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Abstract

Loss of physiological microglial function may increase the propagation of neurodegenerative 

diseases. Cellular senescence is a hallmark of aging; thus, we hypothesized age could be a cause of 

dystrophic microglia. Stereological counts were done for total microglia, two microglia 

morphologies (hypertrophic, and dystrophic) across the human lifespan. An age-associated 
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increase in the number of dystrophic microglia was found in the hippocampus and frontal cortex. 

However, the increase in dystrophic microglia was proportional to the age-related increase in the 

total number of microglia. Thus, aging alone does not explain the presence of dystrophic 

microglia. We next tested if dystrophic microglia could be a disease-associated microglia 

morphology. Compared to controls, the number of dystrophic microglia was greater in cases with 

either Alzheimer’s disease, dementia with Lewy bodies, or limbic-predominant age-related 

TDP-43 encephalopathy (LATE). These results demonstrate that microglia dystrophy, and not 

hypertrophic microglia, are the disease-associated microglia morphology. Finally, we found strong 

evidence for iron homeostasis changes in dystrophic microglia, providing a possible molecular 

mechanism driving the degeneration of microglia in neurodegenerative disease.
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1.1 Introduction

Inflammation and cellular senescence are hallmarks of aging (Kennedy et al., 2014; Lopez-

Otin et al., 2013). Almost two decades ago, dystrophic microglia were described with 

beading and fragmentation of the branches of the microglia (Streit et al., 2004). While the 

cellular processes appear to be fragmented, they are actually intact, with the bead-like 

portions connected by thin (0.18 μm) channels (Tischer et al., 2016). In contrast to the 
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hypertrophic microglia often seen following CNS injury, the dystrophic microglia were 

proposed to be a form of microglia senescence (Streit et al., 2004).

While there is no single specific marker of cellular senescence, a handful of markers, such as 

p16INK4a, and p21WAF1/Cip1, have some affinity for identifying senescent cells (Gorgoulis et 

al., 2019). Using a p16INK4a approach to target the removal of senescent cells in a mouse 

model of tauopathy resulted in reduced tau pathology, neuronal degeneration, and cognitive 

deficits (Bussian et al., 2018). Given the necessary cellular stressors, microglia can become 

senescent/dystrophic, as recently reported following a TBI in aged mice, where an increase 

in the senescent markers p16INK4a and p21WAF1/Cip1 were seen in microglia (Ritzel et al., 

2019).

Throughout the body, cellular senescence is associated with the secretion of inflammatory 

mediators, defined as the senescence-associated secretory phenotype (SASP). The SASP 

includes the production of matrix metalloproteinases, cytokines, chemokines, nitric oxide, 

and reactive oxygen species (ROS) (Gorgoulis et al., 2019). Intriguingly, these findings 

suggest that the senescent/dystrophic microglia, and not the hypertrophic microglia, could 

produce the chronic inflammatory mediators associated with neuroinflammation and 

inflammaging. Even a small number of senescent cells in any organ can contribute to disease 

and by the spread of the senescence phenotype to neighboring healthy cells (Hoare and 

Narita, 2013).

The hypothesis that dystrophic microglia is an age-associated microglia morphology has not 

been experimentally tested. While cellular senescence generally increases with age, it can 

occur at any stage of life in response to stressors (Gorgoulis et al., 2019). This led our first 

question: are dystrophic microglia associated with chronological age in people? We 

hypothesized that with increasing years, there would be an increasing proportion of 

dystrophic microglia. Previous work, including our own, has found dystrophic microglia in 

aged humans without neurodegenerative pathology (Bachstetter et al., 2015; Lopes et al., 

2008; Streit et al., 2004).

