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Abstract

Sequencing technologies have led to the identification of many variants in the human genome which could act as
disease-drivers. As a consequence, a variety of bioinformatics tools have been proposed for predicting which variants may
drive disease, and which may be causatively neutral. After briefly reviewing generic tools, we focus on a subset of these
methods specifically geared toward predicting which variants in the human cancer genome may act as enablers of
unregulated cell proliferation. We consider the resultant view of the cancer genome indicated by these predictors and
discuss ways in which these types of prediction tools may be progressed by further research.
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Background
Next generation sequencing technologies have led to the
identification of many variants in the human genome which
could drive disease. To distinguish sequence variants which
are causatively neutral from active disease-drivers, a variety of
prediction tools have been proposed covering single nucleotide
variants (SNVs), short insertions and deletions (indels) and other
types of driver. A number of types of data are prospectively
informative for distinguishing disease-drivers from neutral
variants. For example, one type of data would be sequence
conservation: if a variant occurs in a genomic region which
is highly conserved across species, then the variant has a
higher probability of being pathogenic relative to a variant in
a region where there has been substantial variation. Sequence
conservation is an indicator of functional significance. Examples
of suitable conservation measures would include PhyloP [1],
PhastCons [2] and FATHMM [3] scores. Another informative
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feature would be the normalized ratio of non-synonymous to
synonymous variants (dN/dS): a coding variant which does not
result in an amino acid substitution has a higher probability of
being benign. The functional consequence of a variant is also
informative: it may be a missense variant or create a stop codon,
for example. Sequence uniqueness within the genome is also
useable data: unique regions may have a higher expectation
of being functionally significant. These, and a variety of other
types of data, may carry information indicating if a variant in the
genome could be pathogenic, or neutral in effect, though a priori
we do not know if a particular type of data is actually useful and
to what extent.

In consequence, tools for predicting the possible pathogenic
impact of a variant are commonly based on machine learning
and use of data integration methodologies over differing types
of data. Henceforth, we will refer to these different types of
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input data as feature groups. For example, our own FATHMM-XF
classifier [4] is used for predicting the disease-driver status of
SNVs. If restricting to coding SNVs in the genome, FATHMM-XF
uses six feature groups which it draws from 27 possible feature
groups, which might be informative.

In this context, two broad approaches to data integration
could be described as data-level integration and the usage of
ensembles of classifiers. For data-level integration a typical
approach may be multiple kernel learning (MKL) [5, 6]. Data can
appear in a wide variety of forms such as discrete or continuous
numbers, sequence strings or graphs, for example. All such
prospective feature groups can be encoded into respective
kernel matrices which encode the similarity of data objects [7].
These component kernel matrices are weighted by the MKL
algorithm, according to relative informativeness, and used
to construct a composite kernel matrix which is used in the
decision function of a classifier. An example of such a variant
effect predictor using MKL would be our FATHMM-MKL tool [8].
Of course, we do not know if a given feature group is actually
informative or the information it contains is implicit in another
feature group, and therefore potentially redundant. However, if
uninformative or redundant, an efficient MKL algorithm should
zero-weight its contribution to the composite kernel. With an
ensemble of classifiers, each component classifier can handle
an individual data type, and a variably weighted or uniformly
weighted combination of these base classifiers is used for the
classification task. An example of the latter approach would be
the REVEL predictor [9].

Many further variations on this general approach are possi-
ble. We could simply use all the data in one single data matrix:
such an approach is used by the predictor DANN [10], based on
a deep learning neural network. The use of such a single data
matrix would allow an algorithm to capture information about
co-associations between different types of data. However, this
approach could have the disadvantage of potentially incorpo-
rating noise from uninformative data, hence degrading perfor-
mance. This problem can be mitigated by using a greedy sequen-
tial learning method in which we start with the most informative
feature group, with the highest accuracy on validation data, and
aggregate further feature groups until the validation accuracy
plateaus or falls. At this point we exit the learning process and
proceed to test accuracy evaluation on independent unseen data.
Such a sequential learning method can also be used with an
ensemble of classifiers or applied to multiple kernel learning. In
Ying et al. [11], we established that sequential learning applied
to multiple kernel learning led to a significantly more accurate
classifier in some biomedical data integration prediction tasks,
and in Rogers et al. [12], we established such a test accuracy gain
over FATHMM-MKL for SNV pathogenicity prediction. The result
of using these various integrative approaches is that an accurate
classifier can be built based on a set of feature groups which,
taken individually, may only be weakly informative.

For diseases which are not cancer, quoted test accuracies of
these integrative predictors is high. For example, for the latest
update of CADD [13], test accuracies of approximately 90% are
reported for SNV prediction in coding regions of the human
genome. Via benchmarking studies across different methods,
such test accuracies have been reproduced, and it is becoming
increasingly common to provide a Docker image [14], enabling
other groups to replicate or extend findings. Databases have
also been published tabulating these predictions and which
also afford easier comparisons across different methods [15,
16]. For diseases other than cancer, these tools have been used
to identify pathogenic variants driving rare-variant disease, for
example, juvenile open angle glaucoma [17], argininosuccinate

lyase deficiency [18] and corticobasal degeneration [19]. For these
reasons, the American College of Medical Genetics and Amer-
ican College of Pathologists (ACMG/AMP) variant classification
guidelines recommend the use of these classification tools [20].

Tables 1 and 2 list some commonly used generic tools in
this context. These listings are not exhaustive, and we do not
pursue a comparative performance study here, since a number
of thorough benchmarking studies have already been published
[20, 34, 35]. The methods in Table 1 directly use genomic and
other types of data, while those listed in Table 2 use predic-
tions from already published predictors, thereby leveraging a
test accuracy improvement by including further types of data.
Alternatively, we could simply use an ensemble of previously
published predictors, perhaps weighting the contributions of
these individual predictors by relative accuracy.

