration rate will further 

improve the wVS personalized models. Moreover, a combination of clinical and wearable 

metrics may provide a more holistic picture of the patient, with intermittent but precise 

measurements in the clinic and noisier but continuous monitoring using wearables, 

complementing clinical practice.

Overall, our findings suggest that wearables enable continuous health monitoring, health 

monitoring outside of the clinic, and detection of deviations from personal healthy baselines 

that can be used to identify the need for more formal clinical laboratory evaluation. The 

personalized monitoring and modeling framework presented here can be readily generalized 
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to other types of data and clinical measurements, enabling broad implementation of 

personalized health monitoring through wearables.

Methods

Wearables cohort.

Participants were enrolled in the iPOP study under institutional review board (IRB)-

approved protocols (IRB-23602 and IRB-34907 at Stanford University) with written 

consent. All clinical measurements were covered by IRB-23602, the enrollment criterion of 

which is a minimum age of 18 years. All wearable measurements were covered by 

IRB-34907, the enrollment criterion of which is a minimum age of 13 years. Cohort 

demographics are reported in Supplementary Table 1d. Participants were recruited with 

efforts to enroll those at risk for type 2 diabetes (SSPG ≥150 mg dl−1, fasting plasma 

glucose ≥ 100 mg dl−1, oral glucose tolerance test ≥ 140 mg dl−1, HbA1c > 5.6%) and 

healthy controls. We simultaneously collected wearables data from a subset of our cohort 

consisting of 54 individuals. Clinical laboratory tests were performed at every clinic visit, 

which occurred roughly four times per year for ‘healthy visits’ (regular check-ins with no 

specific reason for the visit; e.g., no reported illness, stressful event, travel, etc.). Clinic visits 

were performed in the mornings between 7:00 and 9:00, and resting heart rate was measured 

after 5 min of sitting, according to American College of Cardiology (ACC) and American 

Heart Association (AHA) guidelines20,39. The data collected included 44,402 clinical 

laboratory test results and 3,987 vital sign measurements (2,391 cHR and 1,596 cTemp) 

using the gold standard Welch Allyn 6000 series instrument, which is routinely used at the 

clinical laboratory services at Stanford University (average values and number of 

observations for each test are given in Supplementary Table 1a,b). Participants wore a smart 

watch for an average of 343 days. Average values for the smart watch are reported in 

Supplementary Table 1c. For each individual, the number of days monitored by the clinic 

and by the wearable were calculated by the time between the date of the first and the final 

clinic visit, and the total amount of time that the watch was worn, respectively.

Retrospective clinical record cohort.

Overall, we analyzed clinical records from 28,694 patients at Stanford Hospital 

(IRB-37859). The records contained 31,543,209 laboratory test results (87,972 from our 44 

clinical labs of interest that have corresponding vital signs measurements) and 885,966 vital 

signs measurements (552,145 cHR and 333,821 cTemp, 86,515 and 75,187 of which, 

respectively, have corresponding clinical laboratory tests from our 44 tests of interest) 

(average values and numbers of observations for each test are given in Supplementary Table 

3a,b, and cohort demographics are given in Supplementary Table 3c)3. These records were 

from 10,000 individuals with prediabetes, 8,694 with type II diabetes, and 10,000 

individuals who were normoglycemic based on fasting plasma glucose. We used clinical 

vital signs that occurred on the same date as our clinical laboratory tests of interest, using 

only observations between 20–230 bpm (heart rate), 90–115°F (oral temperature), 70–220 

mmHg (systolic blood pressure), 35–130 mmHg (diastolic blood pressure) and 2–130 

breaths per min (respiration rate). The average cHR was 77.51 (s.d. 14.12) (n = 86,515 cHR 

observations) and the average cTemp was 97.96 (s.d. 0.50) (n = 75,187 cTemp observations) 
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(Supplementary Table 3a). These numbers are similar to the clinical measures from the iPOP 

wearables cohort (mean cHR = 71, cTemp = 97.9) although the cHR in the large cohort is 

elevated.

Clinical record data cleaning.

To address possible data entry errors, for each of the clinical laboratory tests we removed 

outliers (values greater than three standard deviations from the mean for that laboratory). We 

compiled a list of 44 clinical laboratory tests based on their ubiquity in standard clinical 

practice, their frequency in our clinical records, and their relevance to physiology 

(Supplementary Tables 1b and 3b). The number of days monitored by the clinic was 

calculated by the time between the date of the first and the final visit.

wVS data pre-processing steps.