In contrast to the view that dystrophic microglia are purely an age-related change in 

microglial morphology, there is compelling evidence that dystrophic microglia are more 

closely associated with neurodegenerative disease. Previous studies identified dystrophic 

microglia in people with age-related neurodegenerative disease, including Alzheimer’s 

disease (AD) (Bachstetter et al., 2015; Lopes et al., 2008; Sanchez-Mejias et al., 2016; Streit 

et al., 2009; Tischer et al., 2016), Down syndrome (Streit et al., 2009; Xue and Streit, 2011), 

Huntington disease (Simmons et al., 2007), dementia with Lewy bodies (Bachstetter et al., 

2015; Streit and Xue, 2016), limbic-predominant age-related TDP-43 encephalopathy 

(LATE) (Bachstetter et al., 2015), and multiple sclerosis (Hametner et al., 2013). These 

findings lead to our second question: is increased dystrophic microglia a disease associated 

phenomenon? We hypothesized that the absolute numbers, and/or percentage of dystrophic 

microglia, would be greater in people with neurodegenerative disease than age-matched 

controls.
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To address these questions, we studied brains from the University of Kentucky departments 

of Pathology and the UK-ADRC biobank, covering the adult lifespan from 10–90+ years of 

age. Stereological counts of the total number of microglia, number of hypertrophic 

microglia, and the number of dystrophic microglia were conducted in three brain regions: 

hippocampal CA1, frontal cortex gray matter, and white matter. We found that in the 

absence of neurodegenerative disease, there was only a modest increase in dystrophic 

microglia with age. However, with neurodegenerative pathology the percentage of microglia 

observed to be dystrophic was much greater than aged-matched controls. Previous studies 

have suggested dysfunctional iron metabolism could lead to increased oxidative stress 

contributing to the degeneration of microglia (Streit et al., 2020). In brains with 

neurodegenerative pathology, we found a strong association of ferritin light chain (FTL), a 

protein responsible for storing intracellular iron, with dystrophic microglia compared to 

other microglia morphologies.

2.1 Materials and Methods

2.1.1 Human subjects:

Tissue samples that contained the hippocampus or frontal cortex were acquired from the 

University of Kentucky biobank, and from the University of Kentucky Department of 

Pathology and Laboratory Medicine. The reason for using these latter cases was to 

incorporate data from younger subjects. Cases were selected by the investigators (JHN and 

PTN), with the exclusion criteria of pathologically confirmed neurodegenerative disease: 

specifically, but not limited to, advanced disease pathology associated with Alzheimer’s 

disease neuropathological change (AD-NC), Lewy body pathology (LBP), LATE 

neuropathological change (LATE-NC) and vascular dementia. Demographic data are 

presented in Table 1. The matching hippocampus and frontal cortex were not available for 

all cases. Three additional cases of LATE-NC, not part of the original cohort where used for 

the IBA1/FTL analysis.

2.1.2 Immunostaining:

Immunohistochemical (IHC) staining for IBA1 was completed as previously described 

(Bachstetter et al., 2015). Briefly, microwave antigen retrieval (6 min (power 8, 500 Watts) 

using citrate buffer (Declare buffer, Cell Marque; Rocklin, CA) was done following de-

paraffinization on 8 μm-thick tissue sections. Endogenous peroxidases were quenched in 3% 

H2O2 in methanol for 30 min. Sections were blocked in 5% normal goat serum at room 

temperature for 1 hour. Sections were incubated in primary antibodies IBA1 (rabbit 

polyclonal, 1:1,000, Wako Catalog no. 019–19741, AB_839504); 20–24 hours at 4°C. A 

biotinylated secondary antibody (Vector Laboratories 1:200) was amplified using avidin-

biotin substrate (ABC solution, Vector Laboratories, catalog no. PK-6100), followed by 

color development in Nova Red, or DAB (Vector Laboratories). The double-label 

immunofluorescence was completed as previously described (Gal et al., 2018). Briefly, 

microwave antigen retrieval (6 min (power 8, 500 Watts) using citrate buffer (Declare buffer, 

Cell Marque; Rocklin, CA) was done following de-paraffinization on 8 μm-thick tissue 

sections. Sections were incubated for 45 sec at room temperature in a 1x solution of 

