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Abstract

Alzheimer’s disease (AD) is a progressive incurable neurodegenerative disease and a major health 

problem in aging population. We show that the combined use of Laser-Induced Breakdown 

Spectroscopy (LIBS) and machine learning applied for the analysis of micro-drops of plasma 

samples of AD and healthy controls (HC) yields robust classification. Following the acquisition of 

LIBS spectra of 67 plasma samples from a cohort of 31 AD patients and 36 healthy controls (HC), 

we successfully diagnose late-onset AD (> 65 years old), with a total classification accuracy of 

80%, a specificity of 75% and a sensitivity of 85%.

1. Introduction

It is estimated that, by the year 2050, the number of Alzheimer’s disease (AD) cases in the 

US will exceed 20 million and the related healthcare costs will reach $ 1 trillion. AD, a 

neurodegenerative disease characterized by progressive and irreversible cognitive loss, is 

currently incurable. An efficient management of symptoms, as well as the success of clinical 

trials of drug candidates, relies on early diagnosis and clear discrimination of AD from other 

dementias [1,2]. Three biomarkers, collectively identified as ATN, were defined for AD, i.e. 

amyloid deposit (A), Tau pathology (T), and neurodegeneration (N) [3]. The ATN 

biomarkers can be detected in living individuals, but since the required procedures are either 

costly (e.g. brain imaging) or invasive (e.g. lumbar puncture for cerebrospinal fluid 

harvesting), diagnoses still largely rely on neurological and cognitive symptoms. This 

approach has two main pitfalls: 1) AD pathophysiological processes may start long before 
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symptoms appear; and 2) symptoms themselves do not allow discriminating AD from other 

dementias due to their low specificity for AD. Therefore, there is a strong need for non-

invasive cost-effective tests for AD early diagnosis.

Laser-Induced Breakdown Spectroscopy (LIBS) is the optical emission spectroscopy of 

Laser-Induced Plasmas (LIP), i.e. highly ionized gases that can be produced by the 

interaction of intense laser pulses and matter. LIPs are dynamic systems, that emit 

ultraviolet, visible and infrared radiation during their persistence time. This emission 

constitutes the LIBS signal, and, since the elemental composition of LIPs is the same as the 

irradiated target, assuming the ablation is stoichiometric, LIBS spectra can be used for 

qualitative and quantitative analysis of the target itself. Some of the most useful features of 

LIBS as an analytical technique include: simultaneous analysis of all elements present in the 

target, irrespective of their atomic mass; possibility of analyzing samples of virtually any 

chemical nature and state of aggregation; limited or absent sample preparation; immediate 

response; relatively low cost; and possibility of in situ and stand-off analyses. For this 

reason, LIBS lends itself to a large number of analytical applications, in a variety of diverse 

fields [4–10]. Biomedical applications of LIBS are currently in a phase of great vitality, as 

recently reviewed in [11]. Recently, our group proposed a minimally invasive approach to 

medical diagnosis, i.e. LIBS liquid biopsy. Instead of tissues, this method employs easily 

harvested biological fluids, such as blood, urine or saliva, that are deposited and dried on 

solid substrates prior to laser irradiation. Our previous studies on Epithelial Ovarian Cancer 

(EOC) [12] and melanoma [13] in mice demonstrated that classification accuracies up to 

97% could be achieved. High classification accuracy (up to 100%) was also obtained by 

other authors, with serum and whole blood from lymphoma and multiple myeloma patients 

[14,15]. LIBS liquid biopsy makes it intrinsically versatile and applicable to problems of 

different nature, such as, in the biomedical field, the diagnosis of different diseases. The use 

of machine learning, moreover, can provide several advantages such as automated 

procedures; speed of analysis; high classification accuracy; generation of spectral libraries 

containing a large number of samples [16–18].

In this paper, we propose the combined use of LIBS and machine learning for the diagnosis 

of AD using biomedical fluids. Using an elemental analysis technique for fundamental 

studies and early diagnosis of AD is justified by the increasing attention that the role of 

metals in AD onset and progress has been receiving in the past three decades [19–22]. 