We collected a total of 157,068,268 wearables measurements using four sensors (heart rate 

photoplethysmography, skin temperature thermopile, EDA and accelerometer at a rate of 1 

measurement per sensor per min) from 54 individuals over a total of 18,522 days of 

recording using the Intel Basis smart watch. We removed outliers using the same method as 

above.

Evaluating the relationship between cVS and wVS.

Previous research shows that the Intel Basis watch accurately measures heart rate in the 

resting range7,8,40. To explore the correspondence between clinically measured vital signs 

and vital signs measured using the wearable (cVS and wVS, respectively), we calculated the 

resting values of heart rate and skin temperature measured from the smart watch (wRHR and 

wRTemp, respectively) during 5-, 10-, and 60-min rolling windows during the 24 hours prior 

to the clinic visit, for which there were no steps taken or the number of steps was less than 

50. We averaged the wRHR during each hour of the day to explore the circadian variation in 

wRHR and to compare wRHR at each hour of the day to the average of the single clinic 

cHR. To compare the variation in wRHR with the variation cHR, we used the watch 

measurements during 1 week, 2 weeks and 1 month prior to the date of the clinic visit during 

the same time as the clinic visits (7:00 to 9:00). In the clinic, participants are required to rest 

by sitting upright for 5 min before the cHR measurement according to ACC and AHA 

guidelines39. We had n = 54 participants with cHR and cRTemp taken during smart watch 

wear (that is, with simultaneous clinical and wearables measurements). We compared the 

mean and variance of wRHR and wRTemp to cHR and cTemp and calculated the correlation 

coefficient between wRHR and cHR, and wRTemp and cTemp.

Wearable data feature engineering.

Our wVS feature engineering pipeline used a systematic, unbiased approach for subsetting 

and calculating standard descriptive statistics (eight statistical moments) on the continuous 

wearables data. From this pipeline we compiled a list of 5,736 possible features in our 

model. Based on discussion with five clinicians, we selected 153 features out of the 5,736 

that were most likely to be directly altered in a physiological state change that could be 

detected by the 44 clinical laboratory tests (Supplementary Table 2a). The digital biomarkers 
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generated using the schema in Fig. 2a were used as inputs into the model development 

pipeline (Fig. 2b). The time window of wVS measurements used in the feature calculations 

can vary. We first chose the 24-h period immediately preceding the clinic visit where the 

clinical laboratory test was done. Below, we demonstrate how the choice of time window 

affects the model accuracy.

Evaluating the relationship between wVS and clinical laboratory tests.

We built and tested models of varying complexity to predict clinical laboratory test values 

from wVS. We evaluate model performance as a function of the observed and predicted 

values of the dependent variable using the multiple correlation coefficient R corrected for 

leave-one-person-out cross validation.41,42 More specifically, we calculate the square root of 

the per cent variance explained by the model using the formula:

R = 1 − RSSm
RSS0

(1)

where RSSm is the residual sum of squares of the trained model on the test data and RSS0 is 

the equivalent for the null model. We define RSS as:

RSS = ∑
i

oi − pi
2

(2)

where oi are observed values and equation (1) is equivalent to the classical coefficient of 

determination, R2. For nonlinear models this value can be similarly interpreted as the 

proportion of variance of the dependent variable that is explained by the model. Moreover, 

the quantity RSSm/n, where n is the number of observations, is equivalent to the mean 

squared error.

We chose to report the R2 statistic rather than absolute errors in order to make all models 

presented in the study compatible, regardless of the machine learning methods used and the 

clinical labs being predicted. Algebraic transformations enable conversion from R2 to units 

of the laboratory test by computing

RMSE = σ 1 − R2 (3)

where RMSE is the root mean squared error and σ is the standard deviation of the laboratory 

test. We provide standard deviations of all laboratory tests in Supplementary Table 1b. 

Models were initially generated using only wVS, excluding demographic covariation, 

because we were interested in understanding how much of the variation in clinical laboratory 

tests could be explained directly by vital signs when no additional information is available 

(Fig. 3b). We also later tested the same models including demographic covariation. Testing 

models with and without demographic covariation is important for determining the 

robustness of the models and whether they can use sensor data alone to generate insights. 