TrueBlack (Cat. #23007, Biotium, Fremont, CA) prepared in 70% ethanol, to reduce auto-
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fluorescence. Following blocking in 5% normal goat serum, the sections were incubated in 

IBA1 (rabbit polyclonal, 1:1,000, Wako Catalog no. 019–19741, AB_839504), and ferritin 

light chain (mouse clone D9, 1:100, Santa Cruz, Catalog no sc-74513, AB_1122837) for 20–

24 hours at 4°C. Sections were incubated in secondary antibodies conjugated to Alexa Fluor 

probes (Life Technologies, 1:200) at room temperature for 1 hour. Control sections were 

included for each case that omitted one or both of the primary antibodies.

2.1.3 Quantitative image analysis:

Briefly, the Zeiss Axio Scan Z.1 digital slidescanner was used to image the entire stained 

slide at 40x magnification to create a single high-resolution digital image. Halo software 

(version 2.3; Indica labs) was used to view the images. Following the fractionator method of 

stereology, we used the Halo software to generate counting frames 250 × 250 μm, with a 150 

μm gap between counting frames using systematic random sampling. A total of 10–20 

counting frames were quantified to estimate the number of microglia per unit area in the 

three brain regions. Classification of microglia as either hypertrophic or dystrophic followed 

our previously described criteria (Bachstetter et al., 2015). Example photomicrographs of 

representative cells defined as either hypertrophic or dystrophic microglia is shown in Figure 

1. Results were confirmed by two independent observers (REH, and NGC) blind to 

experimental conditions. Data presented is from REH’s quantification. Numbers of 

dystrophic microglia in cases with neurodegenerative disease were generated as part of our 

prior published study (Bachstetter et al., 2015), and follow comparable methods to those 

described above.

For the IBA1 and FTL colocalization analysis a Zeiss Axio Scan Z.1 digital slidescanner 

was used to image the entire stained slide at 40x magnification to create a single high-

resolution digital image. Halo software (version 2.3; Indica labs) was used to view the 

images. Using HALO imaging software and viewing only the IBA1 channel when counting 

and determining the morphology of the cells, we generated an ROI around each microglia, 

and define it as ramified, hypertrophic or dystrophic. We identified at random 10 microglia 

from each morphology for each of three cases of LATE-NC. We then used the area 

colocalization FL algorithm (Halo software, version 2.3; Indica labs) on the ROIs to 

determine the area of colocalization of IBA1 and FTL for the three microglia morphologies.

2.1.4 Statistics:

JMP Pro software version 14.0 (SAS institute, Cary, NC, USA) or GraphPad Prism software 

version 8.0 was used to generate graphs and for statistical analysis. Linear regression and 

Spearman r were used to compare the effect of age on microglia morphological state. Mean 

± 95% confidence interval are shown for the regressions, as well the data point for each case. 

The standard least squares model used to compare hypertrophic and dystrophic microglia 

was corrected for age. Source data is available in supplemental tables 1–3.

3.1 Results

Microglia can be classified into distinct morphologies using IBA1 immunohistochemistry. 

As previously described (Bachstetter et al., 2015), the morphologies include ramified 
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microglia, which are thought to be a healthy, or homeostatic morphology (Fig 1 A, B). In 

contrast, the hypertrophic microglia morphology has historically been associated with a 

reactive microglia response. This morphology is typically observed following acute neuronal 

injury and surrounding amyloid plaques (Fig 1 C, D). As previously described, dystrophic 

microglia morphology refers to a number of morphological changes affecting the 

cytoplasmic processes such as spheroidal swelling, de-ramified, beaded, discontinuous, or 

tortuous processes (Fig 1 E, F) (Streit et al., 2004). A trained scientist can quantify these 

three distinct microglia morphologies. Thus far, we have been unsuccessful in training 

computer algorithms, including neural network algorithms, in detecting these morphologies 

accurately. Therefore, we adopted a design-based stereological approach and replicated the 

quantification using two observers blind to the experimental conditions (R.E.H and N.G.C).

