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Abstract

Time-course RNAseq experiments, where tissues are repeatedly collected from the same subjects, e.g. humans or animals
over time or under several different experimental conditions, are becoming more popular due to the reducing sequencing
costs. Such designs offer the great potential to identify genes that change over time or progress differently in time across
experimental groups. Modelling of the longitudinal gene expression in such time-course RNAseq data is complicated by the
serial correlations, missing values due to subject dropout or sequencing errors, long follow up with potentially non-linear
progression in time and low number of subjects. Negative Binomial mixed models can address all these issues. However,
such models under the maximum likelihood (ML) approach are less popular for RNAseq data due to convergence issues (see,
e.g. [1]). We argue in this paper that it is the use of an inaccurate numerical integration method in combination with the
typically small sample sizes which causes such mixed models to fail for a great portion of tested genes. We show that when
we use the accurate adaptive Gaussian quadrature approach to approximate the integrals over the random-effects terms,
we can successfully estimate the model parameters with the maximum likelihood method. Moreover, we show that the
boostrap method can be used to preserve the type I error rate in small sample settings. We evaluate empirically the small
sample properties of the test statistics and compare with state-of-the-art approaches. The method is applied on a
longitudinal mice experiment to study the dynamics in Duchenne Muscular Dystrophy.
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Introduction

Understanding the dynamics of biological processes requires
collecting measurements repeatedly in time from the same
biological replicate, e.g. patient, animal. For instance, by
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collecting blood samples at multiple points in time on the same
patients which are subsequently sequenced, it gives rise to a
set of time series, also known as longitudinal RNAseq data
per patient. Modelling the longitudinal gene expression data
will lead to the detection of genes which dynamically change
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over time or genes that show differences in their expression
over the whole time period the data are collected (i.e. global
difference) between several groups of interest. Such markers
can be then potentially further studied as candidates to track
disease progression or predict disease milestones. This is also
the case in our motivating study, a longitudinal experiment
on mice (GEO accession number GSE132741) carried out at
the Leiden University Medical Center, in the Netherlands, in
order to identify potential biomarkers in blood to track disease
progression for Duchenne Mascular Dystrophy (DMD). DMD is an
X-linked recessive genetic disease caused by protein truncating
mutations in the DMD gene that encodes dystrophin. In this
experiment, blood samples were collected longitudinally from
5 healthy and 5 dystrophic mice at 6, 12, 18, 24 and 30 weeks of
age, and gene expression was quantified using RNA-seq. Genes
for which dystrophic mice evolve differently than the healthy
ones can reveal promising therapeutic targets and biomarkers.

To analyse properly such repeatedly measured RNAseq data,
we need to address several challenges. First, the serial corre-
lation cannot be ignored. In particular, the gene expression at
a certain time point t is expected to depend on previous time
points t−1, t−2, . . .. Failure to correct for this will cause biasedly
estimated standard errors. This in turn will result in false pos-
itive between-group changes and false negative within-subject
time changes. Second, in longitudinal studies, measurements
are often not collected at the same time points for all sub-
jects and planned measurements may be lost due to sequenc-
ing errors or subject dropout. Thereby, unbalanced longitudinal
designs arise. In such cases, naive approaches which perform
differential expression analysis at each time point separately or
ignore the correlation while using all collected data will lead to
biassed between- and within-subject changes. The third impor-
tant complication in the analysis of RNAseq data in general is the
typically small number of subjects used due to sequencing costs.
This plies unstable estimation of the modelling parameters and
test statistics with inflated type I error rates, as the theoretical
asymptotic null distributions may not always be correct (see e.g.
pg. 98 in [2, p. 98]).

Several methods and software have been developed for
RNAseq data, but in their vast majority they handle cross-
sectional designs, namely studies where sequencing is done
once on samples from independent subjects. For example,
the Bioconductor packages edgeR [3], DESeq2 [4] consider
Negative Binomial Generalized Linear Models and use empirical
Bayes approaches that borrow information across all genes to
stabilize the estimation of the gene-wise dispersions due to
the small sample size of RNAseq experiments. Alternatively,
the logarithm of RNAseq counts per gene can be analysed in
terms of linear regression models via the limma-voom pipeline
[5]. The mean variance relationship is estimated across all genes
and incorprorated into the parameter estimation per gene via
weights for each measurement. Similar to edgeR and DESeq2,
empirical Bayes is employed to stabilize the estimation of the
gene-wise variances. For a more recent review of the available
pipelines for the analysis of RNAseq data, see [6]. In the context
of longitudinal designs, these pipelines are often erroneously
used to test for differences between groups at each time point
separately or to make pairwise comparions per group between
two time points. In both cases, inefficient use of the data is
made which leads to an unnecessary increased multiple testing
burden. In addition, all pairwise tests are not interpretable and
cannot be used to test for differences in progression between
groups (i.e. differences in slopes between groups). A formal
definition of the different hypotheses that can be tested in the

context of a longitudinal experiment is given in Section 2.2.
Finally, bias arises when measurements are missing for some
individuals at any time point. Thus, it is obvious that for
longitudinal RNAseq experiments methods which use all data
at the same time and address the serial correlation should be
used.

An important clarification we wish to make is that the
designs we study in this paper are different from time-course
experiments which collect RNAseq data at multiple time
points but on different subjects at each occassion. In fact,
in longitudinal designs, there is inherent serial correlation
as the same subjects are repeatedly measured in time. Even
though time-course experiments with different subjects at each
time point can identify genes differentially expressed across
different conditions in time, they cannnot be used to study
changes due to ageing and disease progression. Examples of
pipelines for such time-course experiments are the masigPro

[7] which only models the change of mean counts in time but
they ignore the serial correlation. Similarly, in timeSeq [8], even
though they consider a mixed effects model at the gene level,
they model only the between exons correlation and not the
serial dependencies. We wish to stress that methods for time-
course experiments on independent subjects in time are not
appropriate for longitudinal designs.