Models that operate well with fewer inputs are more useful in low resource settings or in 

high privacy environments where gathering additional information about a patient can be 

difficult. To test and compare the wVS models, we built univariate and multivariate linear 
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regression, least absolute shrinkage and selection operator (Lasso) regularized regression, 

random forest, and canonical correlation models using the stats, glmnet, randomForest and 

PMA packages, respectively (R version 3.3.3). The univariate used only mean wRHR or 

mean wRTemp to predict each clinical laboratory test. The bivariate model included both 

wRHR and wRTemp, and the multivariate model included both the mean and standard 

deviation of these values. The 153 wVS engineered features were used in the Lasso and 

random forest models (Supplementary Table 3a). We used leave-one-person-out cross 

validation (LOPOCV) and the R reporting statistic to assess the accuracy of the models. In 

LOPOCV, for each subject in the dataset we train a model using a dataset without that 

subject and then we test model performance on that subject. Next, we average the errors 

across all subjects to obtain an estimate of the error outside of the training set.

Lasso.—To develop a regression model that can take advantage of the higher feature 

complexity made possible by using wVS as opposed to cVS, we used Lasso43,44 with the 

153 wVS features as predictors and each of the 44 clinical laboratory tests as outcomes 

(Supplementary Table 3a)44. We used the glmnet package (R version 3.3.3) to build each 

Lasso model LOPOCV loop to develop the overall model and an internal n-fold cross-

validation loop in which the model training data set from the outer loop is decomposed into 

a subsequent training or validation set to tune the lambda shrinkage parameter over 100 

possible values for lambda (nlambda = 100). We explored lambdas that minimize the cross-

validated error (lambda.min) or that minimize the cross-validated error plus one standard 

deviation (lambda.1se), which generally results in a more robust and parsimonious model. 

We determined the best fit Lasso models for each of the 44 clinical laboratory tests and 

explored the features that appeared the most frequently among the 44 Lasso models as well 

as features with the highest coefficients overall and in particular models. We also explored 

how varying the timespan used to calculate the model features affected the overall accuracy 

of the Lasso models (Extended Data Fig. 2a).

Random forest.—Given our finding that the slopes of the relationships between cVS and 

clinical labs often vary oppositely, we decided to use random forest nonlinear models45. We 

used the randomForest package in R to build separate models for each test. We evaluated the 

model following the same LOPOCV method and R reporting statistic. We used the default 

package parameters of 500 trees and 51 variables randomly chosen at each split (the number 

of features divided by 3).

Canonical correlation analysis.—An extension of linear models in the context of high-

dimensional data is to predict a weighted sum of tests rather than individual tests. 

Conceptually, this is motivated by the fact that variability in individual clinical laboratory 

tests from a certain group (for example, metabolic tests) can be correlated and therefore we 

may want to project them onto a single index to summarize this variability. To accomplish 

this, we searched to maximize the correlation between a linear combination of a subset of 

clinical laboratory tests and a linear combination of predictors. We grouped the clinical 

laboratory tests by physiological groups (Fig. 3a), which we use as the outcomes in the 

regularized CCA models, where the wVS features are the same as were used in the random 

forest and lasso models46. We used internal cross-validation over combinations c1, c2 ∈ (0.1, 
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0.5, 0.7) corresponding to aggressive, medium and conservative penalties, respectively, to 

choose the optimal parameters for each groups of tests46. We used LOPOCV and the R 
reporting statistic to assess the canonical correlation. CCA is a useful tool for finding 

relations between sets of variables, however it can handle only linear relations and, while we 

attempted to use a regularized version of CCA, there is no gold standard technique for 

solving the problem of sparse CCA. In light of recent developments in this area of high-

dimensional statistics we may expect further improvements in the robustness of these 

tools46,47.

Evaluating relationship between cVS and clinical laboratory tests.

We also built and tested models of varying complexity to predict clinical laboratory test 

values from cVS. For direct comparability with the wVS models built for the iPOP cohort, 

we built random forest and bivariate linear cVS models in the iPOP cohort using LOPOCV, 

using only individuals with ten or more observations of that clinical lab test. These cVS 

models used cHR and cTemp as variables, which are the two vital signs that were 

measurable both in the clinic and by the watch. We ran 1,000 bootstrapping trials to 

establish confidence bounds of the reporting statistic R. In each bootstrapping trial i we 

sampled observations with replacement, ran the training procedure, and recorded the Ri 

statistic on the test set. We report the mean of Ri as our R statistic and use the standard 

deviation of R to establish confidence bounds and P values. We defined the most accurate 

cVS models as those with P < 0.05 for correlation between observed and predicted values 

using Bonferroni correction for multiple hypothesis testing. For the Bonferroni correction 

we multiply the P values of models of all clinical tests by 44 (the number of models).