3.1.1 Age affects microglial morphology in hippocampal subregions of the human brain.

To better understand the link between dystrophic microglia and age, we began examining the 

CA1 region of the hippocampus. Regardless of microglia morphology, we found a strong 

correlation for an increase in the number of microglia with greater age (Fig 2A). Similarly, 

we also observed a rise in the number of hypertrophic microglia (Fig 2B) and dystrophic 

microglia (Fig 2C) with age. We next tested if there was a change in the proportion of 

microglia that were hypertrophic or dystrophic as a function of age. We found that when the 

hypertrophic microglia were compared as a percentage of the total microglia there was a 

strong positive correlation for an increased percentage of hypertrophic microglia with age 

(Fig 2D). We did not find evidence in support of our hypothesis that dystrophic microglia 

were associated with age, as there was a lack of a correlation for the percentage of 

dystrophic microglia to total microglia with age (Fig 2E). That is, while the total number of 

dystrophic microglia increases with age in the CA1 region of the hippocampus (Fig 2C), this 

change can be accounted for by the age-related increase in the total number of microglia 

(Fig 2A). The lack of an association with age and dystrophic microglia is in contrast to the 

hypertrophic microglia, which are increasing with age (Fig 2D).

3.1.2 Changes in microglial morphology in neocortical gray matter regions of the brain

Next, we evaluated changes in the spatial distribution of dystrophic microglia in the 

neocortical grey matter of the frontal cortex. Investigation of microglia in frontal lobe gray 

matter demonstrated several striking differences in comparison to the hippocampus. While 

the total number of microglia was found to increase with age (Fig 3A), there was no age-

related increase in the number of hypertrophic microglia in the frontal cortex (Fig 3B). 

Counts of the number of dystrophic microglia were correlated with age (Fig 3C). As a 

proportion of the total microglia, hypertrophic microglia did not increase with age (Fig 3D), 

while there was an increase in the percentage of dystrophic microglia with age (Fig 3E).

3.1.3 Changes in microglial morphology in white matter regions of the brain

In addition to the limbic and neocortical gray matter, we also quantified microglia in the 

white matter of the frontal cortex. We found that the total number of microglia (Fig 4A), the 

number of hypertrophic microglia (Fig 4B), and the number of dystrophic microglia (Fig 

4C) did not increase with age in the white matter. Also, the percentage of hypertrophic 

microglia (Fig 4D), or dystrophic cells (Fig 4E) were unchanged with age.
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3.1.4 Dystrophic microglia are a disease-associated microglia morphology.

Given that we found no evidence of dystrophic microglia increasing with age in the 

hippocampal CA1, we next asked if dystrophic microglia could be characteristic of a 

disease-associated microglia morphology. To address this hypothesis we compared changes 

in dystrophic microglia in the hippocampal CA1 region from people that were greater than 

65+ years old without neurodegenerative pathology, to 65+ years old people with either AD-

NC, LATE-NC, or LBP from a preexisting data set (Bachstetter et al., 2015) (Table 2). Our 

results were contrary to common assumptions. In the hippocampal CA1 region, people with 

neurodegenerative pathology had the same or fewer hypertrophic microglia compared to 

age-matched controls (Fig 5A). These results are in contrast to what was found for 

dystrophic microglia. In the cases with neurodegenerative pathology, on average, 45% of the 

microglia were found to be dystrophic. This is in comparison to the cases without 

neurodegenerative pathology, where on average, only 9% of the microglia were dystrophic 

(Fig 5B). While the range of dystrophic microglia were broad (0–100%) for the people in 

the neurodegenerative group level, there was no statistical difference between the different 

neurodegenerative disease. These results suggest that the dystrophic microglia represent a 

disease-associated microglia morphology.