Some methods in Tables 1 and 2, such as SIFT, only cover
prediction in coding regions while others, such as CADD, cover
both coding and noncoding regions. Some methods cover pre-
diction with SNVs, others cover indel prediction only [36], while
others, such as CADD [13], cover both within the same package.
To assist with the interpretation of results from these predic-
tors, genomic visualization tools have been proposed [37], in
addition to comprehensive software suites, such as CRAVAT
[38], which provides extensive annotation, interpretation and
visualization.

Cancer-Specific Predictors
These generic tools have been used with some success for
prediction with cancer genome data [39] or used as compara-
tor models with the proposal of more cancer-specific meth-
ods [40]. However, benchmarking studies [34] show a clear test
accuracy gain for cancer-specific methods over these generic
tools. Smaller in number, relative to generic predictors, Table 3
presents some of the main methods. One dedicated tool is
CHASM [29, 41], which ranks somatic driver variants for specific
cancer types using a Random Forest classifier. CHASM provides
P-values and false discovery rate (FDR) measures for deriving the
ranking score and it is trained on positives (disease-drivers) from
the COSMIC cancer archive [48] and simulated neutral variants.
For example, Carter et al. [49] generated simulated neutral sub-
stitutions by random sampling from a multinomial distribution,
which has a dependence on the genomic context, and cancer
type, and takes into account the dinucleotide double-stranded
structure of DNA. CHASM is accessible within CRAVAT [38], which
provides a user-friendly interface for assessing and prioritizing
possible driver-genes and driver variants responsible for unreg-
ulated cell proliferation. CRAVAT handles both germline and
somatic variants and can indicate predicted impact on protein
function via the associated Variant Effect Scoring Tool (VEST)
[29]. As discussed below, prediction of the driver status of vari-
ants within coding regions of the human cancer genome is cur-
rently more tractable than prediction within noncoding regions.
FunSeq2 [45] is specifically focused toward variants within non-
coding regions of the cancer genome and uses genomic and
cancer annotation data with a variant prioritization pipeline.
The pipeline generates a weighted score based on sequence
conservation data, loss- or gain-of-function for transcription-
factor binding, enhancer-gene linkage and other features. Other
cancer-specific methods, such as CanDrA and TransFIC, use pre-
dictions from pre-existing variant effect predictors. For example,
TransFIC [47] uses a transformation based on variant distribu-
tion differences between germline and cancer somatic SNVs to
modify scores provided by well-known tools, SIFT, Polyphen2 and
MutationAssessor, to the case of cancer somatic variants.
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Table 1. Some commonly used tools for predicting the pathogenic impact of variants in the human genome. Except for Eigen and Eigen-PC,
most methods use supervised learning. Most methods use data integration, utilizing conservation measures, functional annotations and other
feature groups to optimize prediction accuracy

Name Method and features used Reference

CADD Logistic regression model trained with a wide variety of genomic
features. Uses proxy neutrals estimated from the last human-ape
genome divide and simulated de novo variants for proxy deleterious.

Kircher et al. [21]
Rentzsch et al. [13].

DANN Deep neural network using conservation measures, epigenomics
and genomic data.

Quang et al. [10]

Eigen Eigen-PC Unsupervised learning methods using genomics, functional
annotations and epigenomics.

Ionita-Laza et al. [22]

FATHMM-MKL
FATHMM-XF

Multiple kernel learning and a later gradient boosting method using
conservation measures, genomic and epigenomic features.

Shihab et al. [8]
Rogers et al. [4]

Mutation Taster 2 Naive Bayes classifier using conservation measures, regulatory and
genomic features.

Schwarz et al. [39]

Polyphen2 Naive Bayes classifier using sequence and structure-based features. Adzhubei et al. [24]
PON-P2 Random Forest classifier, scoring amino acid substitutions as

pathogenic, neutral or unknown, using conservation, functional
and structural annotations.

Niroula et al. [25]

PROVEAN Alignment scores based on sequence homology. Choi et al. [26]
SIFT
SIFT4G

Position-specific scoring matrix derived from sequence homology Ng et al. [27]
Vaser et al. [28]

VEST Random Forest method using conservation measures, protein
structural measures, genomic and amino acid features.

Carter et al. [29]

Table 2. Some further generic tools for predicting the pathogenic impact of variants in the human genome. These are examples of methods
which use pre-existing prediction methods to leverage performance either by using further data or by using an ensemble of pre-existing tools,
prospectively weighted by relative accuracy

Name Method and features used Reference

DEOGEN2 Random Forest classifier using PROVEAN gene pathway,
evolutionary and other features.

Raimondi et al. [30]

GAVIN Using a gene-specific calibration approach enhances test
accuracy of CADD scores.

Van de Velde et al. [31]

M-CAP Gradient boosting tree classifier using 9 pre-existing tools
(CADD, SIFT, FATHMM, etc) and other features, such as genomic
and conservation measures.

Jagadeesh et al. [32]

MutPred2 Random Forest based method using SIFT, conservation
measures and protein function and structural measures.

Li et al. [33]

REVEL Random Forest classifier using 13 established tools such as
VEST, FATHMM, SIFT and others.

Ioannidis et al. [9]

Table 3. A set of prediction tools specialized to predicting the disease-driver status of variants in the human cancer genome. Although the
generic predictors of Tables 1 and 2 have been used successfully for variant prediction in the cancer genome, more specialized methods would
be expected to achieve higher test accuracy. As for generic predictors, some methods are trained directly from data, while others, such as
CanDrA and TransFIC, use predictions from pre-existing variant effect predictors

Name Method and features used Reference

CHASM Random Forest method using evolutionary and structural features. Carter et al. [29]
Tokheim et al. [41]

CRAVAT4 An evolving suite of informatics tools for mutation interpretation and impact
prediction.