Exploring the importance of duration and proximity of monitoring.

We sought to discover whether there is an optimal number of observations, length of 

monitoring period, and proximity of monitoring to the date of the test being predicted to 

achieve the most accurate possible predictions. To explore how time affects the accuracy of 

the model predictions, we analyzed how the cVS mixed effects model accuracy changes with 

respect to the number of observations used to generate the model and the proximity of those 

observations to the date of the test being predicted. We used a relatively healthy iPOP 

participant with more than 60 clinic visits to test this concept. For the personal cVS model, 

we divided the number of visits in half and on each half we built models to predict the last 

three observations (test set). We trained the model using the last K observations prior to the 

observation that we want to predict. We varied K between 1 and 25 to find the number of 

observations optimal for predictions. We computed R from all six test values (three from 

each half). We used this approach to evaluate the models predicting HCT from cVS for this 

subject.

For the individual with the largest number of observations in both datasets we analyzed 

temporal variability of accuracy of cVS and iPOP models. Beginning from the tenth visit, 

we built a linear model to predict HCT for each subsequent visit using the last 10 visits. 

Given a small number of observations we aimed at building parsimonious models. For the 

cVS model we use pulse, temp, systolic and diastolic blood pressure, and respiration. For the 

iPOP model we use mean heart rate, skin temperature, galvanic skin response, step count 
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and resting heart rate. We predicted values of HCT using that model for the current and 

subsequent time points, and we computed the R statistic.

To explore the importance of the overall amount of wearables data from each individual used 

to develop the wVS model features, and the timespan of monitoring relative to the date of 

the clinical test, we developed retrospectively expanding windows of time from the date of 

the clinical laboratory test (1 day, 3 days, 1 week and 1 month before the date of the clinical 

laboratory test) where the data collected in that time window was used to calculate the wVS 

features. We also created a time window containing all wVS data collected before the 

clinical laboratory test. For each prediction, we tested five sets of wVS features, one per 

timespan, to regenerate the lasso and random forest models including demographics, and 

compared the accuracy of the models.

Personalized models.

To explore the capabilities of cVS models at the population level, we developed univariate 

and multivariate linear models and random forest models using the large population-level 

clinical dataset (n = 28,694 patients at Stanford Hospital). The most complex cVS 

multivariate linear model included all vital signs measured in the clinic (cHR, cTemp, 

systolic and diastolic blood pressure, and respiration rate), and we tested this model with and 

without demographic covariation. We also performed random forests using the same features 

from the complex multivariate model (see Methods, section on wVS model building). As the 

number of features in the cVS models was significantly lower than in the wVS models (5 

cVS features versus 153 wVS features), we did not perform the Lasso regression on the cVS 

models because it was not necessary to perform feature selection. We estimated the R 
reporting statistic used through cross-validation, dividing data into 50 equal partitions at the 

patient level, where each laboratory test in each partition was separated into 60% training 

data and 40% test data. To derive confidence bounds we repeated the procedure 1,000 times, 

sampling data with replacement.

We enhanced the most accurate wVS and cVS models that we developed previously, through 

design of personalized models that use the historical data from an individual as an additional 

input into the model. For the wVS and cVS random forest models, we included the personal 

identifier as a categorical feature. For the cVS linear regression models, we explored three 

methods of personalizing the models. First, we explored the personal mean; a simple 

intercept-only model using the personal mean (for example the mean of all previous results 

for the clinical laboratory test for that individual). Second, we examined cVS + personal 

mean; a model combining the personal mean and the multivariate cVS model. Last, we 

examined cVS + personal mean + personal slope; a mixed effects model allowing for 

variability of slope coefficients for each individual to account for random effects. To ensure 

a sufficient amount of historical data per individual in the cVS models, we chose only 

individuals with more than 50 clinic visits (213 people, mean of 111 and median of 117 

patients per test). The second and the last of these models were generated using the loess 

function from the stats package in R for local polynomial regression and personal slopes in 

the mixed effects models were generated using the lmer function from the lme4 package in 

R. To test the accuracy of the personal cVS linear models, we performed leave-one-test-
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result-out cross validation, holding out the last observation for each patient to be predicted 

using the model trained on all patients (including the one from which the observation was 

held out). We used bootstrapping to calculate the confidence bounds of R, the multiple 

correlation coefficient between the observed and predicted values.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

