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Abstract

This paper applies image processing metrics to tracking of perturbations in mechanical phase 

delay in a multi-axis microelectromechanical system (MEMS) scanner. The compact mirror is 

designed to scan a laser beam in a Lissajous pattern during the collection of endoscopic confocal 

fluorescence images, but environmental perturbations to the mirror dynamics can lead to image 

registration errors and blurry images. A binarized, threshold-based blur metric and variance-based 

sharpness metric are introduced for detecting scanner phase delay. Accuracy of local optima of the 

metric for identification of phase delay is examined, and relative advantages for processing 

accuracy and computational complexity are assessed. Image reconstruction is demonstrated using 

both generic images and sample tissue images, with significant improvement in image quality for 

tissue imaging. Implications of non-ideal Lissajous scan effects on phase detection and image 

reconstruction are discussed.

Index Terms—

Image Processing; Phase correction; Endoscopes; Microelectromechanical Systems; Lissajous 
scanning; Microscopy; Dynamics

I. Introduction

Imaging by scanning a laser beam has many applications in biomedical imaging [1], 

scanning probe microscopy [2], 3D printing [3], single pixel cameras [4], scanning electron 
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microscopy (SEM), laser scanning based projectors [5], and LiDAR (light detection and 

ranging). Various beam steering patterns, such as raster, spiral, and Lissajous, can be chosen 

depending on the application and scanning actuator capabilities. For instance, Lissajous 

scanning is obtained when both axes of motion are operated with constant sinusoidal inputs 

of differing frequency and phase [6]. The scan pattern has a direct effect on image 

resolution, field-of-view (FOV), and frame rate (FR). Lissajous scanning is a popular choice 

in imaging applications as it can be easily implemented using galvo mirrors or, especially, 

miniaturized MEMS (microelectromechanical system)-based scanners. For many scanning 

actuators, a large FOV can be achieved by operating the scanner near resonant frequencies. 

Unlike raster scanning, Lissajous does not require the two operating frequencies to be 

widely separated, simplifying the MEMS design.

However, the effectiveness of a Lissajous scan and accuracy of image reconstruction is very 

sensitive to the phase of the axes. In miniaturized devices, such as MEMS mirrors, the 

resonant frequency of a scanner (i.e. resonant micro-mirror) can drift by several degrees of 

phase angle due to environmental perturbations. This drift, in turn, produces a change in 

phase delay between mirror motion and the periodic input driving signal. There has been 

limited analysis of phase compensation as a mechanical phenomena in Lissajous scanning, 

as distinct from other phase information that may be compensated during imaging, such as 

focal depth or wavefront geometry. Previous methods for compensating for mechanical 

phase shift in resonant devices include temperature-based calibration [7], on-chip capacitive 

sensing [8], and design to limit temperature sensitivity, but these suffer from poor 

repeatability, poor signal-to-noise ratios, and material limitations when using small MEMS 

devices in severely space-constrained applications such as endoscopy. Various feedback 

controllers have also been proposed [9]–[11], but these are also susceptible to sensing 

limitations in small, in vivo instruments and they increase system complexity. Most recently, 

information from the spatial Fourier transform of image information was proposed for 

MEMS mirror phase identification, but this requires substantial computation and tracked 

only small perturbations in phase [12].

This paper proposes methods for high-accuracy mechanical phase detection using (i) an 

image sharpness-based variance metric, (ii) an image blur-based threshold metric; the latter 

metric relies on binary pixel counting from thresholded intensity data during Lissajous 

scanning. Sharpness-based metrics comparable to (i) are often used in other autofocus 

applications [13]. Blur-based algorithms similar to (ii) were first proposed as criteria during 

development of early autofocus techniques for microscopy [14]. However, we demonstrate 

the first application (to the best of the authors’ knowledge) of these classes of criteria to the 

problem of mechanical phase tracking encountered by multi-axis MEMS scanners. 

Moreover, while the approach of thresholded pixel counting as in the blur metric has not 

been widely adopted as an autofocus criteria because the value for an optimal focusing 

parameter (i.e. focal depth) can vary with threshold level [15], we will show that it is much 

less sensitive to this limitation under the conditions of Lissajous scanning, with 

accompanying advantages for computation time.

