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Abstract

Due to the high cost of flow and mass cytometry, there has been a recent surge in the development of computational
methods for estimating the relative distributions of cell types from the gene expression profile of a bulk of cells. Here, we
review the five common ‘digital cytometry’ methods: deconvolution of RNA-Seq, cell-type identification by estimating
relative subsets of RNA transcripts (CIBERSORT), CIBERSORTx, single sample gene set enrichment analysis and
single-sample scoring of molecular phenotypes deconvolution method. The results show that CIBERSORTx B-mode, which
uses batch correction to adjust the gene expression profile of the bulk of cells (‘mixture data’) to eliminate possible
cross-platform variations between the mixture data and the gene expression data of single cells (‘signature matrix’),
outperforms other methods, especially when signature matrix and mixture data come from different platforms. However, in
our tests, CIBERSORTx S-mode, which uses batch correction for adjusting the signature matrix instead of mixture data, did
not perform better than the original CIBERSORT method, which does not use any batch correction method. This result
suggests the need for further investigations into how to utilize batch correction in deconvolution methods.
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Introduction
There are many players involved in the tumorigenesis and
inflammatory processes triggered by cancer treatments, includ-
ing necrotic cells, wild-type and mutant epithelial cells and
immune cells such as dendritic cells (DCs), macrophages and T
cells. It has been shown that prognosis is strongly correlated
with the quality of immune reactions in tumors regardless
of the stage of the cancer [1]. For instance, a high expression
of Th17 markers is linked to poor prognosis in patients with
colorectal cancer, whereas patients with high expression of the
Th1 markers have improved survival [2].

In many cancers, including colon cancer, microbial antigens
trigger and maintain an inflammatory response. For example,
in some colon cancers, DCs are maturated by falsely recognizing
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commensals as pathogens. Mature or activated DCs promote
differentiation of naive T cells into effector T cells and natural
killer T cells [3]. Activated effector T cells stimulate macrophages
by releasing pro-inflammatory cytokines, and activated pro-
inflammatory macrophages produce IL-6, IL-12 and TNF-α
[4, 5], which promote the release of IL-6 by CD4+ T cells [6, 7]. The
release of IL-6 by macrophages and CD4+ T cells enhances tumor
cells’ growth in colon cancer [8–10]. As a result, mutant and wild-
type epithelial cells receiving proliferation signals compete to
divide and take over the available empty spaces generated by
treatments. The rate of occurrences of each of these reactions
depends on the number of each cell type in the tumor. For this
reason, the outcome of cancer treatments depend on the number
and interaction networks of each cell type.
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Many experimental approaches such as single-cell analy-
sis tools (including immunohistochemistry, flow cytometry and
mass cytometry) have been utilized to document tumor immune
infiltrates. However, these methods are expensive and time-
consuming [11] because they require laboratories, professionals
and equipment. Obtaining the gene expression levels of a bulk of
cells has become easier and cheaper thanks to new advances in
high-throughput RNA-sequencing tools [12]. Therefore, several
deconvolution methods (DMs) have been developed in recent
years to estimate the relative abundance of each cell type in a
bulk of cells, such as tumors, from their gene expression profiles.
This process of digitally estimating the distribution of cell types
from bulk gene expression data has also been referred to as
digital cytometry [13].

In 2009, Abbas et al. [14] proposed estimating the percentage
of cell types from microarray data with a linear model Xβ = y.
In this simple model, the vector β is the percentage of each
cell type in the mixture data y and X is a signature matrix, in
which each column is a reference expression vector of a cell
type and the rows are genes. To get more robust results, in
2015, Newman et al. [15] used the machine learning technique
of support vector regression (SVR) to estimate the vector β.
Additionally, score-based models that use the single-sample
gene set enrichment analysis (ssGSEA) [16] and single-sample
gene set scoring (SingScore) [17] methods have been developed.
These methods use reference sets of genes that are upregulated
and downregulated in each cell type, in place of a signature
matrix, and use a rank-based metric to evaluate the relative
enrichment of a gene set within mixture data. More recently,
in 2019, Newman et al. [13] developed CIBERSORTx by extending
their original CIBERSORT method with a batch correction step
to eliminate the effect of cross-platform variations in data sets.
Here, we provide a review of these five digital cytometry methods
that have been used for tumor deconvolution.

Methods
There are two main categories of digital cytometry methods:
linear models and rank-based models. Here, we review three
common linear models—Deconvolution of RNA-Seq (DeconR-
NASeq) [18], CIBERSORT [15] and CIBERSORTx [13]—and two
rank-based models [19], ssGSEA DM [16] and Single-sample Scor-
ing of molecular phenotypes Deconvolution Method (SingScore)
DM [17].

Linear models

Deconvolution of RNA-Seq

DeconRNASeq [18] treats the deconvolution task as a linear
regression model with constraints on the model coefficients.
This method assumes that the total expression level of a gene
in a sample is the sum of all the expression levels of the given
gene in all cells in the sample.

DeconRNASeq takes as input the gene expression profile of
a sample tissue, called mixture data, and a ‘signature matrix’
where each column is a ‘typical’ gene expression of a cell type.
The method outputs the fractions of each cell type included in
the signature matrix for the given sample. The general formula
for this model is given as

y = Xβ. (1)

Here, y denotes the observed gene expression level vector of
a sample (mixture data), X denotes the signature matrix where
each column is the gene expression level of a specific cell type
and β is the vector of estimated proportions of cell types.

DeconRNASeq finds the estimated proportions of cell types
(β) by minimizing the following objective function:

∥∥y − Xβ
∥∥2 s.t.