For the analysis of longitudinal RNAseq data, few methods
have been proposed. First, we have the ShrinkBayes [9] which
considers (zero-inflated) Negative Binomial Generalized Linear
Model (GLM) under the Bayesian approach for the estimation. For
the analysis of longitudinal RNAseq data, it offers the possibility
to use a single random effect to capture the serial correlations.
Under the maximum likelihood (ML) approach, Cui et al. [1] inves-
tigated Poisson and Negative Binomial mixed effects models.
Generalized linear mixed effects models (GLMMs) offer a flexible
modelling framework to properly capture the serial correlation,
overdispersion and mean progression per gene. Even though
GLMMs are being broadly used in several longitudinal clinical
and epidemilogical studies, they are less popular for longitudinal
RNAseq data when the ML approach is used for their estimation.
Cui et al. [1] have noted that the use of overdispersed Poisson
or negative binomial mixed models may not be supported by
RNAseq data due to optimization issues they have encountered
in their analyses. A popular solution in the setting of correlated
RNAseq data is the duplicateCorrelation(.) function of the
limma-voom pipeline [10]. The serial correlation of the loga-
rithm of RNAseq counts is estimated using information across
all genes and kept fixed at a single value for all genes when
testing for differential expression in time or between experimen-
tal conditions. Therefore, this approach makes the unrealistic
assumption that for all genes the correlation between all pairs
of time points is the same. Another approach used in practice
is to use the subject identification number as a confounder in
the linear predictor in the available pipelines for cross-sectional
designs mentioned above [11]. This aims to acknowlegde that a
set of measurements originates from the same subject. However,
such an approach does not address the serial correlation and it
will fail with increasing sample size. Finally, triclustering algo-
rithms have been proposed to detect patterns in three-way gene
expression time series data [12].

We argue in this paper that the negative advice of Cui et al.
[1] in using Negative Binomial mixed models for RNAseq exper-
iments is two-fold. First, an important complication in the esti-
mation of GLMMs is the evaluation of the marginal likelihood,
which requires integration over the unobserved random effects.
Such integrals do not have closed-form solution and need to
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be approximated. Several methods have been proposed to this
end, such as Monte Carlo integration [13], Gaussian quadrature
approaches [14], Laplace method [15], etc. Standard software
for GLMMs typically employs the Laplace method, which is
computationally fast, even for several random effects. This is
also the case for Negative Binomial mixed models implemented
with the function nb.glmm(.) from the R package lme4 [16].
However, such an approach is known to be less accurate and
that it can bias the estimation of the model parameters [17, sec.
14.4]. It can also severely affect the evaluation and optimization
of the log-likelihood. Therefore, in this paper and motivated by
the work of Cui et al. [1], we consider Negative Binomial mixed
models where the adaptive Gaussian quadrature method is used
to evaluate the integrals over the random effects and can be
successfully applied in small sample RNAseq experiments. This
is implemented in the function mixed_model(.) from the R
package GLMMadaptive [18].

A second novel contribution of our work in the analysis of
longitudinal RNAseq using Negative Binomial mixed models is
our solution for small sample inference. Standard pipelines for
cross-sectional RNAseq data, have recognised that, with small
sample sizes, test statistics have inflated type I error rates
[3]. Therefore, they have employed empirical Bayes procedures
which borrow information across genes and stabilize thereby the
estimation of the gene-wise dispersion parameters. The same
problem has been observed for mixed effects models. It is known
that with small sample sizes the sampling distribution of the test
statistics often deviates from the theoretical distribution leading
to inflated type I error rates. In this work, we show that the boot-
strap method can be successfully applied to derive inference in
small sample settings. An important advantage of our approach
is that, depending on the study design, any mixed model can be
considered: we may use multiple random effects which may be
nested or crossed for clustered designs, and we can model poten-
tially non-linear evolutions in time semi-parametrically using,
e.g. natural cubic splines [19]. Besides, mixed models are flexible
in modelling the progression in experiments with long follow
up or when measurements are collected at irregular points in
time for each study participants because the time variable can
be treated as numeric and not as a factor. Thereby, polynomials
or spline functions of time can be used as covariates. Finally, we
can correct for unwanted systematic artifacts such as lane or
batch effects or experimental artifacts by correcting for multiple
factors.

The paper is organized as follows. In Section 2, we present
the Negative Binomial mixed model and we discuss the
challenges in its estimation. In Section 3, we discuss issues in
the parameter estimation with small sample size. In Section 4,
we investigate empirically the performance of the Negative
Binomial mixed model for the analysis of small sample
longitudinal RNAseq designs. Comparisons with state-of-the-
art methods are also made. Finally, in Section 5, we present the
analysis of the motivating experiment on a mouse model for
Duchene muschular dystrophy designed to study the disease
progression.

The Negative Binomial mixed model
The Negative Binomial (NB) distribution has gained popularity in
modelling RNAseq gene expression data because it can capture
overdispersion and in RNAseq experiments the variance of the
counts typically increases with the mean (DESeq [20] and edgeR

[3]).