In this work, we thus demonstrate that variance and thresholded pixel count metrics are well-

suited to the compensation of unknown phase perturbations in Lissajous scanning with 
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MEMS mirrors, with some trade-offs between them for robustness of parameter selection 

versus computational efficiency. In addition, we will discuss how these phase detection 

algorithms interact with other potential limitations of Lissajous scan design, such as fill 

factor (FF) versus frame rate and non-uniform scan density, and will suggest practical 

approaches for managing these trade-offs for the MEMS scanner. Sample images from a 

fluorescent confocal endomicroscope using a 2-axis parametrically-resonant micro-mirror 

are presented.

II. Scanner model and phase drift

To begin, we examine the interaction of MEMS mirror dynamic perturbations with 

Lissajous-scan image reconstruction. The model for scanner dynamics in each axis of a two-

axis parametrically-resonant MEMS scanner, such as shown in fig. 1(a), are described 

following [16] by

Jkθ̈k + ckθ̇k + Kkθk = −
dk
bk

θke−
θk
2

bkV k
2

where subscript k denotes parameters for a respective axis (x or y), J is rotational inertia, c is 

a damping constant, K is a torsional spring stiffness, V is input voltage, and d and b are 

parameters approximating roll-off of capacitance between electrostatic comb fingers that 

actuator mirror motion as an exponential decay. Let the scanner be driven into motion about 

an axis with a driving voltage given by

V k(t) = Aksin 2πfkt + ψk , (1)

where Ak is input amplitude, fk is the driving frequency close to resonance of the x or y axis, 

and ψk is the phase of the driving voltage applied to the electrodes of different axis. The 

angular motion of scanner along the respective axis, and the laser position (x, y) on the 

object plane can be closely approximated as

θk(t) = Dksin πfk + ψk + ϕk(t) , (2)

(x(t), y(t)) = Lθx(t), Lθy(t) . (3)

Here, Dk is the peak amplitude of the mirror motion, ϕk(t) is the phase difference between 

scanner motion and input voltage at the current driving frequency, and L is the distance from 

the mirror to the focal point of the laser being scanned. Note that the scanner oscillates at 

half the frequency of the input voltage due to parametric resonance as described in [16].

In fluorescence endomicroscopy, the distance of an instrument from a tissue sample is not 

precisely controlled, and thus the exact FOV of the image, (±LDx, ±LDy) is neither expected 

to be exactly known, nor critical to producing a clear image, so long as the tissue surface is 

within the working distance of the instrument. Thus, perturbations to mirror dynamics 

affecting motion amplitude are of limited importance. However, perturbations to the 
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mechanical phase difference between scanner input and motion output will rapidly degrade 

image quality if changes in delay cannot be identified.

To elaborate, an image can be reconstructed if one knows the trajectory of the laser beam on 

the object plane as a function of time. As described by eqs. (2) and (3), the beam motion 

depends on parameters fk, ψk, ϕk(t), and 
Dx
Dy

. In practice, fk, and ψk are known, and as noted 

above 
Dx
Dy

 has comparatively modest impact on image quality. Phase information ϕk, 

however, can be a major contributor to image misregistration. Mechanical phase drifts in one 

or both axes can be attributed to numerous factors such as variation in environmental 

conditions including temperature, changes in material property over time, etc, with sample 

behavior shown in fig. 1(b, c). This makes the phase ϕk(t) a slow function of time and 

creates difficulty in image reconstruction. There is also the possibility of dynamic coupling 

of axes, but this can be mitigated in parametrically-resonant scanners by ensuring that the 

natural frequencies of the two axes are sufficiently far from an integer multiple of one 

another, as by design procedures discussed in [4]. The phase ϕk(t) can be experimentally 

determined in a controlled lab environment to reconstruct the image. However, in practical 

application, the phase determined in the lab will not remain constant indefinitely. It is 

sometimes possible to adjust the phase manually to compensate the drift for sparse images. 

However, this requires substantial user experience and it becomes almost impossible to 

adjust the phase for images of structures that are new to the user. Thus, there is a need to 

determine the correct phase at a regular interval of time with minimal disruption to the 

endoscopy procedure.