Despite these efforts, a clear correlation between the blood levels of various metals and AD 

is yet to be established [20]. In this work, we analyzed micro-drops of plasma from a cohort 

of AD patients and HC and focused on distinguishing the two classes with a data analysis 

approach based on the use of LIBS difference spectra.

2. Experimental setup

The LIBS experimental set used for this work is standard and described by several research 

groups [4–7]. The laser source used to generate the LIP is a 7-ns (ns) Nd: YAG laser 

(Surelite II, Continuum) operating at 1064 nm, focused on the sample with an air-spaced 

doublet lens with focal length of 30 mm. The samples were loaded onto a motorized and 

computer-controlled x-y-z translation stage located within a chamber (SciTrace, 
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AtomTrace). The plasma emission was collected at an angle of 45° with respect to the laser 

beam by means of a 50 μm core-diameter optical fiber. This fiber was coupled to the Echelle 

spectrograph (Andor Technology, ME 5000) and a thermoelectrically cooled iStar 

Intensified Charge Coupled Device (ICCD) camera (Andor Technology, DH734–18F-03). 

The time parameters were: 1 μs starting delay after the laser pulse; 5 μs pulse width. The 

focused laser spot diameter was about 100 μm, the repetition rate was ½ Hz, and the laser 

energy was 130 ± 2 mJ. All measurements were carried out in air at atmospheric pressure. 

As described in our previous work on cancer diagnosis with LIBS liquid biopsy [12,13], we 

deposited the plasma samples on a solid target prior to laser irradiation. In this case, we 

deposited 5 μl of individual plasma specimen on the unpolished side of pure Si wafers, 

previously rinsed in 2-propanol, and dried the samples for 10 min with a Tungsten infrared 

lamp. To make up for possible inhomogeneity in the liquid distribution on the substrate, we 

acquired 100 single shot spectra for each sample. We ensured that each spectrum came from 

a fresh spot on the surface of the dried plasma drop by displacing the substrate with respect 

to the incoming laser beam with a computer-programmable target holder. After each laser 

shot, the substrate was displaced 200 mm from the previous position. As previously 

described [12,13], prior to data analysis, for each sample we removed all the spectra having 

total emission intensity lying beyond one standard deviation around the mean total emission 

intensity. Since the number of outliers was not the same for each sample, the resulting 

number of selected spectra was also not the same, after the filtering procedure.

Finally, we note that the subjects in this study were recruited from the Bedford VA Hospital 

Dementia Care Unit. The protocol was approved by the Bedford VA Hospital Institutional 

Review Board and written informed consent for each participant was obtained before 

initiation of the study and blood collection.

3. Results and discussion

3.1. Using difference spectrum method

Fig. 1 shows an example of LIBS spectrum of plasma from an AD patient a) and of an HC 

subject b), deposited and dried on a Si substrate. This figure shows that there is no clearly 

distinguishable difference between the two classes as the spectra are virtually identical, 

therefore LIBS spectra as such do not appear to provide an obvious discrimination between 

AD and HC samples.

To seek to differentiate the AD and HC classes of samples, we generated difference spectra 

as a preprocessing step to enhance spectral differences between AD and HC samples. A 

group of 23 samples (11 AD and 12 HC) was selected randomly from our AD and HC pool 

of subjects as our training set and used to obtain the mean AD and mean HC spectra. After 

normalizing the spectra over the total emission intensity, we subtracted the mean HC 

spectrum from that of AD. This yielded a difference spectrum that displays positive and 

negative peaks (Fig. 2) and is representative of the differences between AD and HC samples.

The transitions appearing as positive or negative peaks (Fig. 2) indicate an enrichment 

(positive) or a depletion (negative) of the given emitter in AD samples with respect to HC 

ones. Therefore, the difference spectrum was used as a model template to diagnose 66 

Gaudiuso et al. Page 3

Spectrochim Acta Part B At Spectrosc. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



testing spectra. These corresponded to 44 different patients. Samples from 10 of these 

patients were acquired more than once, and their spectra treated independently as belonging 

to different patients. For each unknown sample, we computed a difference spectrum, using a 

similar procedure to that described above.