3.1.5 Iron metabolism as a molecular mechanism for the dystrophic disease associated 
microglia morphology.

Single-cell and single-nuclei transcriptomic approaches have defined a gene signature in 

microglia associated with neurodegenerative pathology (Butovsky et al., 2014; Galatro et al., 

2017; Keren-Shaul et al., 2017; Mathys et al., 2019; Orre et al., 2014). Exploring these 

datasets, we identified genes associated with the iron homeostasis enriched in aging and 

disease-associated microglia. While several gene members of the iron homeostatic pathway 

were differentially expressed in the aging and disease associated microglia, FTL was one of 

the iron pathway genes found to be increased across multiple datasets. In addition, prior 

studies have observed dystrophic microglia labeled by FTL (Hametner et al., 2013; Lopes et 

al., 2008). Therefore, we next hypothesized that dystrophic microglia in the aged brain with 

neurodegenerative disease pathology would be FTL positive. To test this, we used three 

LATE-NC cases and double labeled those cases using IBA1 and FTL (Fig 6A). Using the 

IBA1 channel alone, we identified 10 ramified microglia, 10 hypertrophic microglia, and 10 

dystrophic microglia per case. Using HALO imaging software, we determined the area of 

colocalization of IBA1 and FTL for each microglia (Fig 6B). In support of our approach, we 

found that the intensity of the IBA1 staining in the cells classified as hypertrophic was 

greater than the cells classified as ramified or dystrophic microglia (Fig 6C; p<0.0001 

Tukey’s test). We then asked, do the cells we defined as dystrophic have greater amounts of 

FTL. Comparing the area of IBA1+FTL+ colocalization, we found that the dystrophic 

microglia had much more FTL as a proportion of the overall cell than the ramified or 

hypertrophic microglia (Fig 6D p<0.0001 Tukey’s test).

4.1 Discussion

In the nearly two decades since dystrophic microglia were first described (Streit et al., 

2004), the causes and consequences of this unique cellular morphology remains undefined 
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(for review see: (Streit et al., 2020)). Like other types of cellular senescence that occur with 

age, we asked if aging was sufficient to drive microglia towards a dystrophic microglia 

morphology in the absence of disease. To begin to address these critical knowledge gaps, we 

used a series of autopsy cases covering the human lifespan to define the association of 

dystrophic microglia with age. We found only limited evidence that dystrophic microglia 

increased with age in the absence of neurodegenerative pathology. We saw in the 

hippocampal CA1 region a robust age-related increase in the total number of microglia, as 

well as the total number of hypertrophic and dystrophic microglia. However, as a percentage 

of the total number of microglia, only the hypertrophic microglia morphology was found to 

increase with age. At the same time, there was no relationship between age and the 

percentage of dystrophic microglia. In the gray matter of the neocortex, a modest increase in 

the percentage of dystrophic microglia was seen with age, suggesting a possible regional 

vulnerability in the presence of dystrophic microglia, which will warrant future studies. 

After observing a general lack of an association with age and dystrophic microglia, we next 

asked if dystrophic microglia are a disease associated microglia morphology. In contrast to 

the aged brain without neurodegenerative disease, we found strong evidence that dystrophic 

microglia are a disease associated microglia morphology. While there is likely more than 

one mechanism that push microglia into a dystrophic morphology, we identified iron 

metabolism as a potential molecular mechanism warranting future study.

We used a two-dimensional stereological approach to quantify the number of microglia by 

their morphological appearance. In the scarce tissue samples used in our study, it was not 

feasible to use three-dimensional stereological approaches, such as the optical fractionator, 

which would account for changes with tissue shrinkage caused by fixation (Gundersen et al., 

1988; Sterio, 1984). There is also subjectivity associated with our methods as the observers 

– who were blind to the experimental groups – needed to classify a cell as hypertrophic, 

dystrophic, or other. We used a number of approaches to limit the subjectivity. For example, 

we repeated the assay using two independent scientists. We also tested intra-observer 

variability by having the same scientist replicate a subset of their microglia counts. Our 

results are comparable to those of Davies et al., which used morphometric approaches to 

quantify microglia arborization and microglia coverage and found a decrease in microglia 

complexity and area of the brain covered by microglia in the AD brain compared to the 

matching control brains (Davies et al., 2017). Also, an age-related decrease in the microglia 

markers CD68 and MHCII were seen in AD brains, while there was no change in the control 

cases with age (Hoozemans et al., 2011), which is in agreement with our results. While we 

acknowledge the limitations associated with our approach, our study provides a quantitative 

assessment of microglia number by morphology across the human lifespan, which has not 

been previously reported.