III. Lissajous scan image reconstruction

To generate a grey scale imaging via single point scanning, points (x(t), y(t)) on an object H 

are sequentially sampled at constant sampling frequency fs = 1
T  (T is sampling time). The 

intensity of light, H (x(pT), y(pT)), from pth point is stored as data sample R(p). By this 

process, the 2D image of an object H(x, y) is translated into 1D time series data R, referred 

to as raw data henceforth. The sequence of sampled points (x, y) on the object plane H is 

determined by the Lissajous scanning pattern given by eqs. (2) and (3), Where t = pT, and p 
∈ N. Image reconstruction becomes an inverse problem where one must map intensity 

values R(p) to a 2D image space (discrete) I(i, j), where I is a grey image (M × N matrix) of 

an object H. Thus, it is essential to know each ordered pair (i, j) as a function of p.

The mapping of R to I is many-to-one because of non-uniform scan density (the number of 

data points sampled per unit area) over the FOV and rounding of the location of sample 

instance to the nearest pixel location. One way to get a unique intensity value at a pixel (i, j) 
is to average all such values of R(p)’s that are mapped to that pixel. The schematic for the 

process of object scanning and image reconstruction is shown in fig. 2 and summarized by 

the calculations:

i = Mx(p) (4)
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j = Ny(p) . (5)

Where ⌈ ⌉ denotes a greatest integer function (ceiling), and x(p) and y(p) ∈ [0, 1] are the 

normalized co-ordinates given by

x(p) = 0.5sin πfxpT + ψx + ϕx(pT ) + 0.5 (6)

y(p) = 0.5sin πfypT + ψy + ϕy(pT ) + 0.5. (7)

A key characteristic of the impact of drift on image reconstruction is duplicative appearance 

of features along each axis when pixels are misregistered due to erroneous phase used for 

reconstruction. As illustration, consider that a given (x, y) from eqs. (6) and (7) is also 

satisfied by

x(p) = 0.5sin π − πfxpT − ψx − ϕx(pT ) + 0.5 (8)

y(p) = 0.5sin π − πfypT − ψy − ϕy(pT ) + 0.5 (9)

Under conditions of phase uncertainty, the phase ϕk(t) can be written as

ϕk(t) = ϕk
o + Δϕk(t), (10)

where ϕk
o is a constant and Δϕk(t) is phase drift. When Δϕx = Δϕy = 0, all intensities assigned 

to a pixel (i, j) are obtained from the same, correctly-registered, point in the FOV. However, 

non-zero phase drift assigns intensity measurements to either side of the nominal pixel 

location.

To demonstrate the resulting effect, we generate a set of raw data by sampling the 

demonstration image, shown in fig. 3(a), in Lissajous style. Arbitrary scanning frequencies 

and phases of fx = 19251 Hz, fy = 3315 Hz, and ϕx = 2.8456 rad, ϕy = 0.3989 rad were 

chosen to simulate the laser scan pattern. A total of 106 samples were recorded assuming a 

sampling rate of 107 samples/sec. The location of the simulated laser point at any sampling 

instance was rounded to the nearest pixel location.

If we introduce an exaggerated error or drift of π
8  rad for phases in both axes (Δϕx and Δϕy), 

the reconstructed image will have four overlapping images as shown in fig. 3(b). As a 

consequence of eqs. (6) to (9), we can say the output image is an overlap of four original 

images offset by corresponding phase of Δϕx and Δϕy in each axis. Moreover, the offset 

between right and left scan images is not a linear function of Δϕ as it is mapped via the 

sinusoidal functions above. This demonstration gives an exaggerated view of a problem, but 

even a small error in phase leads to a blurry image, significantly affecting image resolution. 

This puts a stringent requirement on the accuracy with which the phases should be predicted 

or detected.
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IV. Phase estimation using image-based metrics

Autofocusing techniques regularly rely on metrics drawn from image properties to perform 

an optimization on an autofocus parameter. A common example is metrics for sharpness, 

frequently defined based on pixel variance within an image [18]. Estimation of the phase 

delay (ϕ*) under a metric is an optimization problem where the estimated value is the 

argument of a minimization or maximization problem, i.e.

ϕ* = arg min
ϕx, ϕy

g ϕx, ϕy , (11)

where, the objective function g(ϕx, ϕy) can be any combination of metrics expected to 

improve the image quality upon optimization. As established in section III, the phase error in 

each axis independently produces the effect of overlapping images. Thus, optimizing the 

objective function g(ϕx, ϕy) with respect to two variables ϕx and ϕy simultaneously can be an 

overkill and computationally expensive. We simplify eq. (11) with the independent 

assumption and rewrite as

ϕ* = argmin
ϕy

min
ϕx

g ϕx, ϕy ,
(12)

and perform a sequential optimization starting arbitrarily with either ϕx or ϕy.