∑
i

βi = 1 and βi ≥ 0, ∀i, (2)

where βi is the estimated proportion of cell i in the sample. By
minimizing this objective function, the linear regression model
finds the coefficients that result in the smallest sum of squared
difference between the observed and the predicted expression
levels in the sample. The constraints are designed to make sure
that the cell proportions are positive and add up to 1. The
optimization procedure is done using quadratic programming
[20–22].

Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT)

Like DeconRNASeq, CIBERSORT [15] assumes that the total
expression level of a gene in a sample is the sum of expression
levels of that gene in all the cells in that sample. CIBERSORT
utilizes a machine learning technique called Support Vector
Regression (SVR) for estimating cell proportions. Unlike linear
regression, which tries to find the linear function that minimizes
the sum of squared error, SVR tolerates a margin of error ε and
only tries to minimize the sum of absolute error of data points
that lie outside this margin of error. In particular, CIBERSORT
uses the ν-SVR algorithm for this task. The general formula
for CIBERSORT is the same as DeconRNASeq (Equation (1)).
Similar to DeconRNASeq, CIBERSORT takes mixture data and
a signature matrix as input and returns the model coefficient β

as estimated fractions of each cell type in the sample. The only
difference between these two methods is their optimization
procedure; CIBERSORT finds β by minimizing the following
objective function:

1
2

‖β‖2 + C

(
νε + 1

N

N∑
i

(ξi + ξ ∗
i )

)
(3)

s.t. yi − ŷi ≤ ε + ξi and ŷi − yi ≤ ε + ξ ∗
i and ξi, ξ ∗

i ≥ 0.

Here, ε is the margin of error and (ξi + ξ ∗
i ) is the absolute error of

data points that lie outside the margin of error ε. ν is a model
hyperparameter that gives an upper bound on the fraction of
training error and a lower bound on the fraction of support
vectors. Thus, the value of ν is between 0 and 1.

Since y is a linear combination of X (Equation (1)), CIBERSORT
uses a linear kernel in ν-SVR. Unlike DeconRNASeq, CIBERSORT
does not put any constraints on the model coefficient β during
optimization, and there is no guarantee that elements of β will
be nonnegative and add up to 1. Thus, after the optimization
process, CIBERSORT sets any negative coefficients to 0 and then
normalizes the coefficients such that they sum to 1.

CIBERSORTx method

Since the gene expression data sets can be collected through
completely different experimental settings with the use of differ-
ent experimentation plans, platforms and methodologies, there
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are undesired batch effects in the gene expression values. These
technical variations can in some cases be as large as the biologi-
cal variations between different cell types [23]. It has been shown
that the ComBat algorithm [24] can effectively remove these
unwanted variations from bulk RNA-Seq data [23]. Newman
et al. [13] introduced CIBERSORTx, which extends CIBERSORT by
adding batch correction using ComBat to address the possible
cross-platform variations in gene expression data sets. CIBER-
SORTx introduces two strategies for batch correction: B-mode
and S-mode.

CIBERSORTx B-mode. As in CIBERSORT, mixture datum y is
modeled as a linear combination of signature matrix X and cell
fractions β.

y = Xβ.

The algorithm of CIBERSORTx B-mode is as follows:

1. Use CIBERSORT to obtain estimated fractions β̂ from mix-
ture data y and signature matrix X.

2. Create estimated mixture data ŷ, where ŷ = Xβ̂.
3. Use ComBat [24] to eliminate the cross-platform variation

between y and ŷ, producing adjusted mixture data yadj.
4. Use CIBERSORT to estimate final cell fractions β from yadj

and X.

CIBERSORTx S-mode. When the technical variation between
signature matrix and mixture data is more severe, Newman et al.
[13] recommend to use S-mode, which adjusts the signature
matrix instead of mixture data. As input, S-mode requires the
mixture data y and the set of single-cell reference profiles R from
which the signature matrix X was derived. R consists of single-
cell transcriptomes from different cell types, typically multiple
transcriptomes per cell type. The gene expression profile of each
cell type in X is constructed by aggregating the corresponding
single-cell transcriptomes in R. CIBERSORTx S-mode estimates
cell fractions in the following way:

(1) Let μ = [μ1, ..., μc] be the fractions of each cell type from X in
R and σ = 2μ.

(2) Generate artificial cell fractions β∗ by drawing from normal
distribution Normal(μ, σ ).

(3) Set negative values of β∗ to 0 and normalize β∗ so its
components sum to 1.

(4) Sample single-cell transcriptomes from R according to β∗

and add them together to create artificial mixture data y∗.
(5) Use ComBat [24] to eliminate the cross-platform variation

between y and y∗, producing adjusted mixture data yadj and
y∗

adj.
(6) Use nonnegative least squares to find Xadj that minimizes

(y∗
adj − Xadjβ

∗)2 such that Xadjij ≥ 0 for all i, j.
(7) Use CIBERSORT to estimate final cell fractions β from origi-

nal y and Xadj.

Rank-based models

Single sample Gene Set Enrichment Analysis Deconvolution Method
(ssGSEA DM)

All above-mentioned linear models rely on a signature matrix to
deconvolve a bulk of cells using its gene expression profile. How-
ever, obtaining an accurate signature matrix is very challenging
in practice because factors such as variations in experimental
settings and laboratory measurements can bias the signature

matrix [25]. Fortunately, the most highly expressed genes for any
given cell type are usually consistent across different laborato-
ries and conditions. The DM based on single sample gene set
enrichment analysis (ssGSEA) only uses these highly expressed
genes of each cell type, here called cell signatures or upregulated
gene sets, instead of a signature matrix.

