Table A2.
Unstandardized and Standardized Parameter Estimates of Initiation Model.
b | SE | p * | β | |||
---|---|---|---|---|---|---|
Initiation Model | ||||||
x14 | ← | Advantages | 1.000 | - | - | 0.682 |
x15 | ← | Advantages | 1.326 | 0.122 | <0.001 | 0.907 |
x16 | ← | Advantages | 1.310 | 0.118 | <0.001 | 0.907 |
x17 | ← | Advantages | 1.319 | 0.127 | <0.001 | 0.847 |
x18 | ← | Advantages | 1.221 | 0.115 | <0.001 | 0.750 |
x19 | ← | Disadvantages | 1.000 | - | - | 0.344 |
x20 | ← | Disadvantages | 1.623 | 0.301 | <0.001 | 0.565 |
x21 | ← | Disadvantages | 2.292 | 0.393 | <0.001 | 0.766 |
x22 | ← | Disadvantages | 2.284 | 0.399 | <0.001 | 0.793 |
x23 | ← | Disadvantages | 1.212 | 0.234 | <0.001 | 0.486 |
x24 | ← | Behavioral Confidence | 1.000 | - | - | 0.737 |
x25 | ← | Behavioral Confidence | 1.072 | 0.065 | <0.001 | 0.815 |
x26 | ← | Behavioral Confidence | 1.060 | 0.065 | <0.001 | 0.773 |
x27 | ← | Behavioral Confidence | 1.180 | 0.071 | <0.001 | 0.915 |
x28 | ← | Behavioral Confidence | 1.150 | 0.065 | <0.001 | 0.895 |
x29 | ← | Physical Environment | 1.000 | - | - | 0.925 |
x30 | ← | Physical Environment | 0.965 | 0.048 | <0.001 | 0.818 |
x31 | ← | Physical Environment | 1.014 | 0.047 | <0.001 | 0.862 |
Initiation | ← | Advantages | 0.594 | 0.135 | <0.001 | 0.249 |
Initiation | ← | Disadvantages | −0.446 | 0.169 | <0.001 | −0.130 |
Initiation | ← | Behavioral Confidence | 0.545 | 0.113 | <0.001 | 0.371 |
Initiation | ← | Physical Environment | 0.223 | 0.102 | <0.001 | 0.156 |
Advantages |
![]() |
Disadvantages | −0.052 | 0.019 | <0.001 | −0.248 |
Behavioral Confidence |
![]() |
Advantages | 0.243 | 0.033 | <0.001 | 0.500 |
Behavioral Confidence |
![]() |
Disadvantages | −0.128 | 0.036 | <0.001 | −0.380 |
Physical Environment |
![]() |
Advantages | 0.257 | 0.032 | <0.001 | 0.515 |
Physical Environment |
![]() |
Disadvantages | −0.099 | 0.031 | <0.001 | −0.286 |
Physical Environment |
![]() |
Behavioral Confidence | 0.592 | 0.060 | <0.001 | 0.730 |
* Marker variable p values are from tests of standardized effect significance. ← represents connections between nodes (variables). indicates covariance of residuals between sets of variables.