Conceptually a variety of autofocus-type algorithms could be applied to this problem, with 

most such algorithms depending on metrics such as intensity variance or properties of spatial 

Fourier transform. However, these are comparatively computationally expensive and can be 

implemented only after fully reconstructing the image for each candidate phase angle. 

Motivated by this characteristic impact of phase drift on Lissajous image reconstruction, we 

instead first describe our method for rapidly assessing image blur when using a MEMS 

micro-scanner. We will then introduce a variance-based approach in section IV–B for 

comparison, which is more similar to widely-used autofocus metrics from other applications, 

though implemented in MEMS scanner phase tracking for the first time.

A. Threshold-based blur metric

We propose a threshold-based blur metric that functions as a “shorthand” method to signify 

the amount of repetition in the image with low computational complexity. In this method, a 

threshold (σ, constant for a given phase detection step) is used to convert the time series raw 

data R to a binary vector, Rσ = {0, 1}. Then, all pixels within the image are assigned a 

binary value, IB(i, j), with value equal to one if entry in Rσ assigned to a pixel (i, j) under a 

candidate phase estimate is a one. This can also be written

IB(i, j) = 0, ∀ Mx(p) = i, Ny(p) = j : H(x, y) < σ
1, ∃ Mx(p) = i, Ny(p) = j : H(x, y) ≥ σ (13)

In other words, if at any instance during reconstruction a pixel is assigned an intensity 

greater than the threshold, it takes on a value of 1. The final normalized threshold metric, B, 

is then defined as the total number of white pixels in the B/W image, (i.e. sum of all ones) 

divided by the total number of pixels
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B =
∑i ∑jIB i, j

NM (14)

Conceptually, the rationale behind eq. (14) is that when an inaccurate phase is used to 

generate the image, the information is spread across the image, and ones (or bright pixels) 

will be spread across the image and increase the value of B. An exaggerated phase error 

example is demonstrated in fig. 4. For B to serve as an indicator of phase, we desire B to be 

a minimum when Δϕx = Δϕy = 0. To do this, we assume that

i. σ is selected according to

min(R) < σ < max(R) (15)

ii. there exist non-empty sets of pixels with R(p) < σ, and R(p) > σ that are 

oversampled during the Lissajous scan period of interest.

Under these assumptions, if the image is correctly registered (i.e. Δϕx = Δϕy = 0), there will 

be finite numbers of both one and zero entries in IB, and associated boundaries between 

“black” and “white” regions in the binarized image. As phase error increases, the number of 

white pixels increases due to pixels in the black regions drawing samples from the white 

regions due to eqs. (6) to (9) and the asymmetric thresholding conditions of eq. (13). 

Critically, due to eqs. (6) to (9) and assumption (ii), the number of white pixels must 

increase for perturbations of Δϕx and Δϕy in either direction, and Δϕx = Δϕy = 0 will be at 

least a local minimum.

The critical result for this method is that the combination of, oversampling and locally-

symmetric misregistration characteristic of Lissajous scanning prevents the minimum value 

of B from being dependent on threshold value, so long as assumption (i) is satisfied. Thus, 

this approach is highly-suitable for phase correction in Lissajous scanning despite 

application to other autofocus scenarios being less effective. Furthermore, the approach 

requires less computational effort than more conventional autofocus techniques. While 

binarized pixels do need to be assigned to locations in image space based on candidate phase 

delays, minimal additional computation is required to calculate B, as opposed to full 

computation of reconstructed image properties by metrics such variance or spatial frequency 

calculations.

A limitation of the metric in eq. (14) is that a global search is not proven to be robust and not 

guaranteed to provide the correct optimum value for all possible selections of the threshold. 

However, as will be examined in the following section, we have observed to date that the 

threshold metric is always at least locally minimized at ϕk*, regardless of the choice of the 

threshold value.