The ssGSEA method [25], which is a modification of gene set
enrichment analysis (GSEA) [26], was developed in order to get
an enrichment score for a single sample instead of two groups
of samples. Here, we call the method developed by Senbabaoglu
et al. [16], which utilizes the ssGSEA score specifically for the
digital cytometry task, ssGSEA DM. This method takes mixture
data and sets of highly expressed genes for each cell type as
input and returns the enrichment score for each cell type. The
algorithm of ssGSEA DM is as follows:

1. Order mixture data by absolute expression from highest to
lowest.

2. Replace gene expression values in mixture data by their
ranks.

3. For each gene i, in the ordered rank data from step 2,
compute the following:

Pw
G (G, y, i) =

∑
rj∈G,j≤i

|rj|α

∑
rj∈G |rj|α , (4)

PNG(G, y, i) =
∑

rj /∈G,j≤i

1
(N − NG)

, (5)

where G is the given cell signature, containing NG upregu-
lated genes, y is the mixture data, containing N genes, rj is
the rank of a gene j, and α is a parameter in (0, 1].

4. The enrichment score for the sample y and cell signature G
is given by:

ES(G, y) =
N∑

i=1

[Pw
G (G, y, i) − PNG(G, y, i)] . (6)

The enrichment score of the cell signature G tells us the rel-
ative fraction of the cell type with cell signature G. For example,
assume T cells and B cells respectively have the cell signatures G1

and G2. If the enrichment score of the cell signature G1 is higher
than the enrichment score of the cell signature G2, we conclude
that the number of T cells is higher than the number of B cells
in the mixture data.

SingScore DM

SingScore [17] stands for single-sample scoring of molecular
phenotypes. Similar to ssGSEA DM, SingScore DM uses enriched
gene sets instead of a signature matrix for performing digital
cytometry. While ssGSEA DM only uses a set of upregulated
genes for each cell type, SingScore DM has the option to use
both upregulated and downregulated gene sets for each cell type.
Thus, SingScore DM takes as input a set of upregulated genes and
an optional set of downregulated genes for each cell type along
with the mixture data and outputs a score for each cell type. The
algorithm of SingScore DM is as follows:

1. Order mixture data by gene expression levels from highest
to lowest.

2. Use the top half of genes in the sample as the up-set and the
bottom half as the down-set. An important remark is that
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these up-set and down-set genes of the sample are different
from the upregulated and downregulated gene sets of each
cell type.

3. Rank these genes in ascending order for up-set and
descending order for down-set.

4. For a given cell type and its upregulated gene set Gup and
downregulated gene set Gdown, calculate the following:

Sdir,i =
(∑

g∈Gdir
Rg

dir,i

Ndir,i

)
(7)

where dir is the gene set direction (up-/down-regulated), Sdir,i

is the score for sample i against the directed gene set, Rg
dir,i is

the rank of gene g in the directed set from the sample (up-
set or down-set), Ndir,i is the number of genes in Gdir that are
observed within the mixture data.

5. Calculate the normalized score:

S̄dir,i = Sdir,i − Smin,i

Smax,i − Smin,i
(8)

where Smin,i = Ndir,i+1
2 and Smax,i = 2Ntotal,i−Ndir,i+1

2

6. Calculate output score for sample i:

S̄total,i = S̄up,i + S̄down,i. (9)

Similar to ssGSEA DM, the output scores of SingScore DM algo-
rithm are the relative levels of each cell type in the sample, rather
than the actual fractions.

Approach
To compare the performance of the above-mentioned methods
on the deconvolution task, we generate simulation data with
known mixing fractions and signal-to-noise ratio (SNR) ranging
from 100:5 to 100:50 (n = 100 samples for each SNR). We use
two different signature matrices: LM22 [15] and LM6 [27] for
DeconRNASeq, CIBERSORT and CIBERSORTx. LM22 is derived
from microarray data and consists of 547 gene expressions for 22
leukocytes, while LM6 is derived from RNA-Seq data and has 684
gene expressions for 6 leukocytes. These signature matrices are
also used to derive the upregulated gene sets used for ssGSEA
DM and SingScore DM. We note that the single-cell reference
profiles needed to run CIBERSORTx S-mode are not available for
the LM6 signature matrix; hence, this method is excluded from
the LM6 results.

We construct the simulation data in the following manner:
first, ‘known’ mixing fractions for a sample are obtained by
drawing random numbers from Uniform(0, 1) and then normal-
ized so that the fractions in a sample sum to 1. Mixture data are
then formed by a linear combination of the LM22 source gene
expression profile and the known mixing fractions, where LM22
source gene expression profile is the gene expression profile
used to create LM22, before the gene selection step. Noise is
induced to the simulation data by adding values drawn from
Normal(0, k

100 · σ ), where σ is the global standard deviation of the
original simulation data without noise and k is an integer. This
results in an SNR ratio of 100:k for a given value of k. We create
10 sets of simulated data with k chosen from 5 to 50, in steady
increments of 5, resulting in SNR ratios ranging from 100:5 to
100:50.

It is conceivable to encounter mixture data that consist of
more cell types than those available in the signature matrix. To
test for each method’s robustness to this phenomenon, we delete
a few cell types in the signature matrix LM22 and run all five
methods using the simulated mixture data with two signature
matrices: reduced LM22 and the original LM6.

We also apply these methods on two experimental data sets:
whole blood RNA-Seq data with ground truth cell fractions esti-
mated by flow cytometry (n = 12) (available on Gene Expression
Omnibus under the accession number GSE127813 [13]) and PBMC
microarray data with ground truth fractions estimated by flow
cytometry (n = 20) (available on Gene Expression Omnibus under
the accession number GSE65133 [15]). Although these data sets
come from different platforms, we cannot make any conclusive
statements that these methods perform better on RNA-Seq than
on microarray data due to the limited availability of data sets
with ground truth fractions. For each experimental data set, we
run all five methods with the original LM22 and the original LM6.