Model formulation

Let yijg (i = 1, . . . , n; j = 1, . . . , ni; g = 1, . . . , G), the longitudinal
raw count measurements of gene g for the ith individual, at the
jth occassion, and xij a known p-dimensional vector with the
covariate information corresponding to the jth row of the ni × p
model matrix Xi, known as design matrix which contains the
values of multiple patient characteristics. In particular, in Xi both
time-varying (e.g. measurent time, experimental conditions) and
time-independent covariates (e.g. treatment group, baseline age,
gender, etc.) are allowed. In the longitudinal setting, we use the
q dimensional vector of random effects bi, to model the serial
correlation with corresponding design matrix Zi. For a specific
gene g, we assume Yijg | b(g)

i ∼ NB(μijg, φg) with probability mass
function:

Pr (Yijg = yijg) = �(yijg + φg)
�(φg)�(yijg + 1)

(
φg

φg + μijg

)φg

×
(

μijg

φg + μijg

)
, yijg = 0, 1, . . . ,

where φg represents the gene-wise dispersion parameter which
measures overdispersion and �(.) is the gamma function. Based
on this parameterization, E(Yijg | b(g)

i ) = μijg which is modelled as

function of explanatory variables xij and random effects b(g)
i . In

particular using the logarithmic link function:

log(μijg) = oij + xT
ijgβ

(g) + Zib
(g)
i , (1)

where oij is an offset term with the logarithm of the effective
library size derived from edgeR. Throughout the paper, we use
the trimmed mean method (TMM) of Robinson et al. [21] to
calculate the scaling factors to correct for sequencing depth and
potentially composition bias. We assume b(g)

i ∼ Nq(0, D(g)) are
the random effects used to model serial correlation with D(g)

the variance covariance matrix of the random effects. To model
flexibly serial correlation splines can also be considered in Zi.
Under parameterization (??), it follows Var (Yijg | b(g)

i ) = μijg +
μ2

ijg/φg. Thus, when φg → ∞, Yijg follows the Poisson distribution,
i.e. Yijg ∼ Poisson(μijg).

Hypothesis testing

An important strength of longitudinal designs is that they can
separate the longitudinal from cross-sectional changes (i.e.
group changes at a certain time point). Let us assume that in
the DMD experiment, briefly introduced in Section 1, the mean
counts are modelled as a linear function of the age of the mice,
the group and their interaction:

log(μijg) = oij + β
(g)
0 + β

(g)
1 ageij + β

(g)
2 groupi

+β
(g)
3 groupiageij + b(g)

i , b(g)
i ∼ N(0, σ 2

g ) (2)

where oij is the offset term defined in Section 2.1 above, β
(g)
0 are

the log expected counts for the WT group at baseline, β
(g)
1 is the

change in log expected count for every week that passes by in the
WT group and β

(g)
3 is the change in log expected count between

WT and mdx groups for every week that passes by. We will also
assume that correlation is captured by a random-intercepts term
b(g)

i and σ 2
g is the random-effects variance. Thus, based on model

(2), we can test the following hypotheses of interest:
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1. Differences in slopes:

H0 : β
(g)
3 = 0 vs HA : β

(g)
3 �= 0,

which implies that if H0 is rejected, then we have found
genes that evolve differently in time, i.e. they have different
slopes in time between the two groups.

2. Differences in profiles:

H0 : β
(g)
2 = β

(g)
3 = 0 vs HA : β

(g)
2 �= 0 or β

(g)
3 �= 0,

which implies that if H0 is rejected, then we have found
genes with different mean profiles in time, i.e. genes that
start at different levels and/or evolve differently in time.

3. Differences in levels:

H0 : β
(g)
2 = 0 vs HA : β

(g)
2 �= 0,

which implies that if H0 is rejected, then we have found
genes which start at different levels at baseline irrespective
of their progression afterwards.

Note that model (2) can be extended to allow for non-linear
progression using splines, e.g. natural cubic splines for the age
variable [2, 19, 22].

Estimation

The model parameters θ (g) = (βT(g), φg, σ 2
g ) for each gene g can be

estimated via the maximum likelihood approach which requires
maximizing the likelihood function:

L(θ (g)) =
n∏

i=1

∫
b

ni∏
j=1

Pr (yij | b(g)
i ; θ (g))f (b(g)

i ; θ (g)) db(g)
i . (3)

In GLMMs, it is known that the integral in (3) with respect to
b(g)

i does not have closed-form solution and thus it needs to
be approximated. Several methods have been proposed in the
literature which are grouped in two categories: (1) methods
that approximate the integral numerically and (2) methods that
approximate the integrand such that the integral of the approx-
imation is then solved. In the first category, we have the adap-
tive and non-adaptive Gaussian quadrature approach [14] and
Monte Carlo integration [13]. In the second category, we have the
Laplace’s method [15] and quasi-likelihood approaches: penal-
ized quasi-likelihood [23–25] and marginal quasi-likelihood [26]
and their extensions (MQL2, PQL2 and corrected PQL). Methods
in the second category are known to behave poorly in various
settings, e.g. with few repeated measurements, high between
samples heterogeneity leading to parameter estimates with an
appreciable downward asymptotic bias. On the contrary, meth-
ods in the first category are known to be more accurate though
more computationally intensive. For the rest, we will concentrate
our discussion on methods that are available in R for the Nega-
tive Binomial distribution. In particular, the Laplace method is
used in function glmm.nb(.) in lme4 [16] or glmmTMB [27] to fit
Negative Binomial mixed models. The Laplace approximation
is based on a quadratic approximation of the log-integrand. It
is known to be fast, however it may lose in accuracy, espe-
cially when limited information is available and short follow-up
(e.g., [17], sec. 14.4). Based on our experience, Negative Binomial
mixed models with the Laplace method often fail for longitudi-
nal RNAseq data. Cui et al. [1] have reported similar behaviour.

Figure 1. Type I error rate of LRT and Wald statistics when using the asymptotic

χ2
2 (black lines) and their corresponding bootsrap-based null distribution (blue

lines) for testing H0 : β1 = β3 = 0 versus H1 : β1 �= 0 or β3 �= 0. Each panel

corresponds to a different size of the serial correlation captured by the random

effects standard deviation σb.