We determined a mean HC spectrum and subtracted it from each of the unknown spectra. 

This provided a difference spectrum for each unknown, that we compared with the model. 

Since the latter was obtained as AD – HC, we assumed that if transitions in the unknown 

difference spectra had the same polarity as in the model, they should be classified as AD, 

and if the opposite polarity, as HC. Fig. 3 illustrates the difference spectra for one AD 

sample a) and one HC sample, b) in the spectral region 570–575 nm. Fig. 3 a)–b) shows an 

unambiguous difference between the AD (same polarity as in the reference, a) and HC 

samples (opposite polarity). This observation was used to obtain a diagnosis, i.e., each of the 

net transitions appearing as negative or positive peaks in the model difference spectrum was 

checked in the unknown ones and labeled “AD” or “HC”. Each sample was then diagnosed 

as either AD or HC, based on the number of AD or HC labels it received.

It should be noted that a slight shift of the wavelengths in the mean AD and mean HC 

spectra can cause an asymmetry in the difference peak. In this study, we did not use these; 

only non-asymmetric emission lines (reported in Table 1) were used to carry out the 

diagnostic test.

We found that not all transitions were visible in the difference spectra of all samples (Table 

1). This stems from the fact that some transitions have very similar intensity to that of the 

mean HC spectrum, resulting in their absence in the difference spectrum. Therefore, due to 

unavoidable individual differences between the patients, the number of detectable peaks in 

difference spectra was not always the same. In addition, we observed that not all transitions 

unequivocally identified patients as either an AD case or a control, and a mix of different 

labels was the most common occurrence. In such cases, the diagnosis was obtained based on 

the majority of labels (in this case, AD for patient 22 and HC for patient 104, but we 

estimated the frequency of such mixed situations, in which the number of AD/HC label may 

be very similar or even identical. To do this, we introduced a parameter, that we named 

index of confidence, IC:

IC = # ADlabels − # HC labels
 #toptransitions (1)

The possible values of this index range between +1 (all top transitions visible in the 

spectrum difference and providing an AD label) and − 1 (all top transitions visible in the 

spectrum difference and providing an HC label.) IC = 0 corresponds to an equal number of 

AD and HC labels, which would make it impossible to obtain a diagnosis only based on the 

difference spectrum method.

In this work, we did not encounter a situation where IC is equal to zero. As this may occur 

and to reduce its impact, carrying at least 3 experimental replicas for each patient is 

advisable. An alternative approach specific to LIBS could be based on performing the 
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difference spectrum test with each single-shot spectrum, rather than with the average 

spectrum of each patient. However, such an approach is relatively time consuming. We 

determined that the frequency of cases with similar numbers of AD and HC labels was 6%, 

using a threshold values IC < 0.1 for AD and IC > −0.1 for HC. These values, with 31 

selected spectral features, corresponded to diagnoses obtained with a difference between the 

number of AD and HC labels less than 3.

The transitions listed in Table 1 were used to diagnose 66 blood plasma samples. It is 

important to underline that no single spectral transition provided a clear-cut distinction 

between AD and HC. We were able to discriminate between the two classes only by 

considering all the spectral transitions and the resulting relative numbers of AD vs HC 

labels. It is also worth mentioning that the samples used to generate the reference difference 

spectrum were randomly chosen and were selected only with the goal of having a congruous 

and similar number of AD and HC specimens. We used our 23 training samples (11 AD and 

12 HC) and applied the resulting model for subsequent analysis of remaining samples.

The cohort of donors analyzed consisted of a sample of patients 50 to 97 years old. We 

divided this sample set into two separate age groups, one for individuals older than 65 (HC 

and late-onset AD), and one for individuals younger than 65. The older group had 48 

samples and contained a similar number of AD cases and HC (respectively, 26 and 22), 

while the younger group contained 18 samples, of whom only 2 AD cases and 16 HC 

samples. Table 2 shows the results, obtained using the same model, of the two separate tests, 

expressed in terms of total classification accuracy, specificity and sensitivity. These are 

defined as such:

Sensitivity = TP
TP + FN × 100 (2)

Specificity = TN
TN + FP × 100 (3)

Totalclassificationaccuracy = #correctdiagnoses
 #samples × 100 (4)

where TP = true positive (samples correctly classified as AD), FN = false negative (AD 

samples wrongly classified as HC), TN = true negative (samples correctly classified as HC), 

FP = false positive (samples HC samples wrongly classified as AD.)

These data indicate that, while in the younger age group we were unable to distinguish AD 

and HC, in contrast 31 out of 48 patients were correctly identified in the older age group. 

This age “gap” in the results can be explained by the fact that the number of AD patients in 

the younger age group available for this study is very small. As a result, it is not possible to 

draw any conclusion regarding the impact of the age of the patients on our diagnostics 

method. For the remainder of our investigation, we therefore focused our investigation on 

the older age group for which we had more patients and an almost equal number of AD/HC 

subjects.
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3.2. Using machine learning approach

Several studies have demonstrated the potential of LIBS to diagnose a variety of diseases, 

based on the different emission intensity of key elements (e.g. Ca and Mg enrichment in 

biopsied colorectal and breast cancer tissues [11] (and references therein.) Moreover, as 

previously observed [13], multivariate statistical approaches can provide high classification 

performance, even when a direct comparison between the emission intensity of individual 

spectral transitions does not yield a distinction between healthy and diseased samples. In this 

work, the difference spectrum method provided a moderate differentiation between plasma 

samples from AD and HC subjects in the older age group.

To improve the classification and investigate the development of an automated minimally 

invasive method for AD diagnosis, we explored the use of advanced statistical methods. Due 

to its simplicity and the fact that it does not require a parameter for optimization, we selected 

Quadratic Discriminant Analysis (QDA) implemented in scikit-learn [25,26]. This 

supervised learning technique provides the possibility to account for non-linear decision 

boundaries between classes. In addition, in QDA, each class is modeled with its own 

covariance matrix [23]. We note that we tested other statistical methods such as linear 

discriminant analysis (LDA) and partial least square analysis (PLS) using different type of 

input data (i.e. raw LIBS spectra vs. spectra resulting from the difference method and by 

selecting only those features that are either positive or negative in the difference spectra. We 

found that QDA with difference spectra as input data and manual feature selection provided 

the best classification results.

We used a leave-one-out cross-validation approach, that is, we divided the patients set into a 

training subset (all patients but one) and a testing subset (the one left-out-patient.) The 

training set was used to develop a prediction model, which was then used to provide the 

label of the one left-out patient. This procedure was repeated as many times as we had 

patients (N), by swapping the subsets, so that eventually each patient was used both in the 

training set (N – 1 times) and as a testing sample (once.) As shown in Fig. 4, the results for 

classification accuracy, sensitivity and specificity are 80%, 85% and 75% respectively.

For all the tests we conducted, sensitivity was higher than specificity, which may indicate 

that our experimental approach is more appropriate to detect the presence of AD than its 

absence. This may be rationalized by hypothesizing the existence of a specific spectral 

profile, possibly of one or more elements, for AD patients, that can be captured by LIBS, 

either with the difference spectrum method or with statistical approaches. Nonetheless, 

controls are a group of individuals that do not share this common feature, while at the same 

time presenting all the individual variability associated to any group of people, which can 

ultimately contribute to make their identification more difficult.