B. Variance-based sharpness metric

In this method, a variance-based sharpness metric is used to predict the phase. This metric is 

inspired by other autofocus applications and adapted to MEMS scanner phase tracking as a 

comparison for the more specialized approach above. In a sharp image, the pixel intensity 
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values are well separated and thereby increase the variance of pixel intensities. Thus, the 

variance of pixel intensities can be a sharpness metric, S, in this case using pixel intensity of 

an image reconstructed from a test phase delay,

S = 1
MN ∑

i

M
∑

j

N
I(i, j) − Iavg

2
(16)

Iavg = 1
MN ∑

i

M
∑

j

N
I(i, j) . (17)

Such that optimal phase is selected based on eq. (12) with g = −S.

V. Results

In this section, we examine the results of the proposed phase detection algorithm through 

application to a set of test images and images acquired from in vivo endomicroscopy. We 

will compare effectiveness of both metrics proposed in section IV in estimating the phase. 

The effect of phase error on the image quality can be assessed by using a target error 

previously established [19]. Let the maximum uncertainty in intensity location that produces 

acceptable image quality be δr. Then, in an image size of M × N, the error in estimation of a 

phase δϕk = ϕk − ϕk  along respective axes is upper bounded by,

|Mδϕx| ≤ |2δx | , and|Nδϕy| ≤ |2δy | . (18)

Where the uncertainty in intensity location δr2 = δx2 + δy2.

A. Phase correction implementation using global and local search

The simulated raw data described in section III is first used as a demonstration of the 

proposed blur versus sharpness-based phase prediction methods. A global search was made 

independently along x and y axes by evaluating either metrics at each candidate phase 

between [0, π] incremented in step of 0.02 rad. To mitigate the missing pixels during the 

algorithm implementation, the image was constructed at 9/16 of the size of original image 

(3/4 along each axis). In fig. 5(a)–(b) the global minimum can be seen at the true phase 

values. The results were fine-tuned by a local search where phase was incremented in steps 

of 1 mrad in the vicinity of the minimizer obtained from the global search. The results can 

be seen in fig. 5(c)–(d). The comparison of the predicted phase by both methods with the 

true phase is given in table I.

B. Algorithm testing on simulated data using generic images

The effectiveness and versatility of the phase detection algorithm and proposed metrics is 

next evaluated by testing it on several images. For demonstration purpose, results for both 

biological images such as a widefield endoscopic image of human colon, confocal 

microscopic image of sessile serrated (SS) adenoma tissue and normal tissue from human 

colon, and couple of images commonly used in the image processing community like 
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‘chemical plant’, and ‘lake’, are shown in fig. 6. These images were first converted to 

grayscale and resize to 256×256 pixels. Raw data for each image was generated by 

simulating Lissajous scanning as described in section III. For comparison, we used the same 

arbitrary scanning frequencies and phases of fx = 19251 Hz, fy = 3315 Hz, and ϕx = 2.8456 

rad, ϕy = 0.3989 rad to simulate the laser scan pattern for each image. Global and local 

search, as mentioned in section V–A, were performed using Matlab to predict the phase 

value and results are shown in fig. 6 and summarized in table II. As evident from the results, 

the algorithms successfully predict the phase value with maximum absolute error of 0.6 

mrad. The accuracy could be further improved by reducing the step size of 1 mrad used 

during the local search. To put this error in a perspective, in view of eq. (18), for M = N = 

256 pixels, |δϕ| = 0.6 mrad, the maximum possible pixel shift is δr ≈ ±0.1086 pixel. In other 

words, the maximum error in the inferred location of an intensity value is less than 10.86% 

of a pixel dimension.

C. In-vivo tissue imaging demonstration

The effectiveness of the algorithm was applied to a two-axis MEMS scanner installed in a 

front-view single-axis confocal endomicroscope during in-vivo imaging [20]. The animal 

study was approved by the University Committee on the Use and Care of Animals 

(UCUCA) at the University of Michigan. During imaging, the mouse was anesthetized with 

inhaled isoflurane. Fluorescein sodium at a concentration of 5%, 200 μL was administered 

intravenously into the tail vein of a nude mouse to generate contrast. Fluorescence images 

were collected at 10 and 25 fps from the mucosal surface of the colon and the hind limb, 

respectively (fig. 7). The probe was placed in contact with the tissue surface and was moved 

manually across the area of interest.