Alternatively, the Adaptive- Gaussian–Hermite (AGH) quadra-
ture method which is known to be more accurate can be used. Let
g(b(g)

i ) = ∏ni
j=1 Pr (yij | b(g)

i ; θ (g))f (b(g)
i ; θ (g)) the integrand as a function

of b(g)
i which needs to be approximated in (3). Note that here for

notational simplicity we assume a single random effects term b(g)
i

per gene. Gaussian quadrature methods are used to approximate
integrals of the form

∫
g(b) db = ∫

f (b)φ(b) db, by a weighted sum,
i.e. ∫

g(b) db =
∫

f (b)φ(b) db ≈
Q∑

q=1

wqf (bq), (4)

where f (b) = √
2πg(b)exp(b2) is a known function, φ(b) is the

standard normal density, Q is the order of the approximation,
i.e. the higher Q the more accurate the approximation will be.
Then bq are the quadrature points, derived as solutions to the
Qth-order Hermite polynomial, and wq are appropriately chosen
weights. Both the quadrature points bq and weights wq are
considered fixed and known. If g(b) is concentrated far from 0, or
if the spread in g(b) is different than that for the weight function
exp(−b2), then we can get a very poor approximation. In this case,
we need to appropriately rescale the subject-specific integrands
in the log-likelihood (3) such that the quadrature points are
located where most of the mass of g(b) is located. This can be
achieved by using as quadrature points:

b∗
q = bq +

[
− ∂2

∂b2
ln[f (b)φ(b)] |b=bq

]−1/2

bq

and weights:

w∗
q =

[
− ∂2

∂b2
ln[f (b)φ(b)] |b=bq

]−1/2 φ(b∗
q)

b∗
q

wq

in (4). Note that b∗
q and w∗

q are not any more fixed and known.
They need to be estimated iteratively, making thereby the



Tsonaka and Spitali 5

Table 1. Type I error rate of LRT and Wald statistics when using the asymptotic χ2
2 and their corresponding bootstrap-based null distribution

for testing H0 : β1 = β3 = 0 versus H1 : β1 �= 0 or β3 �= 0. We have varied the serial correlation captured by the random effects standard deviation
σb = 0.5, 1, 1.5, 2 and the sample size n = 10, 20, 40, 60

Test n = 10 n = 20 n = 40 n = 60

LRT 0.084 0.072 0.058 0.057
σb = 0.5 Wald 0.111 0.082 0.064 0.062

LRT-boot 0.054 0.055 0.047 0.055
Wald-boot 0.059 0.057 0.047 0.056
LRT 0.083 0.068 0.059 0.054

σb = 1 Wald 0.117 0.082 0.064 0.059
LRT-boot 0.047 0.057 0.048 0.048
Wald-boot 0.048 0.055 0.048 0.047
LRT 0.082 0.066 0.061 0.056

σb = 1.5 Wald 0.113 0.078 0.065 0.060
LRT-boot 0.047 0.054 0.054 0.054
Wald-boot 0.049 0.054 0.052 0.049
LRT 0.086 0.068 0.063 0.065

σb = 2 Wald 0.117 0.076 0.065 0.062
LRT-boot 0.049 0.054 0.050 0.053
Wald-boot 0.046 0.056 0.049 0.053

optimization of (3) rather computationally intensive. Therefore,
the numerical integration in (4) using b∗

q and w∗
q is more than

with the fixed bq and wq.
In the special case where 1 quadrature point is used, AGH

corresponds to the Laplace approximation. In fact the integral
(4) is evaluated using

∫
g(b) db =

∫
f (b)φ(b) db =

∫
eln{f (b)φ(b)} ≈ w∗

1f (b∗
1)

= (2π )1/2

∣∣∣∣ ∂
2ln{f (b)φ(b)}

∂b∂b

∣∣∣
b=b̂1

∣∣∣∣ −1/2f (b̂1)φ(b̂1).

Therefore, the approximation using the Laplace method is
inferior to AGH.

Small sample inference
Even though sequencing costs are dropping, the number of
subjects sequenced longitudinally still remains low. This implies
that there is limited information and the assumed sampling
distribution of the test statistics may not be correct. In cross-
sectional RNAseq studies, it has been observed that gene-wise
dispersion related parameters are not reliably estimated in this
case. Thus, the common practice to overcome the small sample
issue is to utilize prior information across genes to estimate the
gene-wise dispersions using an empirical Bayes estimation step.
Thereby, we can derive test statistics with type I error close to
the nominal level. This method is used in pipelines developed
for cross-sectional (such as edgeR and DEseq2). In longitudinal
studies, where random effects models are used to capture the
serial correlation, bias is observed not only in the estimation of
the dispersion parameter but also the random-effects variance.
We will discuss this in Section 4 in the context of our simulation
studies.

In this work, we explore an alternative procedure to derive
the proper sampling distribution of test statistics, namely via
parametric Bootstrap [28]. Our motivation in this direction are
certain limitations of the current practice to address the small
sample issue in RNAseq experiments, i.e. the empirical Bayes
step. First, such a practice requires that all genes are analysed
jointly, which can be rather computationally demanding, e.g. in

the Bayesian setting for ShrinkBayes. Second, depending on the
complexity of the study design (e.g. non-linear profiles in time
and family studies) multiple random effects may be needed and
this implies that custom-made software is needed each time to
stabilize the estimation of the dispersion and variance related
parameters.

In particular, let us assume that model (2) is used to describe
the progression of each gene g in the DMD experiment and that
we are interested to identify genes with different mean profiles
in time between WT and mdx groups, i.e. we want to test the
hypothesis:

H0 : β
(g)
2 = β

(g)
3 = 0 vs HA : β

(g)
2 �= 0 or

beta(g)
3 �= 0.