Our results that dystrophic microglia are the dominant disease-associated microglia 

morphology may appear counter to the current assumptions that neurodegenerative disease is 

associated with microglia activation. Indeed, as thoroughly reviewed by Hopperton et al., the 

vast majority of studies do find that microglia/macrophages are increased in AD brains 

compared to control (Hopperton et al., 2018). However, the likelihood that the study will 

report an increase in microglia/macrophages AD brains compared to control is greater when 

activation marker (e.g., IL-1α) or a marker of macrophages (e.g. CD163) is used (Hopperton 
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et al., 2018). Our results are not in disagreement with these findings. We hypothesize that 

there may be a loss of homeostatic microglia in the neurodegenerative disease brain, with a 

compensatory increase in monocytes/macrophages.

We did find with age in the current study, and with neurodegenerative disease in our 

previous study (Bachstetter et al., 2015) the total number of IBA1+ cells in the CA1 region 

of the hippocampus was increased in the brain with neurodegenerative pathology compared 

to the control brains. The increase in total number of microglia/macrophages may be 

compensatory for the loss of homeostatic coverage of the brain parenchyma by microglia. 

Studies using depletion approaches to eliminate microglia in animal models have clearly 

shown that the brain will quickly repopulate microglia to maintain a tiling of microglia 

across the brain (Najafi et al., 2018). However, the rate of repopulation slows following 

multiple rounds of depletion (Najafi et al., 2018).

Comparative studies of dystrophic microglia provide important insights into the biology of 

this cellular morphology. In marmosets, it was found that the number of dystrophic 

microglia increased with age in both the limbic cortex and neocortex. However, they found 

this increase peaked in late middle age marmosets and declines in the oldest aged marmosets 

(Rodriguez-Callejas et al., 2019). These results are in contrast to our current study, where we 

saw the total number of dystrophic microglia increase linearly with age. In aged 

chimpanzees, dystrophic microglia were found primarily in the neocortical gray matter of 

layer II-III (Edler et al., 2018). While amyloid and tau neuropathological changes were 

found in a subset of the aged chimpanzees used in the study, quantification of dystrophic 

microglia was not completed, so it remains to be determined if there is an association 

between dystrophic microglia and amyloid and tau in the chimpanzees (Edler et al., 2018). 

In Cynomolgus macaques exposed to chronic manganese to model Parkinson’s disease-

related pathology, dystrophic microglia were found to have intracellular ferric iron (Verina et 

al., 2011), which is in agreement with our findings that FTL is highly expressed in 

dystrophic microglia. Also, in tree shrews (Tupaia belangeri) dystrophic microglia have been 

shown to increase with age (Rodriguez-Callejas et al., 2020). Interestingly, ferritin labeled 

microglia was high in oxidative stress markers and had internalized hyperphosphorylated tau 

(Rodriguez-Callejas et al., 2020). In mice, dystrophic microglia are seldom reported; 

however, a recent study did find in a mouse model of P301S tauopathy, a decrease in 

microglia complexity in the tau mouse with age, which could be contributed to a dystrophic 

microglia morphology (van Olst et al., 2020).