The scanner in the probe used for mouse colon imaging had parametric resonance at fx= 

27680 Hz, fy= 6540 Hz. The phase of ϕx = 17.143 deg, ϕy = 11.543 deg were identified by 

using a generic fluorescence target before the in-vivo experiment. LabVIEW was used for 

real-time in-vivo imaging, and it is hypothesized that the MEMS scanner experienced phase 

shift due to environmental variation, producing blurred images shown in fig. 7(a). 

Environmental factors, such as temperature variations and mechanical stress were most 

likely to be the cause of phase perturbations. Phase correction was performed offline using 

LabVIEW and the estimated phase values are tabulated in table III. The estimates by both 

the metrics agree with each other. During the implementation of algorithm the problem of 

missing pixels, as discussed in section VI–A, was tackled by reconstructing the image at 

reduced size during global search, however, for the local search full size image was used. 

Remaining missing pixels were filled using moving median with window size of 5 pixels.

Representative improvements in image quality after phase correction using threshold metric 

can be seen in fig. 7(b). The image produced using variance metric has no appreciable 

difference compared to fig. 7(b), and is not shown here in view of limited space. The 

fluorescence image of mouse hind limb thigh was taken at 25 fps using another probe with 

scanning parameters as mentioned in the table III. The image (fig. 7(d)) after phase 

correction shows significant improvement in the image quality, for instance, blood cells 

(arrow) could be clearly identified. It can be concluded that the phase along the fast axis 
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drifted by almost 2.5 deg for both the experiments, while the average phase drift along the 

slow axis is 1.345 deg and −0.367 deg in mouse colon and thigh imaging respectively. It 

should be noted that only these drifts in phase should correspond directly to changes in the 

underlying dynamics, while the absolute measures of phase may include additional delays 

due to data acquisition and pre-processing, unknown but considered fixed for a given 

hardware configuration.

VI. Discussion

A. Effect of missing pixels

We note that the Lissajous scan trajectory depends on driving frequencies and the relative 

phase difference between them. A repeating or non-repeating pattern is obtained depending 

on whether the ratio of driving frequencies, 
fx
fy

, is a rational or irrational number, 

respectively. A non-repeating curve is often desired as different pixels are scanned in each 

cycle (i.e. one cycle of the lower frequency), thereby covering more area on the object plane 

and improving the fill factor (FF). FF can be defined as a ratio of the number of pixels 

scanned at least once to the total possible number of pixels in the image. In a high definition 

(HD) image, FF can be made sufficiently high by scanning for a long time, which results in 

lower frame rate. This leads to a trade-off between FR and FF; it is difficult to maximize 

both for an HD image. In a high FR application using Lissajous scan, it is inevitable to have 

some missing pixels in the reconstructed image. As a mitigating factor, various algorithms 

can be used to fill these missing pixels in a post-processing step after initial image 

reconstruction, or an image with reduced size can be reconstructed. However, it is difficult to 

eliminate these missing pixels during the phase prediction as this step precedes all others.

As mentioned earlier a total of 106 samples were taken to simulate the raw data from the 

image in fig. 3(a), which is 26 times the total number of pixels in the image. These many 

samples were enough to reconstruct the image such that there are no missing pixels. 

However, to study the effect of missing pixels on blur and sharpness metric, we tested phase 

tracking using only quarter of total samples in the raw data i.e. the first 0.25 × 106 samples. 

The missing pixels are flagged by a separate color in the image reconstructed with true 

phase information as shown in fig. 8(a). The plot of the threshold metric vs phase is shown 

in fig. 8(b) with a solid line. As compared to the fig. 5(b) this time the threshold metric has 

more high frequency variation with respect to ϕy. The percentage of missing pixels in an 

image as a function of ϕy is plotted on the right y-axis of the plot given in fig. 8(b). As 

evident from the plot, the high frequency noise peaks in the threshold metric match with the 

missing pixels. The sharpness-based phase prediction method will also suffer if the image 

has missing pixels as shown in fig. 8(c). In the extreme case, the phase prediction method 

may fail if the contribution of missing pixels to the variance metric exceeds the depth of the 

global minimum at the true phase.