Masica et al. [38]

CScape Gradient boosting (sequential learner) using evolutionary and genomic features Rogers et al. [42]
CScape-somatic Similar to CScape except distinguishes rare from recurrent somatic SNVs using

cancer data only.
Rogers et al. [43]

FATHMM-cancer Using evolutionary data, a predecessor to CScape. Shihab et al. [44]
FunSeq2 Scoring scheme, using conservation, regulatory and other measures. Prioritizes

cancer somatic variants, especially for regulatory noncoding mutations.
Fu et al. [45]

CanDrA Support Vector Machine method using 10 published predictors (CHASM, SIFT and
others) and evolutionary, structural and gene features.

Mao et al. [73]

TransFIC Scoring method utlilizing SIFT, Polyphen2 and MutationAssessor Gonzalez-Perez [47]



4 Rogers et al.

Table 4. Some typical feature groups which may be informative for discriminating SNV-drivers from neutrals in the context of cancer. Some
feature groups may only be informative for coding, or alternatively for noncoding regions: for example, an indicated amino acid substitution
under Consequence is only relevant to coding regions. During an additive sequential learning process, some feature groups may be discarded
because only weakly informative or because the information is implicit in already learnt data. For the ENCODE feature group, and for
construction of our CScape predictor, only four groups of data within this feature group yielded discriminatory information among variants
in noncoding regions, and none in coding regions. However, this is not an indicator that this data source is inherently uninformative: in this
case sparse coverage of data across the genome appeared to limit its use

Feature group Description

Conservation Variants within highly conserved regions are more likely to be disease-drivers relative to variants within
regions with high variability across species. Multispecies comparison can be achieved using a variety of
evolutionary conservation scores derived, for example, from Phastcons [2] or PhyloP [1].

Sequence Sequence comparison of k-mers within a region before, and after, a mutation has occurred within a
sequence. This type of measure may carry information covering susceptibility of sequence regions to
oncogenic mutation.

Genomic context Covering GC content, repeat regions, measures of region uniqueness and other genomic context measures.
Consequence Covering the consequences of a variant, such as a resultant amino acid substitution, or the truncation of a

transcript. In [42], we used 35 attributes within this feature group covering a wide variety of possible
variant consequences such as transcript ablation, a splice acceptor variant, a stop or start loss, or an
incomplete terminal codon variant.

ENCODE Information from the ENCODE [50] database, such as the ratio of non-synonymous to synonymous mutations
(dN/dS), histone modification data from ChIP-Seq peak calls, open chromatin, methylation, gene
expression or transcription factor binding site data from PeakSeq and SPP.

In a recent paper we proposed CScape [42], a machine-
learning-based tool for predicting the driver status of SNVs in
the human cancer genome. This tool was based on an integrative
classifier which could use up to 30 feature groups to predict if
an SNV was acting as a driver, or was neutral, with the addition
of a confidence measure attached to this class assignment. In
Table 4, we describe some of the feature groups used for the
construction of CScape (see [42] for a more detailed discussion).
This table is only illustrative since the feature groups used will
depend on the classification task considered, feature groups can
be discarded using sequential learning because uninformative
but also because the information is implicit in an already used
feature group, and feature groups may be inherently useable
but discarded, or down-weighted, because data acquisition is
sparse across the genome (see our mention of ENCODE data in
Table 4).

CScape was trained using putative drivers identified as recur-
rent SNVs observed in tumors and extracted from the COS-
MIC database [48]. The neutrals were represented by variants
extracted from the 1000 Genomes database [51]. After training,
the method is tested on unseen data to evaluate class assign-
ment on novel instances. One such test evaluation mode is leave-
one-chromosome-out cross validation (LOCO-CV), in which the
classifier is trained on all the chromosomes except one, with
performance evaluated on the held-out chromosome. The held-
out chromosome is then consecutively rotated through all chro-
mosomes to gain an averaged test accuracy performance. The
method was also evaluated on data from the International Can-
cer Genome Consortium [52] and The Cancer Genome Atlas [53].
Using LOCO-CV and balanced (50:50) test data, CScape had a test
accuracy of 72.3% in coding regions of the cancer genome and
62.3% in noncoding regions. Performance for coding regions is
presented in Figure 1 where the P-score on the x-axis is the con-
fidence measure for assignment as a driver (1 is the maximum
confidence that the SNV is a predicted driver, 0 the maximum
confidence of a neutral SNV). At a threshold of 0.89 on this
confidence, the classifier can achieve a test accuracy of 91.7%,
however, this level of accuracy is only achieved at 17.7% of
nucleotide positions in the cancer genome.

Figure 1. y-axis: the proportions for correct prediction of disease-drivers (posi-

tives, light gray) and neutrals (negatives, dark gray) against P-score (x-axis: the

confidence an SNV is a driver), evaluated on unseen test data. These predictions

are for SNVs in coding regions of the human cancer genome and the methodology

behind this plot is more fully described in Rogers et al. [42].

For cancer-specific classifiers, such as CScape, construction of
a set of positives (disease-drivers) looks tractable: for SNVs we
could consider variants which are recurrently observed among
tumors at a given location and which are also absent from
healthy individuals. For the negatives (neutrals), we could create
simulated neutral variants or, as with many of the generic tools
discussed to date, use germline variants drawn from samples
derived from healthy subjects. Databases for the latter could be
1000 Genomes project data [51], or more recent databases such as
GnomAD [54]. One issue with using germline variants as neutrals
is that the somatic variants driving cell proliferation are dis-
tributed differently from germline variants. As previously men-
tioned, sequence conservation is a useful feature group for indi-
cating a pathogenic SNV. However, somatic variants are typically
distributed within more evolutionary conserved regions and
germline within less conserved. Unfortunately, the sequence
conservation feature groups, and other feature groups similarly
affected, are typically those groups informative for distinguish-
ing neutrals versus driver SNVs. Discrimination could therefore
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be influenced by the distinction of germline versus somatic,
rather than neutral versus disease-driver.