4. Conclusions

We performed a feasibility study of LIBS liquid biopsy for the diagnosis of AD, using 

micro-drops of plasma from AD patients and HC. We developed a data analysis method 

based on the use of difference spectra as input data for one supervised machine learning 

algorithm (QDA), which provided classification accuracy, sensitivity and specificity, 
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respectively, of 80%, 85% and 75%. These results were obtained by using manually selected 

features from the difference spectra (i.e. all the features that appeared as positive or negative 

peaks in difference spectra). These results open the way to further investigate and pursue the 

use of LIBS as a fast and minimally invasive methodology for the diagnosis of AD and 

possibly better understand its progression. This study contributes to the growing literature 

focused on investigating the potential of the combined use of LIBS and multivariate 

statistical approaches to analyze rapidly and relatively simply a large number of biomedical 

samples for the diagnosis of asymptomatic diseases.
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Appendix A. Appendix 1

The spectral assignation of the transitions reported in Table 1, and which are included in our 

classification analysis, was performed using information available in the widely employed 

databases, i.e. NIST and Kurucz [23,24]. In addition, we performed a series of cross-checks:

1. First, we determined the correlation coefficient between the intensity of each of 

the transitions appearing in the LIBS spectra: transitions from the same emitter 

(both in the same ionization stage and in different ionization stages) are typically 

correlated, which can be used to tentatively identify the emitter even when the 

databases do not list any transition at the given wavelength. However, the 

correlation analysis should be considered with caution, because we observed 

high correlation between different elements (e.g. Mg I 285.21 nm is highly 

correlated with Na I 589.00 nm and 589.58 nm; H 656.27 nm is highly correlated 

with O I triplet at 777 nm and with N I transitions at 744.33 nm and 742.36 nm). 

This suggests that not only the chemical identity of the emitter, but also its origin 

and sample-specific considerations contribute to the correlation;

2. Second, we considered LIBS plasmas to be in Local Thermodynamic 

Equilibrium (LTE) and therefore, based on Boltzmann distribution, high-energy 

transitions should be less populated than low-energy ones. Therefore, if low-

energy transitions of a given element were missing from the spectrum, we ruled 

out that some of the other transitions we observed in our spectra could be 

assigned to higher-energy transitions of that same element.

3. Third, we included other spectroscopic parameters, i.e. Einstein coefficient of 

spontaneous emission, Aul, and relative intensity. With this regard, we ruled out 

the possibility of assigning a given peak to a transition with lower Aul if other 

transitions of the same element with higher Aul were not visible in the spectra. 

Gaudiuso et al. Page 7

Spectrochim Acta Part B At Spectrosc. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used relative intensity in a similar way, always taking into account that the 

latter is only a qualitative indication of the expected intensity of emission peaks.

Based on these considerations, we were unable to assign with absolute certainty some of the 

transitions present in the spectra. Below, we report the tentative assignations for the 

unassigned transitions reported in Table 1. This is done by relaxing one or more of the 

constraints described above. For the sake of completeness, for each transition we provide the 

possible caveats associated with the assignations thus obtained. In the following, we will 

refer to the lower and upper level involved in the transition as, respectively, El and Eu.

• 292.35 nm: this transition does not correlate with any of the other transitions 

appearing in the spectrum. It may be tentatively assigned it to a high-energy 

transition of Na II (292.35 nm, Aul 1.41e +07 s−1, El 265,689.62 cm−1, Eu 

299,885.37 cm−1). Nonetheless, several Na II transitions between the similar 

energy levels and higher Aul are not visible in the spectra (e.g. 292.10 nm, 

293.77 nm.)

• 383.16 nm: this transition does not correlate with any of the other transitions 

appearing in the spectrum. It may be tentatively assigned to a high-energy 

transition of C II (383.17 nm), though another C II transition at 383.57 nm, with 

virtually identical spectroscopic parameters and energy levels, is absent from the 

spectra.

• 389.16 nm: this transition correlates with only one transition, at 404.81 nm, that 

we did not use for our analysis. The transition at 404.81 nm may be tentatively 

assigned to a high-energy transition of O II (404.82 nm, El 231,427.970 cm−1 - 

Eu 256,123.231 cm−1, no available data for Aul). Other O II transitions between 

lower energy levels and with higher Aul are not visible in the spectra, e.g. 397.33 

nm. The transition at 389.16 nm may be tentatively assigned to a high-energy 

transition of Mg I (389.19 nm, El 57,833.40 cm−1, Eu 83,520.47 cm−1). Note that 

a similar Mg I transition at 389.56 nm is absent from the spectra.