To facilitate a fair comparison of the performance of the
five DMs, we want the signature matrix used in linear methods
to come from the same database as the gene sets used in
rank-based methods. Thus, we use the data sources of LM22
to create upregulated gene sets for ssGSEA DM and SingScore
DM by applying a method similar to [28]. First, we separate the
samples in the single-cell reference profiles of LM22 into groups
according to their cell type. For each gene, we calculate the
difference between the minimum expression in the group of
interest and the highest mean expression of all other groups. If
this difference is greater than a threshold, we select this gene
as an upregulated gene for the cell type of the analyzed group.
We do this for every group to select the highly expressed genes
in each cell type-specific group. We apply the same technique
to derive upregulated gene sets from LM6. However, since we do
not have access to the reference profiles of LM6, we apply this
technique on LM6 itself. These gene sets derived from LM22 and
LM6 are available for download on our GitHub page (see Data
Availability section).

We ran the above digital cytometry methods using the fol-
lowing software:

• DeconRNASeq package in R for DeconRNASeq,
• CIBERSORT’s R source code for CIBERSORT,
• CIBERSORTx’s website application for CIBERSORTx,
• gsva package in R for ssGSEA DM,
• SingScore package in R for SingScore.

Each of these methods has its own form of normalization
in its algorithm. In ssGSEA DM and SingScore DM, the
normalization is not applied on the input mixture data, and since
input gene sets are only lists of gene names, no normalization
can be applied here either. The only normalization in rank-
based methods is applied on output scores at the end of the
algorithm, thus making output scores nicer for visualization
without changing the correlation of the predicted values with
the ground truth fractions. On the other hand, CIBERSORT and
CIBERSORTx use z-score normalization on their inputs (the
signature matrix and mixture data) as a mandatory initial
step in their software, and DeconRNASeq software provides
an option to first standardize the input mixture data. The
results of these linear models with normalization will differ
from those without. CIBERSORT and CIBERSORTx also have
optional quantile normalization on the input mixture data. This
quantile normalization is recommended for microarray data
but not for RNA-Seq data. Since the PBMC microarray data set
has been previously normalized with the limma package in R,
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Figure 1. Results on simulation data with different SNR from 100:5 to 100:50. Note in A and B, the ssGSEA results align with SingScore. A–D: mean correlation between

flow cytometry cell fractions and predicted cell fractions obtained from running methods with reduced LM22, across different noise levels. A: sample-level Pearson

correlation, B: sample-level Spearman correlation, C: cell-level Pearson correlation, D: cell-level Spearman correlation. F–I: mean correlation between flow cytometry

cell fractions and predicted cell fractions obtained from running methods with LM6, across different noise levels. F: sample-level Pearson correlation, G: sample-level

Spearman correlation, H: cell-level Pearson correlation, I: cell-level Spearman correlation.

using ‘normexp’ background correction with negative controls
[15], and the whole blood data set is RNA-Seq data, we use
CIBERSORT and CIBERSORTx without quantile normalization
in this study. For DeconRNASeq, ssGSEA DM and SingScore DM,
we use normalization (which is the default setting for these
methods).

We note that since rank-based methods output relative
scores as opposed to frequencies, we cannot use traditional
metrics such as mean square error to compare the performance
of each method to the original data. Thus, we instead consider
four different measures of correlation: Pearson correlation per
sample, Pearson correlation per cell, Spearman correlation
per sample and Spearman correlation per cell. Correlation
per sample between estimated and true fractions tells us how
well a method estimates the relative frequency of all cell types
in a given sample, while correlation per cell tells us how well
a method estimates the relative frequency of a given cell type
between all samples.

Results
Analysis of simulation data

We create simulation data as described in the Approach section
and apply each of the above-mentioned methods with both
the reduced LM22 and the original LM6 signature matrices
(or corresponding derived gene sets for rank-based methods).
For all methods and signature matrices, the Pearson and
Spearman correlation results are consistent with one another.
With reduced LM22, the more noise is added to the data set,
the lower the correlations observed between the ground truth
fractions and the methods’ predictions, with the following
exceptions: the sample-level correlation of DeconRNASeq,
ssGSEA DM and SingScore DM does not vary much when the

signal to noise changes (Figure 1A and B). For LM22, CIBERSORT
and CIBERSORTx B-mode perform best on data with high signal
to noise. The batch correction in CIBERSORTx does not appear
to improve the method for this simulated data; however, we
note that the simulated data and signature matrix are both
derived from LM22, and therefore, there should not be any cross-
platform variation to eliminate. Interestingly, DeconRNASeq
with reduced LM22 performs just as well as CIBERSORT and
CIBERSORTx when the noise level is high.

For all methods with LM6, cell-level correlations with
true fractions again decrease as noise increases, but sample-
level correlations stay roughly the same across all noise
levels (Figure 1E–H). The insensitivity to the noise levels of
sample-level results with LM6 could be due to the fact that
simulation data were created using LM22 source gene expression
profile instead of LM6. When LM6 is used, CIBERSORT and
CIBERSORTx B-mode again perform best per sample, although
correlations are lower than with reduced LM22. Figure 1E and F
shows that CIBERSORTx B-mode outperforms CIBERSORT
with LM6, suggesting that CIBERSORTx B-mode is better than
CIBERSORT when the signature matrix and mixture data are
from different platforms. Interestingly, DeconRNASeq with
LM6 performs worst per sample (Figure 1E and F) but best per
cell (Figure 1G and H). The poor performance per sample of
DeconRNASeq with LM6, but strong performance with LM22,
may indicate DeconRNASeq’s lack of robustness when signature
matrix comes from a different platform than mixture data. It
is worth noting that the rank-based methods perform poorly
across all noise levels with both signature matrices. In particular,
rank-based methods produce very low sample-level correlations
with ground truth fractions (Figure 1A, B, E and F).