To investigate this issue, we recently proposed CScape-somatic
[43], an integrative classifier for predictively discriminating
between recurrent and rare variants in the human cancer
genome. This predictor is trained purely on cancer genome
data. One class consists of rare occurrence somatic variants
satisfying r = 1 (occurs once in the COSMIC data used). The other
class is significantly recurrent somatic single point mutations
in the human cancer genome (highly recurrent variants with
a recurrence of r ≥ 8 in noncoding regions and r ≥ 7 in coding
regions). Of course, rare (r = 1) somatic variants could be rare
drivers and highly recurrent variants confined to cancer samples
could actually be passengers if, say, co-located with a driver.
However, it is probable that rare somatic variants are enriched
for neutrals and highly recurrent are enriched for drivers. In
any case, we find [43] that a classifier can be constructed
to predictively distinguish these two classes with reasonable
LOCO-CV test accuracy: so they must have distinguishing
characteristics. Tested on unseen cancer somatic SNVs, CScape-
somatic achieves 74% balanced accuracy for predictive dis-
crimination in coding regions and 69% in noncoding regions,
while even higher accuracy may be achieved using thresholds
to isolate high-confidence predictions. This investigation,
though, does highlight the importance of finding an unbiased
class of negative (neutral) examples, when constructing these
predictors. Similarly, there are issues involved in defining the
positive set of driver examples, for example, the choice of
threshold on the recurrence rate of a variant confined to cancer
genomes only.

The Resultant View of the Cancer Genome
Aside from building prediction tools, it is important to inves-
tigate the resultant view of the cancer genome which derives
from the use of these tools. This will give insights into the
biological validity of these methods, their current shortcomings
and opportunities for future development.

In a recent study [55], we explored the view of the cancer
genome which derives from CScape. This study indicated that
the mean number of SNVs acting as drivers in coding regions is
very small in size, though very variable by cancer type. Of course,
there are a vast number of locations in the genome where drivers
can be located. However, a particular clone will typically have a
very small set of such SNV-drivers, generally single or low double
digits. Hypermutation [56] was excluded from our study. Sam-
ples exhibiting hypermutation were easy to identify since the
predicted driver count is very distinct, generally of the order of
hundreds of predicted SNV-drivers. Our study suggested a mean
of 14.9 SNV-drivers in coding regions, taken across the 25 types
of cancer included in the survey, and excluding those tumors
exhibiting hypermutation (this mean is quoted for an FDR of
5% [55]). Some types of cancer had exceptionally low numbers
of predicted coding SNV-drivers: this included neuroblastoma,
thyroid cancer and renal cell carcinoma (RECA).

Low mean counts for SNV-drivers in coding regions has been
argued by previous authors [57, 58], for example, by Martincorena
et al. [59] in a recent study using a different argument based
on the normalized ratio of non-synonymous to synonymous
mutations (dN/dS). They also used a different dataset (we use
ICGC data [52] in the discussion below, they used TCGA data [53]).
Though with a similar variability by cancer type, an apparent
point of difference is that Martincorena et al. argue for a lower
mean count of only four SNV-drivers in coding regions, across

the range of cancers they consider, which partly overlaps the
25 cancer types in our own survey. One reason for a difference
can be alternative choices for the statistical significance level.
However, a second difference originates more subtly from the
classifier. To avoid bias, CScape was trained on balanced data
by class, and hence would be expected to predict with approx-
imately balanced false positives and false negatives. However,
the number of true positives (SNV-drivers) is evidently very small
in size, from the discussion above, and hence the classifier has
a potential bias toward overestimating the number of positives:
errors are accumulating at an equal rate for false positives and
negatives but the positive class is actually very small in size.
In consequence, a higher accuracy predictor is likely to predict
fewer SNV disease-driver positives. Thus, these two estimation
approaches do not necessarily disagree, but await more accu-
rate prediction. CScape does have the major advantage over
dN/dS of putatively identifying those SNVs which are driving cell
proliferation.

The discussion just presented appears to ignore one issue:
estimating driver counts by amalgamating data across different
stages of disease could create a bias in a comparison across
cancer types. The tumor mutational burden may increase with
stage of disease and there could be unequal sampling rates by
stage. Also, successful intervention may deplete the sampling
size for later stages of disease, for some cancer types. Restricting
to coding SNVs, our analysis [55], using CScape, indicated that
the mean count increases with stage of disease for some types
of cancer. Both early onset prostate cancer (typecode: EOPC) and
prostate cancer (PRAD) have low mean counts for coding SNV-
drivers which increase steadily with stage: 2.5 (stage I), 3.8 (IIA),
6.5 (IIIB) for EOPC and 4.4 (IIB), 7.6 (IIC), 16.4 (IIIB), 21.8 (IVA)
for PRAD, respectively. However, prostate cancer develops slowly
over an extended period which may allow for an accumulation of
additional SNV-drivers. Overall, though, our analysis suggested
that increasing numbers of SNV-drivers with stage of disease is
an exception as a phenomenon, not the rule. More typical are
RECA, which has a mean SNV-driver count which is steady and
low at 3.4 (I), 3.3 (II), 3.2 (III) and 3.0 (IV). Similarly, esophageal
cancer (ESCA) has a steady but higher count at 13.5 (I), 9.9 (II),
10.0 (III) and 12.2 (IVA). Using a comparison of stage I versus
stage IV cancer, with a different argument and dataset, the same
conclusion is reached by Martincorena et al. (Figure S4C [59])
who argue there is little evidence for significant increases in the
number of SNV-drivers as disease progresses, across the cancer
types they consider. Two caveats to our own analysis [55] are that
we only consider samples labeled as primaries (from the ICGC
dataset [52]), and that rare drivers (e.g. a recurrence of r = 1 across
the dataset) may accumulate with stage, while being subliminal
for the classifier to identify.