Intel Basis watch data are available on the Stanford iPOP site (http://ipop-data.stanford.edu/

wearable_data/Stanford_Wearables_data.tar) and in the Digital Health Data Repository48 

(https://github.com/DigitalBiomarkerDiscoveryPipeline/Digital_Health_Data_Repository/

tree/main/Dataset_StanfordWearables). Data that are unique to this study are included as 

source data and in the supplementary tables. Source data are provided with this paper.

code availability

R version 3.3.3 was used with the base packages and the following additional CRAN 

packages: stats, glmnet, lme4, randomForest and PMA. Custom scripts were used for data 

analysis and are open source via github.com/jessilyn/wearables_vitalsigns (https://doi.org/

10.5281/zenodo.4661493), and wearables data pre-processing scripts are available on the 

Digital Biomarker Discovery Pipeline (https://DBDP.org)48.
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Extended Data

Extended Data Fig. 1 |. Wearables temperature variations and extended modeling results.
a, Variations in wRTemp over course of the day. b, R statistics based on LOOCV for all tests 

from Fig. 3b. c, R statistics based on K-fold CV for all tests from Fig. 3b.
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Extended Data Fig. 2 |. Model accuracy changes over time based on window of historical data 
from an individual.
a, Lasso regularized regression using features calculated using different windows of 

wearable device monitoring. b, Accuracy of the HCT cVS mixed effects models over time 

for two example patients that were monitored between 2.5–5 years at Stanford hospital with 

>50 HCT observations at separate clinic visits. The HCT cVS mixed effects models 

demonstrate that the model accuracy changes over time, and particularly with a dramatic 

health event like a myocardial infarction (ICD code I21.4) (red vertical line) or a life-

threatening ED visit (blue vertical line; CPT code 99285).

Extended Data Fig. 3 |. Increasing amounts of personalized data open up new study and model 
possibilities.
a, Summary of different biomedical data collection modalities and the typical amount of 

data they result in. b, Demonstration of how the amount and modality of data collection 

(longitudinal continuous vs. discrete measurements) constrain the type and complexity of 

models that can be built from the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Overview of the iPOP wearables study.
a, Study design. b, Timespan of clinical monitoring per participant in the iPOP wearables 

cohort (left), and the total number of clinic visits per person (right). Each clinic visit 

included clinical lab tests. n = 54 study participants in each plot. c, Distribution of vital signs 

measured in the clinic and by the watch in the iPOP wearables cohort (n = 226 

measurements). The values of wRHR and wRTemp were computed by averaging the wHR 

and wTemp during periods in which no steps were taken, including all such periods that 

occurred 2 weeks before clinic visits during the same time period as the clinic visits (7:00 to 

9:00). Median values are indicated by dark blue vertical lines. d, Daily variation in median 

wRHR using multiple resting definitions (no steps or steps < 50 for a duration of 10 or 60 

min) (n = 54 participants with at least one cHR and cTemp measurement (2,145 observations 

in total) during wearables monitoring). e, Variance of wRHR using multiple resting 

definitions (no steps for a duration of 60, 10 or 5 consecutive min). Measurements of wRHR 

are taken from hours of the day corresponding to typical clinic visit times for a duration of 

either 1 week, 2 weeks or 1 month before the clinic visit. The average variance of wRHR 

across the nine different resting definitions is 53.2 and the variance of cHR is shown as a 

horizontal line at 93.2 bpm. n = 54 participants.
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Fig. 2 |. Methodology for predicting clinical laboratory measurements from vital signs collected 
using wearables.
a, Feature engineering pipeline to calculate potential digital biomarkers from continuous, 

longitudinal smart watch data. Statistical moments of the wVS, including heart rate, skin 

temperature, EDA and step counts, were subjected to thresholding based on the time of day, 

impact level of physical activity, and domain knowledge to reduce the size of the feature set. 

b, Overview of the modeling and analysis approach for this study, including the input data 

(left), statistical learning methods employed (middle) and model evaluation methodology 

(right).
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Fig. 3 |. Predicting clinical laboratory measurements from vital signs collected using wearables.
a, Physiological categories of clinical laboratory tests performed at clinic visits. ALB, 

albumin; ALKP, alkaline phosphatase; ALRCU, aluminum/creatinine ratio; ALT, alanine 

aminotransferase; AST, aminotransferase; BASO, relative basophil count; BASOAB, 

absolute basophil count; BUN, blood urea nitrogen; CHOL, total cholesterol; CHOLHDL, 

high-density lipoprotein/total cholesterol ratio; CR, creatinine; EOS, relative eosinophil 

count; EOSAB, absolute eosinophil count; GLOB, globulin; HbA1c, glycated hemoglobin; 