In addition to examining the mean correlations, we created
box plots of the 100 different sample-level correlations and
the 16 (LM22) or 6 (LM6) different cell-level correlations, using
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Figure 2. Results on simulation data with SNR 100:10. A–D: box plots of correlations between ground truth cell fractions and predicted cell fractions obtained from

running methods with LM22. A: sample-level Pearson correlation, B: sample-level Spearman correlation, C: cell-level Pearson correlation, D: cell-level Spearman

correlation. F–I: box plots of correlations between ground truth cell fractions and predicted cell fractions obtained from running methods with LM6. F: sample-level

Pearson correlation, G: sample-level Spearman correlation, H: cell-level Pearson correlation, I: cell-level Spearman correlation.

the simulation data generated with SNR 100:10 (Figure 2). We
observe in Figure 2A, B, E and F that the variances in sample-
level correlations, particularly with LM6, are quite large for all
methods. The cell-level correlation plots (Figure 2C and D) show
that while CIBERSORT and CIBERSORTx with LM22 produce
results that are highly correlated (r > .75) with the ground
truth for all individual cell types besides CD4 memory resting T
cells, the other methods show a larger variation in performance
among the different cell types. In particular, we note that
DeconRNASeq does a poor job predicting the number of resting
NK cells, bringing down the method’s mean correlation per cell
with LM22. However, this observation does not hold when LM6 is
used. This may help explain the discrepancy in DeconRNASeq’s
performance in mean cell-level correlation with LM22 and LM6.
With LM6, all methods besides DeconRNASeq do a poor job
predicting the relative number of CD4 T Cells but do a great job
predicting the relative level of neutrophils.

Analysis of whole blood data

We obtain the ground truth fractions of neutrophils, lympho-
cytes, monocytes, T cells, CD8+ T cells, CD4+ T cells, B cells and
NK cells for whole blood data (GSE127813) from CIBERSORTx [13]
and compare them with the corresponding estimated fractions
obtained using the above-mentioned methods. Since LM22 has
22 leukocytes, we sum the estimated fractions of certain cell
sub-types to match them with the ground truth cell types. For
example, we sum the estimated fractions of CD4+ naive T cells,
CD4+ memory resting T cells and CD4+ memory-activated T
cells to compare it with the ground truth fraction of CD4+ T
cells. However, there are still eight leukocytes that do not have
a similar match to the categories of the ground truth cells, and
so we exclude them from our analysis. These cell types are
macrophages (M0, M1, M2), DCs (resting, activated), mast cells
(resting, activated) and eosinophils. Hence, we do not expect
estimated percentages to sum precisely to 1. A similar procedure
is applied to the results obtained with LM6, and we end up
comparing estimated fractions and ground truth fractions in
neutrophils, monocytes, T cells, CD8+ T cells, CD4+ T cells, B
cells and NK cells.

In agreement with the simulation data results, the linear
methods perform better in overall than the rank-based methods
in terms of correlation per sample (Figure 3A, B, F and G).
Of all the methods, CIBERSORT and CIBERSORTx B-mode
again perform best per sample, both with LM22 and LM6,
while CIBERSORTx S-mode performs worse than these two.
DeconRNASeq performs much better in terms of Pearson
correlation (and slightly better in terms of Spearman correlation)
with the use of LM22 than with LM6. On the other hand, ssGSEA
DM and SingScore DM perform very poorly with gene sets from
LM22 (Figure 3A and B) but do a better job with gene sets from
LM6 (Figure 3F and G). We should note that sample-level Pearson
correlations of ssGSEA DM and SingScore DM are low for both
gene sets, but since Pearson correlation is not a good measure
for rank-based results, we should focus on Spearman correlation
when analyzing the performance of these two methods.

With regard to correlation per cell, CIBERSORT and CIBER-
SORTx B-mode perform best with LM22 (Figure 3C and D). In
contrast to the simulation data results, rank-based methods
perform best with LM6 (Figure 3H and I), though CIBERSORT and
CIBERSORTx B-mode are not far behind. DeconRNASeq performs
the worst out of all methods with LM6 but still achieves cell-
level Pearson and Spearman correlations > 0.6. CIBERSORTx S-
mode performs very well but still worse than original CIBERSORT
and CIBERSORTx B-mode. In particular, all linear methods do a
somewhat poor job predicting NK cells, compared with other
cell types and rank-based methods do a poor job at predicting
monocytes.

Overall, CIBERSORT and CIBERSORTx give the best results for
the whole blood data set (Figure 3). Among CIBERSORT models,
CIBERSORTx S-mode performs poorly but still gives relatively
good results in terms of Spearman correlation with ground
truth fractions (Figure 3 B and D). The comparison between
Figure 3A and F shows that DeconRNASeq results are very
different between LM22 and LM6, suggesting that DeconRNASeq
is very sensitive to the signature matrix. In combination with
the analysis of DeconRNASeq in simulation data, this result
indicates that DeconRNASeq’s performance is highly dependent
on the compatibility between signature matrix and mixture
data.
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Figure 3. Results on whole blood data. A–D: box plots of correlations between flow cytometry cell fractions and predicted cell fractions obtained from running methods

with LM22. A: sample-level Pearson correlation, B: sample-level Spearman correlation, C: cell-level Pearson correlation, D: cell-level Spearman correlation. E: stacked bar

charts of predicted cell fractions by each method with LM22 and ground truth flow cytometry cell fractions. F–I: box plots of correlations between flow cytometry cell

fractions and predicted cell fractions obtained from running methods with LM6. F: sample-level Pearson correlation, G: sample-level Spearman correlation, H: cell-level

Pearson correlation, I: cell-level Spearman correlation. J: stacked bar charts of predicted cell fractions by each method with LM6 and ground truth flow cytometry cell

fractions.