In terms of establishing biological validity, a further ques-
tion is the identification of those genes having embedded vari-
ants which are predicted disease-drivers. Since our focus is on
sequence variants as drivers, in the discussion below we will
label a gene as a potential driver if it has at least one high confidence
embedded SNV-driver, that is, the SNV is labeled as a positive
(disease-driver) with an FDR of 5%. We emphasize this is only one
definition of a driver-gene. For predicting whether a gene is a driver,
we could instead use data taken across the whole gene, rather
than consider just embedded SNVs. This means we can use more
data and feature groups, potentially improving test accuracy
performance. For example, we could use the full set of mutations
across the gene encoded via a normalized entropy measure,
or full sequence alignments between mutated and reference
unmutated gene. Both these two feature groups are used by
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DeepDriver [46], for example, based on use of a convolutional
neural network. A variety of machine learning methods, such
as convolutional neural networks [23, 60], and a variety of fea-
ture groups have been used for driver gene prediction. Features
include high intra-gene mutation frequencies relative to the
background rate, as used by OncodriveCLUST [61], for example, or
feature groups such as ontology [62] or mutual exclusivity [63].

Using the criterion just stated only (at least one embedded
high confidence predicted SNV-driver), we find that the spectrum of
such predicted driver-genes is very individualized to the given
tumor and it is drawn from small numbers of relatively more
common driver-genes and long tails of infrequent driver-genes.
As one would expect, TP53 and PIK3CA are examples of genes
with an influence across multiple cancer types and thus exam-
ples of relatively more common driver-genes. KRAS and the
long noncoding RNA gene CTC-297 N7.11 have a similar impact
across multiple cancer types. These four genes are plotted in
Figure 2, depicting the percentage of samples having at least one
predicted high confidence SNV-driver. A less expected result was
predicted widespread influence of the long noncoding RNA gene
TTN-AS1 (Figure 3). TTN-AS1 is transcribed from the opposite
strand to the gene TTN which has the largest number of exons
of any gene in the human genome, and the longest single exon.
The size of TTN would predispose toward random accumulation
of false positives. However, TTN-AS1 has also recently been
proposed as an oncogene across various cancers [65] and one
suggested mode of action has been dysregulation caused by the
creation of competing endogenous RNA.

BRAF and IDH1, plotted in Figure 4, are predicted as having
a more specific influence by cancer type, with a high percent-
age incidence of predicted SNV-drivers embedded in BRAF for
skin cutaneous melanoma (44.8% of cases (typecode:SKCM)),
thyroid cancer (55.8%, THY) and colon adenocarcinoma (13.4%,
COAD). The relevance of BRAF mutations to all three of these
cancers is extensively documented in the cancer research lit-
erature, see e.g. [66–68]. In Figure 4, we also depict IDH1 with a
significant percentage of predicted SNV-drivers for lower grade
glioma (LGG), which has been extensively documented in the
literature within the context of gliomas [69, 70]. Our survey
[55] was restricted to 25 cancer types available from the Inter-
national Cancer Genome Consortium database [52] and IDH1
mutations occur in a wider range of cancer types than depicted
here, including oligodendro-gliomas, astrocytomas, secondary
glioblastomas and acute myeloid leukemia [71]. These two plots
are illustrative of a motivation for further developing the cancer-
specific prediction tools we have been discussing in this paper.
Currently two BRAF inhibitors are approved for clinical use,
vemurafenib and dabrafenib, targeted at melanoma. Several IDH1
inhibitors have entered clinical trials (AG-120, IDH-305, FT-2102
and BAY1436032) or been approved (ivosidenib) [71]. More accu-
rate prediction tools may enable drug repurposing toward rare
occurrence driver-genes which are distinct from their usual
therapeutic context.

In summary, for CScape at least, we have quoted accuracies of
72% (CScape) and 74% (Cscape-somatic) on balanced 50:50 unseen
test data in coding regions of the cancer genome, and for SNVs.
Thus, this classifier can successfully generalize to an extent,
though not near to the levels quoted for the generic predictors
of Section 1, when applied to non-cancer diseases. Cancer is, of
course, a more difficult prediction context, as we now discuss.
However, there is, at least, a suggestion that higher test accuracies
can be achieved since CScape does attain a prediction perfor-
mance of about 90% if restricted to high confidence prediction.

Figure 2. Four well-known cancer genes which can be labeled common drivers

due to a higher incidence of predicted embedded SNV-drivers and an influence

across multiple cancers. The y-axis gives the percentage incidence of at least one

predicted high-confidence embedded SNV-driver (from use of CScape and using

an FDR of 5%). The x-axis gives the typecodes of the 25 cancer types considered.

These typecodes are matched with cancer name in supplementary table 1 of

[55]. The figures for TP53 and KRAS are reproduced from [55] under the Creative

Commons License [64].
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Figure 3. The long noncoding RNA gene TTN-AS1 (white filled peaks) appears with a frequency, equal to, or slightly lower, than that for TTN (black filled peaks), in terms

of percentage incidence of predicted embedded SNV-drivers (at an FDR of 5%). TTN-AS1 is transcribed from the antisense strand of TTN, with the latter expressing the

complex muscle protein Titin.

In terms of biological validity, the genes discussed and listed
in Figures 2 to 4 are well studied within the cancer literature
and the suggested view of the cancer genome therefore looks
plausible. Even if CScape is only partially accurate, provided there
is no prediction bias involved, large sample sizes will average out
the effects of noise, and so estimation of the relative significance
of a driver-gene would be robust.

CScape is a pan-cancer prediction tool, rather than cancer-
type specific. However, we observe from Figures 2 to 4 that
there is evidence for transfer learning across cancer types, and
a classifier such as CScape will gain from the larger data size
inherent in a pan-cancer study. Though one may expect future
gains from cancer-type-specific predictors, we have not found
this to date, for these reasons.

Discussion
Though able to predict with reasonable test accuracy, and with
biological plausibility, further development of these cancer-
specific prediction tools will need to master various challenges.
One obvious challenge will be attaining a higher test accuracy
performance. We have largely focused on SNVs in coding regions,
but prediction with SNVs in noncoding regions is generally more
difficult. On the other hand, prediction with indels is usually
easier. One reason for this is that there is more sequence to
assess and therefore more useable information from the various
feature groups used.