B. Practical choice of threshold used for binarizing

As a practical matter, the algorithm works most effectively when the threshold (σ) is 

selected close to the mean of the raw data, i.e. when σ = R because this approximately 
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balances the count of zeroes and ones in binarized data. Selecting a smaller value for the 

threshold σ ≪ R increases the count of ones, and in the reconstructed image there will be 

some overlap of ones at all candidate phase. Thus, the sensitivity of the threshold metric to 

the change in candidate phase is reduced. If ones are too sparse, i.e.σ ≫ R, the threshold 

metric is almost constant with respect to phase and has a very steep slope near the true phase 

value. As a result, true phase may be missed by discrete steps taken while sweeping 

candidate phase values.

C. Effect of binarizing before or after image reconstruction

In a threshold-based blur metric, there are two potential ways to binarize the data. First, the 

raw data R itself can be binarized to construct the B/W image using eq. (13) directly. 

Second, a grey image I can be made from raw data and later binarized to a B/W image. In 

this section, we study the effect of binarizing the raw data R vs a grey image I. fig. 9(a) 

represents the first case where raw data R is binarized using threshold values σ = 1.6R and 

fig. 9(b) shows a grey image I binarized using threshold valuesσ = 1.6I. As seen from the 

fig. 9(a) all the pseudo images of the coin are preserved and remain evident on choosing an 

appropriate threshold value. While in case (b), some of the pseudo images of the coin are 

lost. Thus, it is important to binarize the raw data before the image is formed for better 

detection of phase with increased sensitivity.

D. Computation time comparison

In Lissajous scanning, to mitigate the missing pixels one need to oversample the object by 

an order of magnitude more compared to total number of pixels in the targeted image, as 

discussed in section VI–A. This poses a big challenge for phase prediction in real time 

imaging. The computation time to predict phase error using either sharpness or blur metric is 

dominated by the step in which enormous samples in a raw data R are mapped to respective 

pixel location for each test phase. As the memory location is not accessed sequentially due 

to Lissajous scanning, this becomes the bottleneck in speeding up the algorithm. However, 

most operations in evaluating the threshold metric are binary, because of eq. (13), making it 

faster compared to the variance metric in predicting the phase errors. We compared the time 

taken by both the methods in estimating the phase by performing a global search (158 test 

phases) on standard images with parameters same as described in sections V–A and V–B. 

Matlab was used to run 12 iterations of the global search on a machine having 8GB RAM, 

Intel(R) Core(TM) i7-7700HQ CPU, 2.80GHz, on a single processor, and the average time 

taken for evaluating metrics per test phase is reported in table IV. The threshold metric took 

on an average 17.49 ms compared to 19.45 ms by the variance metric. On an average, the 

estimated computation time breakdown for threshold and variance metric algorithm, 

respectively, is as follows: the image reconstruction steps took 17.42 ms and 19.34 ms, while 

evaluation of metrics itself just took 0.02 ms and 0.04 ms, and rest of the time was spent on 

other computations. It should be noted that all these figures represent qualitative 

performance of the metrics. The overheads due to time profiling may affect the relative 

proportion of actual time spent on each line of code. The total computation time may 

significantly differ on optimizing the code, implementing the code in different coding 

language, and/or machine.
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E. Comparison between threshold and variance metrics

We have discussed particular cases of sharpness and blur metric application, i.e., variance 

and threshold-based metrics, respectively, that can determine the phase value for high quality 

image reconstruction of a Lissajous-scanned image. A summary of the strengths and 

weaknesses of the two methods are as follows: In the threshold-based blur metric the global 

phase search results may be sensitive to the value of threshold parameter σ. The optimum 

value of σ may be different for different images which make the implementation of 

threshold-based method less robust. The variance metric is threshold-free, making it very 

robust in predicting the phase. However, the computation time for the threshold metric is 

10% less than the variance metric as the former involves working with binary variables. The 

faster method can be desirable in some real-time imaging applications such as 

endomicroscopy, especially if computational resources are limited. In addition, the 

threshold-based metric is also observed to provide a more prominent local minimum than 

the variance-based sharpness metric in all sample images.

VII. Conclusion

In this paper, sharpness-based image processing metrics to correct for phase delay in a 

Lissajous-style MEMS scanner are introduced. A novel threshold-based blur metric is 

developed which binarizes the raw data to predict the phase error in the reconstructed image 

in a computationally efficient form. A variance-based sharpness metric is also implemented 

to able to successfully determine the true phase value. In high FR imaging application, 

missing pixels being inevitable adversely affects both the metrics and may lead to error in 

results. It is observed that threshold metric is less robust compared to the variance metric in 

global search, however, the threshold metric is faster as it involves calculation with binary 

variables and is better suited to real-time phase correction. Both of these metrics have been 

experimentally demonstrated to be effective in compensating for phase error in practical 

implementation with a MEMS-based endomicroscope. Similar algorithms could be extended 

to other potential applications involving single pixel imaging or projection.