This hypothesis can be tested using the likelihood ratio test (LRT)
statistic or multivariate Wald test statistic (see e.g. [29], Chapter
6). The LRT is given by

LRT = −2[	(θ̂
(g)
0 ) − 	(θ̂

(g)
)],

where 	(θ̂
(g)
0 ) is the log-likelihood value under the null hypoth-

esis and 	(θ̂
(g)

) is the value under the alternative hypothesis. It
follows from classical likelihood theory (see e.g. [30], Chapter 9)
that under the null hypothesis the LRT follows asymptotically a
chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters between the models
under the null and alternative hypothesis. The Wald statistic is
given by

W = (LTβ̂
(g)

)T[LTVar (β̂
(g)

)L]−1LTβ̂
(g)

,

where L is the contrast matrix and Var (β̂
(g)

) is the variance-

covariance matrix of the maximum likelihood estimates β̂
(g)

.
The procedure is as follows:

1. Model (2) is fitted on the data Y(g) and the estimates θ̂
(g)

are
derived.
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Figure 2. Mean proportion false discoveries of LRT and Wald statistics when

using the asymptotic χ2
2 (black) and their corresponding bootstrap-based null

distribution (blue) for testing H0 : β1 = β3 = 0 versus H1 : β1 �= 0 or β3 �= 0.

We have also compared with the F-test statistic in limma-voom approach (green)

and LRT and F-test statistic in edgeR (red). Each panel corresponds to proportion

false discoveries (top left), proportion discoveries (top right), proportion true

discoveries (bottom left) and proportion true negative discoveries (bottom right).

Figure 3. DMD mice experiment analysis: Histogram of the estimated dispersion

parameters per gene.

2. Let θ̂
(g)
β2=β3=0 the parameter vector under the null hypothesis

derived from θ̂
(g)

by setting β2 = β3 = 0. Simulate B = 1000
datasets under the null, i.e. Negative Binomial mixed model

Y∗(θ̂
(g)
β2=β3=0).

3. Compute the test statistic on each b = 1, . . . , B dataset: T(b).
4. Compute p-value:

pboot =
∑B

b=1 I(T(b) ≥ T) + 1
B + 1

.

Simulation Study
We have set up a simulation study with the following objectives:
(1) Evaluate the type I error rate of the test statistics (i.e., Wald
test and Likelihood ratio test) with increasing sample size
and correlation structure for the standard Negative Binomial
mixed model when the theoreticall null distribution is used
for the computation of the p-values or bootstrap, (2) compare
the false positive rate of the Negative Binomial mixed model
when multiple genes are studied, as in any real RNAseq
experiment, with the state-of-the-art Maximum Likelihood
approaches edgeR and duplicateCorrelation(.) function
in the limma-voom pipeline. In particular, motivated by the
DMD experiment which will be presented in detail in Section 5
we estimate the proportion false discoveries when 50% of the
simulated genes are assumed to exhibit differential expression
between the two groups.

Type I error rate control

We have simulated longitudinal count measurements from the
Negative Binomial mixed model, described in Section 2, with
mean model given by

log(μij)β0 + β1timeij + β2groupi

+ β3groupi × timeij + bi, bi ∼ N(0, σ 2
b ) (5)

where timeij ∈ [0, 0.5, 1.0, 1.5, 2.0] denotes the timing of the jth
(j = 1, . . . , 5) repeated measurement of subject i (i = 1, . . . , n) and
groupi ∈ [0, 1] is the group indicator for the ith subject. Motivated
from the DMD experiment we have chosen β0 = 4, β1 = 1, β2 =
β3 = 0 and φ = 4. We have set up 12 scenarios to evaluate
empirically the type I error rate for the Wald test and Likelihood
ratio test where we considered different choices for the number
of subjects, i.e. n = 10, 20, 40, 60 and the size of between-subject
variability, i.e. σb = 0.5, 1, 1.5, 2.

For each scenario, 5000 datasets are simulated, and type I
error is computed as the number of times the null hypothesis
H0 : β2 = β3 = 0 is rejected. This hypothesis is tested using the
standard likelihood ratio test and the Wald test on 2 degrees of
freedom and their corresponding bootstrap versions with B =
1000.

Type I error rate control: Results

In Figure 1 and Table 1, we present type I error rates under the
settings described in Section 4.1 over 5000 datasets. In Table 2,
we present results on the quality of the estimated parameters.
We observe that the standard LRT and Wald tests are anti-
conservative for small sample sizes while the type I error gets
closer to nominal levels when n = 60. Similarly, the type I error
gets inflated with the strength of the within-subject correla-
tion. On the contrary when the null distribution is estimated
empirically via the bootstrap method the type I error is at the
nominal level across the different scenarios.

As expected in the sample settings we have considered, the
random effects variance σ 2

b and dispersion φ are under- and
overestimated, respectively.

False discovery rate control

In Section 4.1 above, we have evaluated the type I error rate of the
LRT and Wald tests when 1 gene is tested. Here we will compare
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Table 2. Parameter estimates: mean, standard deviation and root mean squared error in parentheses over 5000 datasets for the Negative
Binomial mixed model (5). We have varied the serial correlation captured by the random effects standard deviation σb = 0.5, 1, 1.5, 2 and the
sample size n = 10, 20, 40, 60

Pars True n = 10 n = 20 n = 40 n = 60

σb = 0.5
β0 4.00 3.991(0.287)(0.287) 3.997(0.202)(0.202) 3.998(0.144)(0.144) 4.000(0.117)(0.117)
β1 1.00 1.001(0.147)(0.147) 0.999(0.106)(0.106) 1.000(0.073)(0.073) 0.998(0.060)(0.060)
β2 0.00 -0.001(0.413)(0.413) -0.001(0.290)(0.290) 0.002(0.206)(0.206) 0.000(0.167)(0.167)
β3 0.00 0.000(0.208)(0.208) 0.001(0.148)(0.148) -0.001(0.103)(0.103) 0.001(0.086)(0.086)
σ 2