As another issue, simply predicting the label as disease-
driver or neutral carries limited information. More informative
would be a predicted annotation as to why the variant is a driver.
For SNVs in coding regions, one informative set of feature groups
will be the predicted impact of a variant on protein structure or
function. Various annotation tools have been proposed (e.g. [72])
and could be used for this purpose. One basic annotation beyond
disease-driver will be whether the variant promotes gain-of-
function or loss-of-function: a variant can, of course, deliver both
of these simultaneously.

In terms of improving prediction accuracy, further gains will
be made through the identification of additional feature groups
which may be informative for driver status, or by alterations
to the methodology used. As already commented, even if such
additional feature groups are only weakly successful, data inte-
gration methodologies from machine learning can utilize a wide
panel of such weakly informative data sources to construct a
more accurate overall predictor. Care will have to be taken that
additional feature groups do not introduce circularity errors by
carrying implicit information about the predicted label, unfairly
and positively biasing the predictor.

The test accuracy for cancer-specific SNV-status prediction
currently lags the test accuracy performance for non-cancer
prediction. One reason for this difference may be that predic-
tion with cancer is mostly combinatoric. A particular substitu-
tion at a given location in a gene may be labeled as disease-
driver or neutral depending on coding SNVs elsewhere, non-
coding SNVs elsewhere, indels and a range of other causative
events. The given substitution may be observed in a tumor,
where it is part of the driver combination and promotes cell
proliferation, or it may be isolated and hence inactive in a
healthy individual. This amounts to a label noise since, even
if a given single mutation has occurred, the label of disease-
driver or neutral is potentially dependent on alterations else-
where. Rather than predictors estimating driver status at a par-
ticular location, based on context data, it may be necessary to
develop predictors in which predictions elsewhere in the cancer
genome are used to modify the confidence estimate of driver
status at a given location. Potentially, the driver-combination
could involve SNVs, indels or other drivers based on copy num-
ber variation, or methylation, or major structural rearrange-
ments, for example. The suggestion is that more accurate pre-
dictors may require multitrack input data, potentially cover-
ing the full set of alterations which could contribute to the
driver-combination.

In summary, our discussion of these cancer-specific predic-
tions indicates that machine learning methods are very suited to
prediction with cancer datasets, given the very large and varied
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Figure 4. Two genes which have a more selective influence in certain contexts. BRAF (top) has at least one high-confidence embedded SNV-driver at significant

percentage incidence levels for thyroid cancer (typecode:THCA), skin cutaneous melanoma (SKCM) and colon adenocarcinoma (COAD). IDH1 (bottom) has a significant

influence with LGG. Both genes are well documented within the cancer literature.

types of data involved, and the results of these studies suggest
they will be increasingly capable of offering new insights.

Key Points
• A variety of tools have been presented for predict-

ing the pathogenic impact of variants in the human
genome, with test accuracies up to 90% stated for

predicting the impacts of coding single nucleotide
variants driving non-cancer disease.

• Similar tools for predicting the driver status of vari-
ants in the human cancer genome are at an earlier
stage of development, and currently less accurate.

• For a given sample, driver genes in which predicted
driver variants are embedded are frequently within
well-documented cancer genes, such as TP53, PIK3CA,
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KRAS, BRAF and IDH1, and also within long tails of
relatively infrequent driver-genes.

• The further development of such cancer-specific pre-
dictors may improve test accuracy by taking into
account factors specific to cancer and will need
to present predicted functional annotations beyond
disease-driver versus neutral.

Funding

The Integrative Epidemiology Unit is supported by the Med-
ical Research Council (MC_UU_00011/) and the University of
Bristol, and we also acknowledge funding from the Cancer
Research UK Integrative Cancer Epidemiology Programme
(C18281/A19169).

References
1. Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of

non-neutral substitution rates on mammalian phylogenies.
Genome Res 2010;20:110–21.

2. Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily con-
served elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 2005;15:1034–50.

3. Shihab HA, Gough J, Cooper DN, et al. Predicting the func-
tional, molecular and phenotypic consequences of amino
acid substitutions using hidden Markov models. Hum Mutat
2013;34:57–65.

4. Rogers MF, Shihab HA, Mort M, et al. FATHMM-XF: accu-
rate prediction of pathogenic point mutations via extended
features. Bioinformatics 2017;34(3):511–3.

5. Campbell C, Ying Y. Learning with Support Vector Machines. San
Rafael, California (USA): Morgan and Claypool, 2011.

6. Gonen M, Alpaydn E. Multiple kernel learning algorithms. J
Mach Learn Res 2011;12:2211–68.

7. Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Anal-
ysis. Cambridge (UK): Cambridge University Press, 2004.

8. Shihab HA, Rogers M, Gough J, et al. An integrative approach
to predicting the functional effects of non-coding and coding
sequence variation. Bioinformatics 2015;31:1536–43.

9. Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensem-
ble method for predicting the pathogenicity of rare missense
variants. Am J Hum Genet 2016;99:877–85.

10. Quang D, Chen Y, Xie X. DANN: a deep learning approach
for annotating the pathogenicity of genetic variants. Bioin-
formatics 2014;31:761–3.

11. Ying Y, Huang K, Campbell C. Enhanced protein fold recog-
nition through a novel data integration approach. BMC Bioin-
formatics 2009;10:267.

12. M. Rogers, H. Shihab, T. Gaunt, et al. Sequential data selection
for predicting the pathogenic effects of sequence variation.
In Proceedings, 2015 IEEE International Conference on Bioinfor-
matics and Biomedicine, Washington, DC (USA): IEEE Computer
Society, page B394, 2015.