As future work, a variety of other image-based metrics inspired by autofocus and related 

algorithms could conceptually be adapted for use in MEMS scanner phase tracking. The 

proposed blur and sharpness metrics were selected based on potential for leveraging specific 

Lissajous properties versus correspondence to high-popularity approaches in other 

applications, respectively, but we acknowledge that this is not an exhaustive exploration of 

candidate criteria. Other potential improvements include dynamic thresholding of binary 

data and/or further analysis to reduce computation time, in order to further facilitate high-

speed, real-time endoscopic imaging.
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Fig. 1. 
(a) A 2-axis electrostatic actuated parametrically-resonant MEMS scanner, (b, c) Phase 

delay variation near maximum amplitude scanning is substantial with small perturbations of 

natural frequency. Sample frequency response generated by methods from [16], [17], with 

nominal Jx =0.013 mg mm2, cx =0.003 μN-mm-s/rad, Kx =4860 μN-mm/rad, bx =0.0006 

rad2, dx =0.003 μN-mm-rad, and corresponding linear natural frequency, fn, of 6405 Hz 

perturbed by adjusting Kx.
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Fig. 2. 
Schematic for image reconstruction in a single pixel scanning camera (Image credits: ID 

90250929 ©Jevanto | Dreamstime.com).
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Fig. 3. 
(a) original image, (b) image reconstructed with phase error ϕx = ϕy = π/8 rad.
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Fig. 4. 
Demonstration of intuition behind threshold metric, the value of the threshold metric B 

(number of bright pixels) increases from 0.0434 to 0.1640 with increase in phase error from 

0 to 0.075π for (a) and (b) respectively.
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Fig. 5. 
Plots of threshold and negative variance metric vs phase x and y; (a) and (b) global search 

from 0 to π, (c) and (d) local search around initial approximation given by global search.
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Fig. 6. 
Plots of global search sweep along x axis from 0 to π for generic test images; (a) threshold-

based blur metric, (b) variance-based sharpness metric (negative).
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Fig. 7. 
(a, b) Comparison of in vivo fluorescence images before and after phase correction. A 

normal colonic mucosa from a mouse was imaged. Individual crypts (arrow), including 

glands (g), lumen (l), and lamina propria (lp), could be identified in the corrected image. 

(c,d) A saphenous vein from the hind limb of a mouse was imaged. Individual vessels (v) 

and blood cells (arrow) could be identified in the corrected image. Contrast was provided by 

intravenous injection of fluorescein.
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Fig. 8. 
(a) High FR image with missing pixels, (b) and (c) plot of threshold and variance metric, 

respectively, with respect to phase y demonstrating the effect of missing pixels.

Birla et al. Page 24

IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
(a) A binary filter applied to raw data to obtain B/W image directly, (b) A binary filter 

applied to grey image constructed from raw data.
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TABLE I

Sample image result comparison

ϕx
(rad)

δϕx
(mrad)

ϕy
(rad)

δϕy
(mrad)

True phase 2.8456 0 0.3989 0

Estimated phase

 • threshold metric 2.8460 0.4 0.3980 −0.9

 • variance metric 2.8460 0.4 0.3980 −0.9
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TABLE II

Phase and error estimation in test images

Threshold metric Variance metric

δϕx
(mrad)

δϕy
(mrad)

δϕx
(mrad)

δϕy
(mrad)

Human colon 0.4 0.1 0.4 0.1

SS adenoma tissue 0.4 0.1 0.4 0.1

Colon tissue 0.4 0.1 0.4 0.1

Chemical plant 0.4 0.1 0.4 0.1

Lake −0.6 0.1 0.4 0.1
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TABLE IV

Qualitative comparison of average computation time taken to evaluate a metric per test phase

Threshold metric time (ms) Variance metric time (ms)

Human colon 17.96 19.79

SS adenoma tissue 17.84 19.69

Colon tissue 17.29 19.21

Chemical plant 17.23 19.29

Lake 17.14 19.26

Mean 17.49 19.45
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