Studies of dystrophic microglia and their role in disease are faced with several limiting 

factors that have slowed progress in the field. One of the most prominent limitations is the 

lack of distinct cell markers delineating dystrophic microglia. For this reason, future studies 

must attempt to find novel cellular markers of dystrophic microglia, as well as identifying 

specific changes in cells that contribute to disease progression. Our study was not the first to 

identify FTL as a marker enriched in dystrophic microglia. Previous studies have reported 

that microglia increase FTL in neurodegenerative disease (Hopperton et al., 2018; Streit et 

al., 2020). However, our work, along with Lopes et al., (Lopes et al., 2008) has demonstrated 

that the increase in FTL may be more than a marker of a reactive microglia morphology and 

could suggest a mechanism in iron dyshomeostasis that is leading to the degeneration of 
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microglia. Single-nuclei and single-cell data sets support the hypothesis that iron pathway is 

differentially expressed in disease-associated microglia (Galatro et al., 2017; Keren-Shaul et 

al., 2017; Mathys et al., 2019; Orre et al., 2014). Our quantitative methods to measure FTL 

in LATE-NC cases found that a greater amount of the dystrophic microglia was labeled with 

FTL in comparison to hypertrophic microglia. Recent work in aged marmosets found that 

FTL labeled both activated and dystrophic microglia morphology (Rodriguez-Callejas et al., 

2019). These findings are consistent with our work as we too can identify FTL labeled 

hypertrophic microglia. We propose that these hypertrophic microglia could represent a 

point of inflection in the course of disease pathology, when microglia lose their ability to 

safely maintain iron homeostasis and become dystrophic. Alternatively, we previously 

showed that FTL was found to be colocalized with TDP-43 and Tau inclusions bodies (Gal 

et al., 2018). The increase in FTL could be part of a proteinopathy – including TDP-43 and 

Tau – leading to the degeneration of microglia and neuronal cells. More work is needed to 

directly measure iron burden in FTL positive microglia from brains with and without 

neurodegenerative pathology. For instance, Fe(II) and Fe(III) could be measured on FACS 

sorted microglia from the postmortem tissue using capillary electrophoresis coupled-to-

inductively-coupled plasma mass spectrometry (CE-ICP-MS)(Michalke et al., 2019).

Recent studies have shown alterations in microglial morphology in the cortical white matter 

of subjects with neurodegeneration related to age (Hopperton et al., 2018). However, the 

relation between dystrophic microglia and white matter degradation is still unknown. It has 

traditionally been held that morphological changes in white matter microglia is related to 

neuroinflammation characterized by an increased expression of MHCII and complement 

receptor C3bi (Hopperton et al., 2018). Conversely, more recent studies posit that the 

breakdown of myelin associated with age places an increased burden on white matter 

microglia and that observed increases may be related to cell senescence rather than 

inflammation (Streit et al., 2020). In our experiments, we did not find any changes in 

microglia morphology in the white matter of frontal cortex associated with healthy aging.

Future studies are needed to define the link between genetic predispositions and specific 

changes to glial microenvironment and function, to uncover the role of dystrophic microglia 

in other progressive neurodegenerative diseases. The presence of dystrophic microglia in 

diseases with varying etiology and pathology suggests that dystrophic microglia are 

critically involved in the shift from normal aging to disease states. Dystrophic microglia 

have decreased neuroprotective abilities and increased secretion of pro-inflammatory 

molecules (Streit et al., 2020). To date, the role that dystrophic microglia play in normal 

aging and neurodegeneration is still unknown. However, based on our findings, a loss of 

microglia function caused by dystrophy could be involved in the pathogenesis of 

neurodegenerative disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Dystrophic microglia are not increased in hippocampus of healthy human 

aging.

• Dystrophic microglia are the most common morphology in neurodegenerative 

disease.