13. Rentzsch P, Witten D, Cooper GM, et al. CADD: pre-
dicting the deleteriousness of variants throughout the
human genome. Nucleic Acids Res 2019;47(D1):D886–94. doi:
10.1093/nar/gky1016.

14. A. Avram. Docker: automated and consistent software develop-
ments. 2013. http://www.infoq.com/news/2013/03/Docker.

15. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop
Database of Functional Predictions and Annotations

for Human Non-synonymous and Splice Site SNVs.
Human Mutation 2016;37:235–41. https://sites.google.com/
site/jpopgen/dbNSFP.

16. B. Livesey. Variant effect predictions for human, yeast, bacterial
and viral proteins. MRC Human Genetics Unit. Edinburgh (UK):
University of Edinburgh, 2020. doi: 10.7488/ds/2800.

17. Saeedi O, Yousaf S, Tsai J, et al. Delineation of novel com-
pound heterozygous variants in LTBP2 associated with juve-
nile open angle glaucoma. Genes 2018;9:527.

18. Ali E, Yacob Y, Ngu Y. Identification of mutations in
Malaysian patients with argininosuccinate lyase (ASL) defi-
ciency. Mol Genet Metab Rep 2019;21:100525.

19. Ahmed S, Fairen MD, Sabir MS, et al. Mapt p.v363i muta-
tion, a rare cause of corticobasal degeneration. Neurol Genet
2019;5(4):e347.

20. Ghosh R, Oak N, Plon S. Evaluation of in silico algorithms for
use with ACMG/AMP clinical variant interpretation guide-
lines. Genome Biol 2017;18(225). doi: 10.1186/s13059–017–
1353–5.

21. Kircher M, Witten DM, Jain P, et al. A general framework
for estimating the relative pathogenicity of human genetic
variants. Nat Genet 2014;46:310–5.

22. Ionita-Laza I, McCallum K, Xu B, et al. A spectral approach
integrating functional genomic annotations for coding and
noncoding variants. Nat Genet 2016;48:214–20.

23. Schulte-Sasse R, Budach S, Hnisz D, et al. Graph Convo-
lutional networks improve the prediction of cancer driver
genes. In: Artificial Neural Networks and Machine Learning –
ICANN 2019: Workshop and Special Sessions, Switzerland AG:
Springer Nature, 2019, 658–68.

24. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server
for predicting damaging missense mutations. Nat Methods
2010;7:248–9.

25. Niroula A, Urolagin S, Vihinen M. PON-P2: prediction method
for fast and reliable identification of harmful variants. PLoS
One 2015;10(2):e0117380. doi: 10.1371/journal.pone.0117380.

26. Choi Y, Sims GE, Murphy S, et al. Predicting the functional
effects of amino acid substitutions and indels. PLoS One
2012;7:e46688.

27. Ng PC, Henikoff S. SIFT: predicting amino acid changes that
affect protein function. Nucleic Acids Res 2003;31(13):3812–4.

28. Vaser R, Adusumalli S, Leng SN, et al. SIFT missense predic-
tions for genomes. Nat Protoc 2016;11:1–9.

29. Carter H, Douville C, Stenson PD, et al. Identifying Mendelian
disease genes with the variant effect scoring tool. BMC
Genomics 2013;14:S3.

30. Raimondi D, Tanyalcin I, Ferte J, et al. DEOGEN2: predic-
tion and interactive visualization of single amino acid vari-
ant deleteriousness in human proteins. Nucleic Acids Res
2017;45:W201–6.

31. van der Velde KJ, de Boer EN, van Diemen CC, et al. GAVIN:
gene-aware variant interpretation for medical sequencing.
Genome Biol 2017;18(1):6.

32. Jagadeesh KA, Wenger AM, Berger MJ, et al. M-CAP eliminates
a majority of variants of uncertain significance in clinical
exomes at high sensitivity. Nat Genet 2016;48:1581–6.

33. Li B, Krishnan VG, Mort ME, et al. Automated inference of
molecular mechanisms of disease from amino acid substi-
tutions. Bioinformatics 2009;25:2744–50.

34. Chen H, Li J, Wang Y, et al. Comprehensive assessment
of computational algorithms in predicting cancer driver
mutations. Genome Biol 2020;21:43.

35. Liu X, Li C, Boerwinkle E. The performance of deleteri-
ousness prediction scores for rare non-protein-changing

https://doi.org/10.1093/nar/gky1016
http://www.infoq.com/news/2013/03/Docker
https://sites.google.com/site/jpopgen/dbNSFP
https://doi.org/10.7488/ds/2800
https://doi.org/10.1186/s13059&#x2013;017&
https://doi.org/10.1371/journal.pone.0117380


10 Rogers et al.

single nucleotide variants in human genes. J Med Genet
2017;54:134–44.

36. Ferlaino M, Rogers MF, Shihab HA, et al. An integrative
approach to predicting the functional effects of small indels
in non-coding regions of the human genome. BMC Bioinfor-
matics 2017;18:442.

37. Shihab HA, Rogers MF, Ferlaino M, et al. GTB–an online
genome tolerance browser. BMC Bioinformatics 2017;18(1):20.

38. Masica DL, Douville C, Tokheim C, et al. CRAVAT 4: cancer-
related analysis of variants toolkit. Cancer Res 2017. doi:
10.1158/0008–5472.CAN–17–0338.

39. Schwarz JM, Cooper DN, Schuelke M, et al. Mutationtaster2:
mutation prediction for the deep-sequencing age. Nat Meth-
ods 2014;11:361–2.

40. He MM, Li Q, Yan M, et al. Variant interpretation for cancer
(VIC): a computational tool for assessing clinical impacts of
somatic variants. Genome Med 2019;11:53.

41. Tokheim C, Karchin R. CHASMplus reveals the scope of
somatic missense mutations driving human cancers. Cell
Syst 2019;9(1):9–23.e8.

42. Rogers MF, Shihab HA, Gaunt TR, et al. CScape: a tool for
predicting oncogenic single-point mutations in the cancer
genome. Sci Rep 2017;7(1):11597.