• 398.25 nm: this transition correlates with one CN band at 421.62 nm, one Na I 

transition at 808.34 nm and one transition at 775.73 nm (the latter, which we did 

not use for our analysis, may not be assigned to any element, as the only 

transitions listed in databases at this wavelength are: Ar II 775.70 nm, Nb I 

775.73 nm and Rb I 775.76 nm). The 398.25 nm transition may be tentatively 

assigned to one Ti I transition (398.18 nm, El 0 - Eu 25,102.875 cm−1, Aul 4.42e

+07 s−1, though other resonance Ti lines with higher Aul are absent from the 

spectra, e.g. 264.11 nm and 294.20 nm) or one high-energy O II transition 

(398.27 nm, El 189,068.514 cm−1 - Eu 214,169.920 cm−1, Aul 4.16e+07 s−1, 

though other O II transitions involving similar energy levels and having higher 

Aul are not visible in the spectra, e.g. 397.33 nm).

• 401.27 nm: this transition does not correlate with any of the other transitions 

appearing in the spectra. It might be tentatively assigned to a high-energy Fe II 

transition (401.27 nm, El 88,614.523 cm−1 - Eu 113,528.091 cm−1, no available 

Aul data). Nonetheless, ground-state and low-energy Fe II transitions with high 
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Aul and relative intensity (respectively in the order of 108 s−1 and 105 a.u.) are 

absent from the spectra.

• 431.72 nm: this transition does not correlate with any of the other transitions 

appearing in the spectrum. Three possible candidates for its assignation are high-

energy transitions from the following species: O II (431.71 nm, El 185,235.281 

cm−1 – Eu 208,392.258 cm−1, Aul 3.68e+07 s −1), C II (431.73 nm, El 

186,466.02 cm−1 – Eu 209,622.32 cm−1, Aul 5.89e+07 s−1), Ca I (431.71 nm, El 

47,843.760 cm−1 - Eu 71,001.000 cm−1, Aul 1.082e+06 s−1).

• 572.15–572.75 nm: these transitions most likely belong to the same element, 

based on the observed behavior in spectra and difference spectra, as well as on 

the fact that they are mutually highly correlated. They are also correlated with 

three unknown transitions at 741.40, 786.90, 787.94 nm, none of which was 

included in our analysis. The transition at 572.15 nm may be tentatively assigned 

to a Na II transition (572.14 nm) for which no data about Einstein coefficient, 

energy levels or terms is available in either database. No attribution whatsoever 

could be attempted for the transition at 572.71 nm. In [27], one of the few papers 

in the LIBS literature about biological samples that features detailed assignation 

of individual transitions, these peaks were observed and left unassigned.

• 606.93–607.48 nm: these transitions most likely belong to the same element, 

based on the observed behavior in spectra and to the fact that they are mutually 

highly correlated. They are also correlated with one unknown transition at 771.12 

nm, that we did not include in our analysis. No attribution could be attempted for 

either transition.

• 617.74 nm: this transition does not correlate with any of the other transitions 

appearing in the spectrum. It might be tentatively assigned to Br I (El 75,697.05 

cm−1 - Eu 91,880.64 cm−1, no data for Aul available). Nonetheless, the main Br I 

peak (827.24 nm, Aul 3.5e +07, El 63,436.45 cm−1 - Eu 75,521.50 cm−1) is less 

intense that the 617.74 nm transition.