HDL, high-density lipoprotein; HSCRP, high-sensitivity C-reactive protein; IGM, 

immunoglobulin M; LDL, low-density lipoprotein; LDLHDL, LDL/HDL ratio; LYM, 

relative lymphocyte count; LYMAB, absolute lymphocyte count; NEUT, relative neutrophil 

count; NEUTAB, absolute neutrophil count; MCH, mean corpuscular hemoglobin; MCHC, 

mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; NHDL, non-

HDL cholesterol; RDW, red-cell distribution width; TBIL, total bilirubin; TGL, 

triglycerides; TP, total protein; UALB, urine albumin; WBC, white-blood-cell count. b, The 

models that most accurately predict clinical laboratory tests using vital signs measured by 

the watch (wVS, red triangles) compared to the clinic (cVS, blue and green circles) (P < 

0.05 for all except serum chloride (CL); correlation between observed and predicted values 

with Bonferroni correction). Points correspond to the mean R statistic derived by leave-one-

person-out cross validation for n = 54 study participants, and error bars represent the 95% 

confidence intervals derived by bootstrap with the procedure repeated 1,000 times. The wVS 

are random forest models using the 153 digital biomarkers from part c calculated on watch 

data from the day before the clinic visit. The cVS models are bivariate linear (blue) or 

random forest (green) models with cHR and cTemp as model features. All of the models are 

Dunn et al. Page 24

Nat Med. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cross validated using leave-one-person-out cross validation and confidence intervals are 

established using bootstrapping (P < 0.05). Clinical laboratory test colors correspond to 

physiology subsets from part a. c, The most accurate digital biomarkers selected out of the 

153 features in the wVS models in part b. The colors and large icon in the background of the 

squares correspond to the different wVS in the left side of Fig. 2a (pink heart, heart rate; 

blue droplet, EDA; tan thermometer, skin temperature; gray footprints, steps), and the 

foreground icons correspond to the thresholding criteria on the right side of Fig. 2a. 

Interpretations of colors and symbols are provided in part a. d, CCA using physiology 

categories from part a as outcome variables and the 153 digital biomarkers from Fig. 2a as 

model features (P < 0.05 for all CCA models). Points correspond to the mean correlation 

derived by leave-one-person-out cross validation for n = 54 study participants, and error bars 

represent 95% confidence intervals derived by bootstrap with the procedure repeated 1,000 

times.
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Fig. 4 |. Relationship between duration and proximity of monitoring and model accuracy.
a, The eight most accurate random forest models using varying time windows of wVS 

monitoring before the clinic test for calculating features as in Fig. 2a, and using leave-one-

person-out cross validation for n = 54 study participants. Points correspond to the mean R 
statistic and error bars represent 95% confidence intervals derived by bootstrap with the 

procedure repeated 1,000 times. b, Multiple correlation coefficient (R) of the predicted 

versus observed values in the personal HCT cVS mixed effects model and wVS personal 

random forest model over time for the most frequently sampled iPOP study participant (a 

Dunn et al. Page 26

Nat Med. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mainly healthy individual), with simultaneous smart watch monitoring and frequent clinic 

sampling over a 2.5-year period. The clinic visits demarcated with arrows correspond to a 

viral infection (left and middle arrows) and a traumatic biking accident resulting in an ED 

visit (right arrow). c, Accuracy (R) of the HCT ~ All Vitals model in the iPOP participant 

from part a versus the number of clinic visits that were used to develop the model.
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Fig. 5 |. Personalized models improve predictions of clinical laboratory tests from vital sign 
measurements.
a, Comparison of five models predicting clinical laboratory test values in the SEHR dataset 

for patients with more than 50 observations for each clinical laboratory test (average n = 117 

patients per test; the number of patients varies for each test). The models include the 

personal mean of the test for a patient (red), the linear clinic vitals (cVS) model (~All Vitals) 

(olive green), the personal mean + linear cVS model (green), the personal cVS random 

forest model (blue), and the linear mixed effects models using the personal mean and slope + 

cVS (purple). Points correspond to the mean R statistic derived by cross validation and error 

bars represent 95% confidence intervals derived by bootstrap, repeating the procedure 1,000 

times. b, Study summary and results. Font sizes of clinical labs correspond to the overall 

predictive ability of the models developed in this study.
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