43. Rogers MF, Gaunt T, Campbell C. CScape-somatic: distin-
guishing driver and passenger point mutations in the cancer
genome. Bioinformatics 2020;36(12):3637–44.

44. Shihab HA, Gough J, Cooper DN, et al. Predicting the func-
tional consequences of cancer-associated amino acid sub-
stitutions. Bioinformatics 2013;29(12):1504–10.

45. Fu Y, Liu Z, Lou S, et al. FunSeq2: a framework for priori-
tizing noncoding regulatory variants in cancer. Genome Biol
2014;15(10):480.

46. Luo P, Ding Y, Lei X, et al. DeepDriver: predicting cancer driver
genes based on somatic mutations using deep convolutional
neural networks. Front Genet 2019;10:13.

47. Gonzalez-Perez A, Deu-Pons J, Lopez-Bigas N. Improving the
prediction of the functional impact of cancer mutations by
baseline tolerance transformation. Genome Med 2012;4:89.
doi: 10.1186/gm390.

48. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Cata-
logue Of Somatic Mutations In Cancer. Nucleic Acids Research
2019;47:D941–7. http://cancer.sanger.ac.uk/.

49. Carter H, Chen S, Isik L, et al. Cancer-specific high-
throughput annotation of somatic mutations: computa-
tional prediction of driver missense mutations. Cancer Res
2009;69:6660–7.

50. The ENCODE Project Consortium. An integrated encyclo-
pedia of DNA elements in the human genome. Nature
2012;489:57–74.

51. The 1000 Genomes Project Consortium. An integrated map
of genetic variation from 1,092 human genomes. Nature
2012;491:56–65.

52. Zhang J, Baran J, Cros A, et al. International Cancer
Genome Consortium Data Portal-a one-stop shop for cancer
genomics data. Database 2011;2011:bar026. https://icgc.org/i
cgc.

53. The Cancer Genome Atlas: https://tcga-data.nci.nih.gov.
54. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational

constraint spectrum quantified from variation in 141,456

humans. Nature 2020;581:434–43. https://gnomad.broadinsti
tute.org/.

55. Darbyshire M, du Toit Z, Rogers MF, et al. Estimating the
frequency of single point driver mutations across common
solid tumours. Sci Rep 2019;9:13452.

56. Campbell BB, Light N, Fabrizio D, et al. Comprehensive anal-
ysis of hypermutation in human cancer. Cell 2017;171:1042–
1056.e10.

57. Sabrinathan R, Pich O, Martincorena I, et al. The whole-
genome panorama of cancer driver. bioRxiv working paper.
2017.

58. Tomasetti C, Marchioni L, Nowak MA, et al. Only three driver
gene mutations are required for the development of lung
and colorectal cancers. PNAS 2015;112:118–23.

59. Martincorena I, Raine KM, Gerstung M, et al. Universal
patterns of selection in cancer and somatic tissues. Cell
2017;171:1029–41.

60. Agajanian S, Oluyemi O, Verhivker GM. Integration of ran-
dom forest classifiers and deep convolutional neural net-
works for classification and biomolecular modelling of can-
cer driver mutations. Front Mol Biosci 2019;6:44.

61. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N.
Oncodriveclust: exploiting the positional clustering of
somatic mutations to identify cancer genes. Bioinformatics
2013;29:2238–44.

62. Althubaiti S, Karwath A, Dallol A, et al. Ontology-based
prediction of cancer driver genes. Sci Rep 2019;9:17405.

63. Kim Y-A, Madan S, Przytycka TM. Wesme: uncovering
mutual exclusivity of cancer drivers and beyond. Bioinformat-
ics 2017;33(6):814–21.

64. Creative Commons License: https://creativecommons.org/li
censes/by/4.0/.

65. Jia Y, Duan Y, Liu T, et al. LncRNA TTN-AS1 promotes migra-
tion, invasion, and epithelial mesenchymal transition of
lung adeoncarcinoma via sponging miR-142-5p to regulate
CDK5. Cell Death Dis 2019;10:573.

66. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene
in human cancer. Nature 2002;417(6892):949–54.

67. Li X, Abdel-Mageed AB, Kandil E. BRAF mutation in pap-
illary thyroid carcinoma. Int J Clin Exp Med 2012;5(4):
310315.

68. Muzny D, Bainbridge MN, Chang K, et al. Comprehensive
molecular characterization of human colon and rectal can-
cer. Nature 2012;487:330–7.

69. Cohen A, Holmen S, Colman H. IDH1 and IDH2 mutations in
gliomas. Curr Neurol Neurosci Rep 2013;13:345.

70. Mondesir J, Willekens C, Touat M, et al. IDH1 and IDH2 muta-
tions as novel therapeutic targets: current perspectives. J
Blood Med 2016;16(7):171–80.

71. Chaturvedi A, Goparaju R, Gupta C, et al. In vivo efficcacy of
mutant IDH1 inhibitor HMS-101 and structural resolution of
distinct binding site. Leukemia 2020;34:416–26.

72. Ittisoponpisan S, Islam SA, Khanna T, et al. Can pre-
dicted protein 3d structures provide reliable insights into
whether missense variants are disease associated? J Mol Biol
2019;431:2197–212.

73. Mao Y, Chen H, Liang H, et al. CanDrA: cancer specific driver
missense mutation annotation with optimized features.
PLoS One 2013;201:e77945.

https://doi.org/10.1158/0008&#x2013;5472.CAN&
https://doi.org/10.1186/gm390
http://cancer.sanger.ac.uk/
https://icgc.org/icgc
https://icgc.org/icgc
https://tcga-data.nci.nih.gov
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Prediction of driver variants in the cancer genome via machine learning methodologies
	Background
	Cancer-Specific Predictors
	The Resultant View of the Cancer Genome
	Discussion
	Key Points

	Funding