Lastly, we compare the cellular profiles generated by each
method to the ground truth fractions in Figure 3E and J. Since
ssGSEA DM and SingScore DM return enrichment scores instead
of estimated fractions, the total sum of the output scores for each
sample does not need to be less than or equal to 1. As mentioned
earlier, since they are rank-based, we should not expect them to
produce scores close to ground truth fractions, but rather hope
to see their output scores consistent with the ranks of true frac-
tions (i.e. if neutrophils have the highest number in the ground
truth data, we would expect these methods to give neutrophils
the highest score among all cell types). However, ssGSEA DM
and SingScore DM estimate similar scores of cell types for dif-
ferent samples, even though ground truth fractions differ across
samples (Figure 3E and J). Linear methods, on the other hand,
are able to capture the difference in distribution of fractions
across samples. Although fractions estimated by CIBERSORT and
CIBERSORTx do not completely match the ground truth frac-
tions, these methods do succeed in capturing important patterns
such as the relative levels of neutrophils, T cells, B cells and
NK cells in samples. All methods overestimate the fraction of B
cells, and all but DeconRNASeq with LM22 drastically underesti-
mate the fraction of neutrophils (Figure 3E). The two rank-based

methods, ssGSEA DM and SingScore DM, produce similar output
scores to each other. CIBERSORT and CIBERSORTx are expected
to give similar estimated fractions since they both use ν-SVR and
the only difference is that CIBERSORTx uses batch correction
before applying ν-SVR. We observe a slight improvement in
performance with CIBERSORTx compared with CIBERSORT for
this data set.

Analysis of PBMC data

PBMC data, (GSE65133) [15], includes flow cytometry fractions for
naive B cells, memory B cells, CD8+ T cells, CD4+ naive T cells,
CD4+ memory resting T cells, CD4+ memory-activated T cells, γ δ

T cells, NK cells and monocytes. Following the same procedure as
mentioned before, we compare the estimated fractions to flow
cytometry fractions of naive B cells, memory B cells, CD8+ T cells,
CD4+ naive T cells, CD4+ memory resting T cells, CD4+ memory-
activated T cells, γ δ T cells, NK cells and monocytes for LM22 and
B cells, CD8+ T cells, CD4+ T cells, NK cells and monocytes for
LM6.

We repeat the correlation analysis with the PBMC data set,
and the sample-level results are somewhat different from our
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Figure 4. Results on PBMC data. A–D: box plots of correlations between flow cytometry cell fractions and predicted cell fractions obtained from running methods with

LM22. A: sample-level Pearson correlation, B: sample-level Spearman correlation, C: cell-level Pearson correlation, D: cell-level Spearman correlation. E: stacked bar

charts of predicted cell fractions by each method with LM22 and ground truth flow cytometry cell fractions. F–I: box plots of correlations between flow cytometry cell

fractions and predicted cell fractions obtained from running methods with LM6. F: sample-level Pearson correlation, G: sample-level Spearman correlation, H: cell-level

Pearson correlation, I: cell-level Spearman correlation. J: stacked bar charts of predicted cell fractions by each method with LM6 and ground truth flow cytometry cell

fractions.

findings from the whole blood data set. In general, the rank-
based methods perform much better in terms of correlation
per sample on the PBMC data than on the other two data sets,
while DeconRNASeq performs considerably worse. With LM6,
sample-level Spearman correlations show high variance across
samples for all methods (Figure 4F and G). This implies that all
methods have an inconsistent behavior, i.e. for some samples
they perform better than other samples. However, it is worth
noting that there are only five cell types overlapping between
LM6 cell types and ground truth cell types. The sample-level
correlation across only five cell types is susceptible to being low
when only one or two cell types are poorly predicted, and as seen
in Figure 4H and I, these methods do a poor job estimating the
relative frequency of B cells with LM6. In fact, we also observe
high variance in LM6 sample-level results on the simulation
data (Figure 2G), where the number of cell types (six) is small
as well and the poor estimation of CD4 T cells likely contributes
to some samples having low correlation with true fractions with
all methods. Overall, CIBERSORT, CIBERSORTx B-mode, ssGSEA

DM and SingScore DM perform better per sample than Decon-
RNASeq and CIBERSORTx S-mode with LM22 (Figure 4A and B),
and Figure 4F and G indicates no significant differences in per-
formance between linear models and rank-based methods with
LM6.

With regard to cell-level correlation, CIBERSORT and CIBER-
SORTx B-mode again perform best with the LM22 signature
matrix, while the rank-based methods perform considerably
worse compared with the whole blood and simulation data
(Figure 4C, D, H and I). However, when LM6 is used, the rank-
based methods outperform the linear models (Figure 4H and I).
All methods except DeconRNASeq with LM22 signature matrix
do well on predicting the number of CD8+ T cells and monocytes.
Additionally, all methods but DeconRNASeq with LM6, ssGSEA
DM and SingScore DM with LM22 show high correlations with
the ground truth for NK cells. CIBERSORT and CIBERSORTx B-
mode with LM22 signature matrix are the only methods for
which the majority of cell types have correlation coefficients
r > 0.5. However, even these methods struggle to accurately
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Table 1. Method run times per sample (mean +/- standard deviation, in milliseconds)

Whole blood PBMC Simulation

(58 581 genes/sample) (34 694 genes/sample) (11 845 genes/sample)

LM22 LM6 LM22 LM6 LM22 LM6
DeconRNASeq 53.11 ± 1.93 41.23 ± 0.81 21.65 ± 0.54 18.86 ± 0.55 12.87 ± 0.14 11.97 ± 0.09
CIBERSORT 325.23 ± 15.11 181.84 ± 8.11 354.68 ± 16.29 109.9 ± 5.67 158.79 ± 9.09 80.73 ± 4.66
ssGSEA 1296.12 ± 53.3 293.59 ± 13.85 115.7 ± 4.72 73.81 ± 2.91 64.24 ± 1.33 39.91 ± 0.66
SingScore 13.93 ± 0.49 7.04 ± 0.35 6.36 ± 0.24 1.66 ± 0.11 1.39 ± 0.02 1.27 ± 0.01

predict the number of CD4+ memory resting T cells and γ δ

T-cells with LM22 (Figure 4C and D), as well as the number of B
cells when using LM6 (Figure 4H and I).