b 0.25 0.193(0.122)(0.135) 0.221(0.091)(0.095) 0.237(0.067)(0.068) 0.241(0.056)(0.056)
φ 4.00 4.46(1.111)(1.202) 4.209(0.690)(0.721) 4.099(0.466)(0.476) 4.064(0.372)(0.378)
σb = 1.0
β0 4.00 3.991(0.485)(0.485) 3.996(0.341)(0.341) 3.997(0.243)(0.243) 3.997(0.197)(0.197)
β1 1.00 1.001(0.148)(0.148) 1.000(0.106)(0.106) 1.000(0.074)(0.074) 1.001(0.060)(0.060)
β2 0.00 -0.004(0.692)(0.692) 0.001(0.483)(0.483) 0.004(0.346)(0.346) 0.002(0.283)(0.283)
β3 0.00 0.003(0.210)(0.210) -0.001(0.151)(0.151) 0.000(0.105)(0.105) -0.001(0.086)(0.086)
σ 2

b 1.00 0.802(0.431)(0.474) 0.904(0.319)(0.333) 0.952(0.231)(0.236) 0.969(0.192)(0.194)
φ 4.00 4.466(1.131)(1.223) 4.212(0.696)(0.728) 4.103(0.475)(0.486) 4.073(0.381)(0.388)
σb = 1.5
β0 4.00 3.991(0.697)(0.697) 3.995(0.491)(0.491) 3.999(0.348)(0.348) 4.000(0.283)(0.283)
β1 1.00 1.001(0.147)(0.147) 0.999(0.107)(0.107) 0.999(0.074)(0.074) 0.999(0.062)(0.062)
β2 0.00 -0.004(0.992)(0.992) -0.001(0.695)(0.695) 0.005(0.499)(0.499) -0.001(0.403)(0.403)
β3 0.00 0.002(0.211)(0.211) 0.003(0.153)(0.153) 0.002(0.106)(0.106) 0.002(0.088)(0.088)
σ 2

b 2.25 1.817(0.947)(1.041) 2.044(0.703)(0.732) 2.149(0.506)(0.516) 2.184(0.422)(0.427)
φ 4.00 4.474(1.13)(1.225) 4.224(0.718)(0.752) 4.105(0.486)(0.497) 4.076(0.388)(0.395)
σb = 2.0
β0 4.00 3.99(0.922)(0.922) 3.994(0.648)(0.648) 3.994(0.458)(0.458) 3.996(0.372)(0.372)
β1 1.00 0.999(0.154)(0.154) 1.000(0.109)(0.109) 1.001(0.077)(0.077) 1.001(0.063)(0.063)
β2 0.00 -0.004(1.308)(1.308) 0.005(0.919)(0.919) 0.014(0.660)(0.660) 0.001(0.531)(0.531)
β3 0.00 0.002(0.217)(0.217) 0.000(0.153)(0.153) -0.001(0.108)(0.108) 0.000(0.090)(0.090)
σ 2

b 4.00 3.234(1.679)(1.845) 3.631(1.244)(1.297) 3.814(0.896)(0.915) 3.864(0.737)(0.749)
φ 4.00 4.505(1.193)(1.295) 4.240(0.741)(0.778) 4.120(0.505)(0.519) 4.081(0.397)(0.405)

our proposal to analyse RNAseq counts using Negative Binomial
mixed models and bootstrap per gene with existing pipelines:
edgeR and limma-voom.

Specifically, we will consider the setting where 500 genes are
simulated for the same subject i, i = 1, . . . , 10. We assume that
the subjects are assigned to two groups and are followed up at
5 time points. Repeated count data are simulated for each gene
from the model:

log(μ(g)
ij ) = oij + β

(g)
0 + β

(g)
1 timeij + β

(g)
2 groupi

+ β
(g)
3 groupi × timeij + b(g)

i ,

b(g)
i ∼ N(0, σ 2

g ) (6)

where β
(g)
0 ∼ Uniform(0, 2), β (g)

1 = 1 for all g = 1, . . . , 500, β (g)
2 = β

(g)
3 =

0 for 50% of the genes and β
(g)
2 = β

(g)
3 = 0.5 for the remaining dif-

ferentially expressed genes. We have also set φg = 4 for all genes
and we have considered four scenarios for the serial correlation,
i.e. σg was set at 0.5, 1, 1.5 and 2. For the scaling factors we have
assumed oij ∼ N(0, 0.125). These scaling factors have been kept
fixed for all the pipelines to make fair comparions. For n = 10
subjects we have simulated 50 longitudinal datasets with 500
genes each. Our goal is to evaluate the False Positive Rate for the
hypothesis:

H0 : β
(g)
1 = β

(g)
3 = 0 vs HA : β

(g)
1 �= 0 or β

(g)
3 �= 0

across different pipelines. In particular, on each dataset we
applied (i) the negative binomial mixed model (6) per gene with
1000 bootstrap samples to estimate the P-value per gene for the
LRT and Wald test, (ii) edgeR where the hypothesis of interest
is tested using the LRT or the quasi F-test and (iii) limma-voom
where we used the moderated F-test. The gene-wise P-values per
dataset have been corrected for multiple testing using the false
discovery rate (FDR) approach [31].

False discovery rate control: results

The mean proportions of false discoveries (out of all discoveries)
(FDR) over the 50 datasets in the four scenarios considered per
method are given in Table 3, the mean proportions of true dis-
coveries are given in Table 5, the mean proportions of discoveries
are given in Table 4 and the mean proportions of true negative
discoveries are given in Table 6. A graphical presentation of all
the results across the different methods is given in Figure 2.

We observe that as the serial correlation increases, the FDR
for edgeR which does not model the correlation in the data
increases. Similarly, for the limma-voom, even though the cor-
relation is modelled via random effects, the FDR increases with
the size of the correlation, suggesting that misspecification of
the correlation in the data can severely impact the analysis. The
lowest FDR across all scenarios is achieved when the boostrap
method is used. Our simulation in combination with the type I
error results per gene suggest that the Negative Binomial mixed
model can be used for the analysis of each gene separately as
long as the bootstrap method is used.