• 738.13 nm: this transition correlates with two unknown transitions at 741.40 nm 

and 786.90 nm, neither of which we used for our analysis. While the transition at 

741.40 nm might be tentatively assigned to Cl I (El 71,958.363 cm−1 – Eu 

85,442.430 cm−1, Aul 4.7e +06 s−1), the main Cl I lines are either barely visible 

(837.6 nm, El 71,958.363 cm−1 – Eu 83,894.037 cm−1, Aul 2.8e+07 s−1; 857.53 

nm, El 72,827.038 cm−1 – Eu 84,485.309 cm−1, Aul 1.2e +07 s−1) or absent 

(833.33 nm, El 72,488.568 cm−1 - Eu 84,485.309 cm−1, Aul 1.6e+07 s−1). The 

741.40 nm transition was also observed in [1] and left unassigned. The transition 

at 786.90 nm might be tentatively assigned to a high-energy Fe I transition (El 

40,842.154 cm−1 – Eu 53,545.833 cm−1, Aul 105 s−1), but main Fe I lines with El 

= 0 and Aul in the order of 108 s−1 are not visible in the spectra (e.g. 252.28 nm 

and 271.90 nm). The transition at 738.13 nm may be tentatively assigned to a 

high-energy O II transition (El 232,745.981 cm−1 - Eu 246,291.822, no Aul data 

available, though other O II transitions involving lower energy levels and having 

Aul in the order of 107 s−1 are not visible in the spectra, as mentioned earlier) or 
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to a high-energy, low Aul Fe I transition (El 43,163.323 cm−1 – Eu 56,707.280 

cm−1, Aul 5.049e +05 s−1, but main Fe I lines with El = 0 and Aul in the order of 

108 s−1 are not visible in the spectra, e.g. 252.28 nm and 271.90 nm).

• 787.95 nm: this transition correlated with the following unknown transitions: 

572.15, 572.71 nm; 741.40 nm; 786.90 (the latter was not used in our analysis,) 

whose assignation has been discussed above. The transition at 787.95 nm may be 

tentatively assigned to a high-energy, low-Aul Fe I transition (787.97 nm, El 

40,594.432 cm−1 – Eu 53,281.689 cm−1, Aul 2.185e+05 s−1, but main Fe I lines 

with El = 0 and Aul in the order of 108 s−1 are not visible in the spectra, e.g. 

252.28 nm and 271.90 nm).

• 852.57 nm: this transition does not correlate with any of the other transitions 

appearing in the spectra. It may be tentatively assigned to a Ca I transition 

(852.57 nm, El 35,730.454 cm−1 - Eu 47,456.452 cm−1, Aul 1.920e+06 s−1). 

Transitions between lower energy levels and having Aul in the order of 108 s−1, 

nonetheless, are not visible in the spectra (e.g. 300.086 nm, 551.30 nm).

• 853.79 nm: this transition does not correlate with any other transition appearing 

in the spectra. It may be tentatively assigned to a Ca I transition (853.69 nm, El 

36,547.688 cm−1 - Eu 48,258.300 cm−1, Aul 1.397e+05 s−1). Transitions between 

lower energy levels and having Aul in the order of 108 s−1, nonetheless, are not 

visible in the spectra (e.g. 300.086 nm, 551.30 nm).

• 856.03 nm: this transition correlates with several others, most of which we did 

not use for our analysis. These are: 678.35 nm (tentative assignation: Fe I 678.33 

nm); 773.03 nm (tentative assignation: Ca I 772.97); 775.3 nm (Mg I 775.33 

nm); 808.63 nm (Cl I 808.56 nm); 856.63 nm (tentative assignation: N II 856.68 

nm); 878.59 nm (no assignation possible); 881.49 nm (see below). For the 

tentative assignation of all these transitions, the aforementioned caveats should 

be kept in mind. The 856.03 nm transition may be tentatively assigned to Fe I 

855.97 nm (El 41,178.409 cm−1 – Eu 52,857.800 cm−1, Aul 1.261e+06 s−1) but 

main Fe I lines with El = 0 and Aul in the order of 108 s−1 are not visible in the 

spectra, e.g. 252.28 nm and 271.90 nm.