Similar to the whole blood data set, we also plot the predicted
cellular profiles estimated by the methods in a stacked bar chart,
along with the ground truth fractions (Figure 4E and J). We again
note that we have omitted cell types that were present in the
signature matrix but not in the PBMC data. Hence, we do not
expect the frequencies to necessarily sum to 1. The rank-based
methods do a slightly better job at capturing variations among
samples in this data set as compared with the whole blood data.
However, the CIBERSORT methods, particularly CIBERSORTx B-
mode, again exhibit the best overall performance.

Discussion
As mentioned in the Approach section, the normalization in
linear methods can affect their performance on the deconvo-
lution of bulk gene expression data. Unlike CIBERSORT and
CIBERSORTx, DeconRNASeq does not have clear guidance on
whether to use its normalization and when to use it. We tried
DeconRNASeq both with and without normalization on our
data sets. DeconRNASeq with normalization gives overall better
results in the whole blood and PBMC data sets and gives similar
results to without normalization in simulation data. However,
we would like to note that just because DeconRNASeq with
normalization works better on these specific data sets does
not mean it would work better on other data sets as well. One
positive aspect of the linear methods’ normalization is that it
helps these algorithms converge faster and easier, which reduces
the run time significantly.

We provide a comparison of each of these methods’ run time
per sample in Table 1. The run time for each of the three data
sets was calculated as the average of 20 runs, using a 2.5 GHz
Intel Core i7 CPU with 16 GB of RAM, and then normalized by
the number of samples in the data set. All methods besides
CIBERSORTx were run in R. We note that the CIBERSORTx team
provides a web portal to run their software, removing any depen-
dencies on hardware or software. Therefore, it would not be a
fair comparison to include this method in Table 1. While the
original CIBERSORT also has a web portal to run the method, we
used the CIBERSORT R source code to record time to compute
while making sure that the results from the R code are identical
to those from the web portal. We note that CIBERSORTx takes
longer than CIBERSORT, since the method runs batch correction
before applying CIBERSORT. SingScore is the fastest of the five
methods, followed by DeconRNASeq, while ssGSEA and CIBER-
SORT are significantly slower. Unsurprisingly, all methods run
faster with the smaller LM6 signature matrix than with LM22.
In general, the run time per sample also decreases for data sets
with a smaller number of genes per sample.

As discussed in the Results section, rank-based methods
tend to estimate very similar scores across samples, while lin-
ear models are able to capture some variations in fractions
among samples (Figure 3E and J and Figure 4E and J). Since rank-
based methods use the rank of the genes instead of the actual
expression value in the calculation of output score, as long as
the genes have the same ranks across samples, ssGSEA DM
and SingScore DM will output the same scores across samples
(even when these genes have very different expression values
across samples). Thus, rank-based methods can still successfully
estimate the ranks of frequencies between cell types but might
fail to estimate the relative frequencies of a given cell type
in samples. This is, in fact, the main disadvantage of rank-
based methods, as mentioned in Table 2 where we discuss the
advantages and disadvantages of each digital cytometry method.
There has been a novel attempt, introduced by Aran et al. [29], to
transform enrichment scores to make them more comparable
with cell fractions. These transformed enrichment scores are
intended to be more on the same range with cell fractions but
are not designed to be used in place of cell fractions. Converting
enrichment scores to cell fractions is generally a hard problem,
since enrichment scores are derived using only ranks of the
genes instead of gene expression values themselves.

The rank-based methods generally perform better in terms
of all four correlation metrics when the upregulated gene sets
came from the same platform as the mixture data. In particular,
for the microarray PBMC and simulation data, ssGSEA DM and
SingScore DM results have higher correlations with the ground
truth when using LM22 (derived from microarray data) compared
with LM6 (derived from RNA-Seq data). Similarly, for the RNASeq
whole blood data, ssGSEA DM and SingScore DM results are
more correlated with ground truth fractions when using LM6
compared with LM22.

We further note that the rank-based methods analyzed in
this study were originally introduced for the task of analyzing
the enrichment of a gene set in a single sample and have
recently been adopted for the digital cytometry task. Enrich-
ment analysis refers to a group of methods for determining
a set of enriched genes either in a sample or between two
groups of samples. There are three generations of enrichment
analysis methods: overrepresentation analysis, functional class
sorting techniques and pathway topology-based techniques [19].
Both ssGSEA and SingScore belong to the second-generation,
functional class sorting techniques. To the best of our knowl-
edge, among all enrichment analysis methods, only these two
single-sample enrichment methods have been used for digital
cytometry. It would be worth exploring whether adopting other
single-sample enrichment methods for digital cytometry would
lead to better results.