The R code used to simulate the data used in this section
along with an illustration to apply the Negative Binomial mixed
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Table 3. Mean proportion false discoveries over 50 datasets for LRT and Wald statistics from the Negative Binomial mixed model when using the
asymptotic χ2

2 (“LRT” and “W”, respectively) and their corresponding bootstrap-based null distribution (“LRT-boot” and “W-boot”, respectively)
for testing H0 : β1 = β3 = 0 versus H1 : β1 �= 0 or β3 �= 0. We have made comparisons with the F-test statistic in limma-voom approach (“F-voom”)
and LRT and F-test statistic in edgeR (“LRT-edgeR” and “W-edgeR”, respectively)

σb LRT LRT-edgeR F-edgeR W LRT-boot W-boot F-voom

0.5 0.017 0.000 0.000 0.026 0.010 0.010 0.002
1.5 0.016 0.195 0.167 0.026 0.008 0.007 0.422
2.0 0.017 0.192 0.169 0.028 0.007 0.007 0.474

Table 4. Mean proportion discoveries for LRT and Wald statistics of the Negative Binomial mixed model when using the asymptotic χ2
2 (“LRT” and

“W”, respectively) and their corresponding bootstrap-based null distribution (“LRT-boot” and “W-boot”, respectively) for testing H0 : β1 = β3 = 0
versus H1 : β1 �= 0 or β3 �= 0. We have made comparisons with the F-test statistic in limma-voom approach (“F-voom”) and LRT and F-test statistic
in edgeR (‘LRT-edgeR’ and ‘W-edgeR’, respectively)

σb LRT LRT-edgeR F-edgeR W LRT-boot W-boot F-voom

0.5 0.482 0.000 0.000 0.511 0.441 0.441 0.003
1.5 0.514 0.694 0.665 0.526 0.506 0.505 0.503
2.0 0.492 0.692 0.668 0.528 0.506 0.506 0.554

Table 5. Mean proportion true discoveries for LRT and Wald statistics from the negative binomial mixed model when using the asymptotic
χ2

2 (“LRT” and “W”, respectively) and their corresponding bootstrap-based null distribution (“LRT-boot” and “W-boot”, respectively) for testing
H0 : β1 = β3 = 0 versus H1 : β1 �= 0 or β3 �= 0. We have made comparisons with the F-test statistic in limma-voom approach (“F-voom”) and LRT
and F-test statistic in edgeR (“LRT-edgeR” and “W-edgeR’, respectively)

σb LRT LRT-edgeR F-edgeR W LRT-boot W-boot F-voom

0.5 0.465 0.000 0.000 0.484 0.431 0.430 0.001
1.5 0.498 0.499 0.497 0.500 0.498 0.498 0.081
2.0 0.475 0.500 0.500 0.500 0.499 0.499 0.081

Table 6. Mean proportion true negative discoveries for LRT and Wald statistics from the Negative Binomial mixed model when using the
asymptotic χ2

2 (‘LRT’ and ‘W’, respectively) and their corresponding bootsrap-based null distribution (“LRT-boot” and “W-boot”, respectively) for
testing H0 : β1 = β3 = 0 versus H1 : β1 �= 0 or β3 �= 0. We have made comparisons with the F-test statistic in limma-voom approach (“F-voom”)
and LRT and F-test statistic in edgeR (“LRT-edgeR” and “W-edgeR”, respectively)

σb LRT LRT-edgeR F-edgeR W LRT-boot W-boot F-voom

0.5 0.483 0.500 0.500 0.474 0.490 0.490 0.498
1.5 0.484 0.305 0.333 0.474 0.492 0.493 0.078
2.0 0.483 0.308 0.332 0.472 0.493 0.494 0.026

Table 7. p-values for the hypothesis of no group changes at each time point

Gene Week 6 Week 12 Week 18 Week 24 Week 30

A930006K02Rik 0.008 0.003 0.101 0.000 0.905
AI662270 0.000 0.001 0.045 0.000 0.635
AW011738 0.000 0.000 0.541 0.005 0.463
AW112010 0.019 0.000 0.000 0.017 0.889

Table 8. p-values for the hypothesis of no differences in slopes at each time point versus Week 6

Gene Week 6 Week 12 Week 18 Week 24 Week 30

A930006K02Rik 0.008 0.797 0.001 0.298 0.049
AI662270 0.000 0.529 0.000 0.811 0.001
AW011738 0.000 0.244 0.000 0.014 0.000
AW112010 0.019 0.000 0.000 0.000 0.060

model with the bootstrap sampling is available at https://github.
com/rtsonaka/NBmixed_RNAseq.

https://github.com/rtsonaka/NBmixed_RNAseq
https://github.com/rtsonaka/NBmixed_RNAseq
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Figure 4. DMD mice experiment analysis: Histogram of the estimated standard

deviation for the random effects per gene.

Figure 5. DMD mice experiment analysis: Histogram of the bootstrap-based p-

values to test the hypothesis H0 : β
(g)
1 = β

(g)
3j = 0 for each gene g = 1, . . . , G.

Characterising disease progression in
Duchenne Muschular Dystrophy:
A longitudinal RNAseq experiment on mice
We will analyse RNAseq data from a longitudinal experiment on
mice carried out at the Leiden University Medical Center (GEO
accession number GSE132741). The aim is to identify biomarkers
of disease progression in the mdx mouse model of DMD carrying
a nonsense mutaiton in exon 23. DMD is a rare neuromuscular
disorder caused by protein truncating mutations in the DMD
gene that encodes dystrophin. Its progression is characterised by
a process of muscle degeneration and regeneration which results
in an increasing replacement of muscle tissue with fibrotic
tissue, leading to loss of muscle function and premature death.
Progression of DMD is currently monitored through physical

Figure 6. DMD mice experiment analysis: Venn diagram for the differentially

expressed genes based on the Negative Binomial mixed model (“LRT-boot”) and

limma-voom (‘F-voom’).

tests or muscular biopsies, both of which are rather invasive. In
search for less invasive ways to track disease progression, blood
samples have been collected longitudinally from 5 dystrophin-
lacking (mdx) mice and 5 wild type (WT) mice at 6, 12, 18, 24 and
30 weeks of age. For 2 mice in the mdx group, 4 planned samples
have not been collected due to mouse dropout. Gene expression
is subsequently quantified via RNA-seq.