• 881.48 nm: this transition correlates with several others, most of which we did 

not use for our analysis: 421.61 (CN), 518.91 nm (Ca I 518.89 nm), 678.35 nm 

(tentative assignation: Fe I 678.33 nm); 742.49 nm (N I 742.44 nm); 773.03 nm 

(tentative assignation: Ca I 772.97 nm); 775.73 nm (tentative assignation: Mg I 

775.33 nm); 808.34 nm (tentative assignation: C I 808.38 nm); 808.63 nm (Cl I 

808.56 nm); 856.03 nm (see above); 856.63 nm (tentative assignation: N II 

856.68 nm); 878.59 nm (no assignation possible). The 881.49 nm transition may 

be tentatively assigned to a high-energy, low-Aul Ca I transition (881.40 nm, El 

47,456.452 cm−1 - Eu 58,798.920 cm−1, Aul 2.082e+05 s−1) or to a very high-

energy Fe I transition (881.45 nm, El 98,114.577 cm−1 – Eu 109,456.381 cm−1, 

Aul 3.0e+07 s−1.) The aforementioned caveats about stronger Ca I and Fe I 

transitions being absent from the spectra should be kept in mind for what 

concerns these tentative assignations.
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Fig. 1. 
a)–b): LIBS spectra of the blood plasma of an AD patient deposited on a Si substrate. The 

species responsible for the emission of some of the main peaks are identified in the two 

spectra.
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Fig. 2. 
Model difference spectrum, showing typical net positive and negative peaks that were used 

for the diagnosis of unknown samples. Some of the difference peaks are assigned in the 

spectrum.
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Fig. 3. 
a)–b): Difference spectra of two samples, treated as unknowns in the difference spectrum 

diagnostic test, plotted together with the model spectrum difference. The sample in a) is an 

AD case, the sample in b) is an HC. The transition at 572.14 nm is Na II emission line while 

the one at 572.71 nm cannot be identified.
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Fig. 4. 
classification results obtained with QDA with manual feature selection (i.e. by using only 

the spectral features appearing as positive or negative peaks in the difference spectra.)
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Table 1

spectral features appearing in the difference spectra and examples of the application of the difference spectrum 

“majority vote” to two samples, treated as unknowns, i.e. patient 22 (clinical diagnosis: AD) and patient 104 

(clinical diagnosis: HC). For patient 22, the number of AD and HC labels was, respectively, 17 and 14. The 

sample was therefore classified as AD. For patient 104, the number of AD and HC labels was, respectively, 8 

and 14, and the sample was therefore classified as HC. It was not possible to assign some emission lines 

because of the lack of relevant information in the atomic spectra databases [23,24]. A description of the 

process by which assignation of these transitions was performed is provided in Appendix 1.

Emitter Wavelength (nm) Polarity in model Patient 22 Label Patient 104 Label

Mg II 279.5 + + AD + AD

Mg II 280.27 + + AD + AD

Mg I 285.21 + + AD + AD

− 292.35 + − HC − HC

Na I 330.24 + + AD + AD

Ca II 373.69 − − AD absent

− 383.19 − absent + HC

CN 387.08 + − HC − HC

CN 388.29 + − H − HC

− 389.16 − − AD + HC

− 398.25 + − HC − HC

− 401.27 + − HC absent

− 414.01 − − AD + HC

CN 421.52 + − HC − HC

− 431.72 + − HC absent

− 572.15 − + HC + HC

− 572.71 − + HC + HC

− 606.93 + + AD − HC

− 607.48 + + AD − HC

− 617.74 − − AD + HC

− 738.13 − + HC absent

N I 744.33 − − AD absent

− 787.95 − + HC + HC

Na I 818.37 + + AD + AD

N I 818.86 + + AD + AD

Na I 819.48 + + AD + AD

N I 821.63 + + AD + AD

− 852.57 + + AD absent

− 853.79 + + AD absent

− 856.03 + − HC absent

− 881.48 + − HC absent
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Table 2

Results of the difference spectrum diagnostic test for the two age groups, i.e. 65 years old and younger, and 

older than 65.

≤ 65 years old (2 AD, 16 HC) > 65 years old (26 AD, 22 HC)

Specificity 47% 60%

Sensitivity 50% 68%

Total classification accuracy 50% 65%
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