In terms of linear methods, throughout this study, we have
seen good performance from both CIBERSORT and CIBERSORTx
B-mode. Since CIBERSORTx uses batch correction to account
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Table 2. Advantages and disadvantages of methods

Methods Advantages Disadvantages

DeconRNASeq • Outputs are cell fractions
• Open-source implementations available in
Python and R
• Quick run time

• Requires a signature matrix as an input
• Performance is highly dependent on the
compatibility between signature matrix and mixture
data

CIBERSORT • Outputs are cell fractions
• Open-source implementations available in
Python and R
• Web portal available for running method
• Good performance on digital cytometry
task

• Requires a signature matrix as an input
• Slow run time

CIBERSORTx
B-mode

• Outputs are cell fractions
• Web portal available for running method
• Good performance on digital cytometry
task
• Eliminates the batch effect between
signature matrix and mixture data by
adjusting mixture data

• Requires a signature matrix as an input

CIBERSORTx
S-mode

• Outputs are cell fractions
• Web portal available for running method
• Eliminates the batch effect between
signature matrix and mixture data by
adjusting signature matrix

• Requires a signature matrix as an input
• Does not perform as well as CIBERSORTx B-mode

ssGSEA DM • Does not require a signature matrix; it only
uses the upregulated gene sets of each cell
type
• Open-source implementations available in
Python and R

• Outputs are scores for each cell type rather than
cell fractions
• Produces similar scores for samples with varying
distributions of cell types
• Slow run time

SingScore DM • Does not require a signature matrix; it can
use both upregulated and downregulated
gene sets of each cell type
• Open-source implementations available in
Python and R
• Quick run time

• Outputs are scores for each cell type rather than
cell fractions
• Produces similar scores for samples with varying
distributions of cell types

for cross-platform variation between the signature matrix and
mixture data, we should expect CIBERSORTx to perform at
least as well as CIBERSORT when signature matrix and mixture
data come from different platforms. Indeed, we see marginal
improvements of CIBERSORTx B-mode over CIBERSORT in both
PBMC and simulation data with LM6 (Figures 1E–H and 4F—I)
where mixture data come from microarray data and signature
matrix comes from RNA-Seq data, and qualitatively similar
performance between CIBERSORTx B-mode and CIBERSORT
in whole blood data with LM22 (Figure 3A–D) where mixture
data comes from RNA-Seq data and signature matrix comes
from microarray data. In fact, CIBERSORTx B-mode slightly
outperforms CIBERSORT in both PBMC and whole blood
experimental data sets regardless of signature matrix used.
However, CIBERSORTx B-mode underperforms CIBERSORT by
a small margin in the simulation data with LM22, raising the
possibility that batch correction may negatively affect the
performance of CIBERSORT if signature matrix and mixture data
come from the exact same platform.

Newman et al. [13] mention that CIBERSORTx B-mode
should be used when signature matrix is derived from bulk
sorted reference profile or when the technical variation
between signature matrix and mixture data is moderate,

while CIBERSORTx S-mode should be used when this variation
is high. Figures 3A–D and 4A–D show that CIBERSORTx S-
mode performs worse than both original CIBERSORT and
CIBERSORTx B-mode in both experimental data sets, suggesting
that the technical variation between LM22 and these data
sets is not high. These results also suggest that it is better
to use CIBERSORTx B-mode than CIBERSORTx S-mode when
the technical variation between signature matrix and mixture
data is low. We would like to mention that many studies
on tumor micro-environment have recently utilized digital
cytometry methods, most commonly CIBERSORT/x [30–35] and
ssGSEA [36–40], and two separate studies on blood leukocyte
and tumor infiltrating leukocytes enumeration indicate that
iSort, a transcriptome DM based on CIBERSORTx, achieves highly
accurate and robust results for both blood and tumor samples
[41, 42].

Conclusion
We compare five common digital cytometry methods, including
three linear models and two rank-based methods, on simulation
data, whole blood RNA-Seq data and PBMC microarray data.
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Rank-based methods ssGSEA DM and SingScore DM give con-
flicting results between sample-level and cell-level correlation
with ground truth fractions and overall perform worse than
linear methods. DeconRNASeq’s performance depends heavily
on how comparable the signature matrix and mixture data are.
CIBERSORT and CIBERSORTx B-mode perform the best among all
mentioned methods based on sample-level and cell-level Pear-
son and Spearman correlation with ground truth cell fractions
for all three data sets, regardless of the signature matrix used.
CIBERSORTx B-mode tends to slightly outperform CIBERSORT,
especially when signature matrix and mixture data come from
different platforms. CIBERSORTx S-mode, however, does not per-
form as well. This suggests further investigation into the way
batch correction is used for adjusting the signature matrix in
order to eliminate the technical variations between signature
matrix and mixture data.

Key Points
• Linear digital cytometry methods perform better than

ranked-based methods.
• The rank-based ssGSEA and SingScore DMs estimate

similar scores for cell types across different samples,
even though ground truth fractions differ across sam-
ples.

• CIBERSORTx B-mode outperforms DeconRNASeq,
CIBERSORT, CIBERSORTx S-mode, ssGSEA and
SingScore DMs.

• Although the batch correction method introduced
in CIBERSORTx B-mode to adjust the mixture data
improves the performance of the model, the batch
correction method used in CIBERSORTx S-mode, to
adjust the signature matrix rather than the mixture
samples, does not improve performance for the tests
performed.

Data Availability
The PBMC data set and its flow cytometry fractions are available
on the CIBERSORT website at https://cibersort.stanford.edu
under the name ‘Fig 3a PBMCs Gene Expression’ and ‘Fig 3a
PBMCs Flow Cytometry’, respectively. The whole blood data set
is available on Gene Expression Omnibus with identifier GSE
127813, and its flow cytometry fractions are available on the
CIBERSORTx website at https://cibersortx.stanford.edu under
the name ‘Ground truth whole blood (txt)’. The simulation data
created for this study, as well as the upregulated gene sets we
derived from LM22 and LM6, can be found on our github page.
The data portion of our github repository is located at https://
github.com/ShahriyariLab/TumorDecon/tree/master/TumorDe
con/data. The simulation data and gene sets can be found
under the names ‘Simulation_data’, ‘LM22_up_genes.csv’ and
‘LM6_up_genes.csv’, respectively.
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