After an initial pre-processing and filtering 10348 genes are
considered for further analysis. Specifically, low count genes
have been filtered out and we kept genes with at least 5 counts
per million in at least 10% of the samples. These genes are
further normalized using the TMM approach of Robinson and
Oshlack (2010) [21].

The Negative Binomial mixed model introduced in Section 2
is applied on each gene where the logarithm of mean counts of
mouse i (i = 1, . . . , 10) at the jth occassion (j = 1, . . . , 5) is modelled
as a linear function of age, group and their interaction:

log(μijg) = oij + β
(g)
0 + β

(g)
1 groupi + β

(g)
2j ageij

+β
(g)
3j groupi × ageij + b(g)

i (7)

where β
(g)
21 = β

(g)
31 = 0, oij is an offset term with scaling factors

to correct for sequencing depth and potentially composition
bias. We assume b(g)

i ∼ Nq(0, σ 2
g ). Finally, φg captures the extra

overdispersion per gene g.
Our goal is to identify genes that show a differential mean

profiles in time, i.e. we want to test H0 : β
(g)
1 = β

(g)
3j = 0 for

j = 2, . . . , 5 and each g = 1, . . . , G. This corresponds to hypoth-
esis 2 in Section 2.2. This hypothesis has been tested using the
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Figure 7. DMD mice experiment analysis: Histogram of the estimated random effects standard deviations for the genes detected by the Negative Binomial mixed model

and not by the limma-voom.

Likelihood ratio test and the corresponding p-value is estimated
using bootstrap as described in Section 3 with B = 1000.

Results

The distribution of the estimated standard deviation for the
random effects is shown is Figure 4.

Note that, as expected in mice experiments, the estimated
variances are rather small compared to human studies.

Our analysis has identified 246 genes that show differential
progression between the two groups after FDR multiple testing
correction.

The distribution of the bootstrap-based p-values is shown is
Figure 5.

The observed longitudinal trajectories for four randomly
selected genes with statistically significant differential mean
profiles between WT and mdx are given in Figure 10. The
corresponding fitted mean profiles are shown in Figure 9. For
these four genes, we tested further the hypotheses about
differences in levels and in slopes (i.e. Hypothesis (3) and (1)
in Section 2, respectively). The p-values for these hypotheses at
each time point are given in Tables 7 and 8.

According to the results of the simulation study described
in Section 4, the duplicateCorrelation(.) function in
limma-voom can be liberal and lose power in certain scenarios.
However, for the purposes of illustration, we have analysed the
same dataset using limma-voom and compared the results. The

overlap in the number of genes with statistically different mean
profiles is shown in Figure 6. Note that using limma-voom the
mean (over all genes) serial correlation is estimated at 0.090 and
kept fixed across all genes.

To understand better the differences between the two meth-
ods, we have studied the size of estimated serial correlation in
the genes detected by each one alone and jointly. In particu-
lar, in Figure 7, we observe the size of the estimated random
effects standard deviations for the genes detected by the Neg-
ative Binomial mixed model and not by the limma-voom. In this
set of genes, the estimated values for σb are lower than the low
correlation setting we have considered in our simulation study.
In accordance with our simulation study results, limma-voom
is conservative and has lower power than the Negative Bino-
mial mixed model. Figure 8 presents the distribution of the
estimated random effects standard deviations for the genes
detected by the limma-voom and not by the Negative Binomial
mixed model. In this set of genes, the estimated values for σb get
closer to our moderate correlation setting we have considered in
our simulation study. In accordance with our simulation study
results, limma-voom is liberal while having lower power than the
Negative Binomial mixed model.

Discussion
We have shown that Negative Binomial mixed models can be
successfully used in the analysis of small longitudinal RNAseq
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Figure 8. DMD mice experiment analysis: Histogram of the estimated random effects standard deviations for the genes detected by limma-voom and not by the Negative

Binomial mixed model.

Figure 9. DMD mice experiment analysis: Fitted mean cpm profiles for four

randomly selected genes with differential profiles between WT and mdx

mice.

Figure 10. DMD mice experiment analysis: Spaghetti plots for four randomly

selected genes with differential profiles between WT and mdx mice.
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datasets. It is the combination of the numerical integration
method and the small sample size which have made such
models estimated under the Maximum Likelihood approach less
popular. We have shown that careful estimation of the sampling
distribution of the test statistic using bootstrap leads to stable
estimation of the model parameters and preserves the type I
error. Therefore, we do not need to exploit an empirical Bayes
step where all genes are modelled at the same time to estimate
a common mean-variance trend as in edgeR or ShrinkBayes.
Often this step is not well understood by the end-user and the
implication has not been yet evaluated.

Our simulation in combination with the type I error results
per gene suggect that the Negative Binomial mixed model can
be used for the analysis of each gene separately as long as the
bootstrap method is used.

Key Points
• In longitudinal RNAseq studies the serial correlations

should not be ignored, otherwise, inflated type I errors
rates are observed.

• Negative Binomial mixed effects models can be used
for the analysis of correlated RNAseq data, pro-
vided that the accurate adaptive Gaussian quadrature
approach is used to approximate the integrals over the
random effects.

• In small sample settings, the asymptotic null distribu-
tion of the test statistics may not hold and thus the
boostrap method is proposed to empirically derive the
sampling distribution of the test statistics.

• Negative Binomial mixed effect models in combina-
tion with parametric boostrap can be used to model
complex designs. For instance, nested random effects
or splines can be used to model clustered data or
non-linear evolutions, respectively.
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