• Dystrophic microglia had high FTL staining, suggesting altered iron 

homeostasis
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Figure 1: Representative examples of the microglia morphological appearances seen in the cases.
(A, B) Shows examples of the ramified microglia. Hypertrophic microglia are shown in (C, 
D). In (C), microglia can be seen surrounding the soma of a pyramidal neuron. (E) shows 

dystrophic microglia with swellings, beaded, and discontinuous processes. (F) shows an 

example of dystrophic microglia that are small and de-ramified, with beaded processes. The 

scale bar is 50 μm.
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Figure 2: Effect of age on microglial morphology in the CA1 region of the hippocampus.
(A) The total number of microglia, regardless of morphology, were found to increase with 

age in the hippocampus. The total number of hypertrophic (B), as well as dystrophic 

microglia (C), were also found to increase in the hippocampus with age. The percentage of 

the total microglia which are hypertrophic was found to increase with age (D), while the 

increase in percentage of microglia that were dystrophic (E) was proportional to the total 

number of microglia, and thus did not increase with age. Each circle is a unique person
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Figure 3: Stereological quantification of microglia morphology in the frontal cortex gray matter 
as a function of age.
(A) The total number of microglia were found to increase with age. (B) However, 

hypertrophic microglia showed no age-related increase. (C) Dystrophic microglia were 

found to increase with age. (D) The percentage of total microglia that were hypertrophic did 

not increase with age; whereas, (E) dystrophic did increase with age in the frontal cortex 

gray matter. Each circle is a unique person.
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Figure 4: Effect of age on microglial morphology in the frontal cortex white matter.
The number of total microglia (A), as well as the number of hypertrophic (B) and dystrophic 

(C) microglia did not increase in the white matter of the frontal cortex. Similarly, there was 

no change in the percentage of hypertrophic (D) or dystrophic microglia (E).
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Figure 5: Association of dystrophic microglia with neurodegenerative disease.
Comparing the percentage of hypertrophic and dystrophic microglia in the CA1 region in the 

65+ year old cases free of advanced neurodegenerative disease pathology (negative) to those 

cases with advanced stage neurodegenerative disease pathology (positive) (A) showed a 

decrease in the number hypertrophic microglia (p=0.0998), and a (B) significant increase in 

dystrophic microglia (p=0.00002) in the cases with advanced stage neurodegenerative 

disease. Open symbols are from cases from the current study. Closed symbols are from our 

prior study (Bachstetter et al., 2015). Alzheimer’s disease neuropathological change (AD-

NC), Lewy body pathology (LBP), LATE neuropathological change (LATE-NC).
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Figure 6: Dystrophic microglia have a strong tendency to be double labeled for FTL in the 
hippocampus of aged humans with LATE-NC.
A quantitative cellular localization of FTL found colocalization FTL with microglia. FTL 

did not appear to be staining all microglia; therefore, we sought to see if there was any 

association of FTL with the different microglia morphologies we recently characterized. (A) 

Shows an example of the IBA1+FTL+ staining. (B) Shows the HALO generated markup, 

where green is IBA1, red is FTL, and yellow is the area where the two proteins are 

colocalized. (C) Shows that there was greater IBA1 staining intensity in the hypertrophic 

microglia compared to the two different morphologies for the IBA1 markup area (p<0.0001, 

Tukey Test). (D) A high degree of IBA1+FTL+ area of colocalization in the dystrophic 

microglia compared to the ramified or hypertrophic morphologies (p<0.0001, Tukey Test). 

Circles are individual microglia, from 3 different aged brains.) The scale bar is 20 μm.
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Table 1:

Aging case series characteristics

Number of cases 51

Age

10–20 2 (4%)

20–29 5 (10%)

30–39 7 (14%)

40–49 7 (14%)

50–59 5 (10%)

60–69 6 (12%)

70–79 4 (8%)

80–89 13 (25%)

90–99 2 (4%)

100+ 0 (0%)

Sex

Male 17 (36%)

Female 24 (51%)

Not available 6 (13%)

Braak NFT stage

0/I/II 51 (100%)

III/IV 0 (0%)

V/VI 0 (0%)

CERAD rating

None 51 (100%)

Sparse 0 (0%)

Moderate 0 (0%)

Frequent 0 (0%)
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Table 2:

Neurodegenerative series characteristics

Experimental group Number of cases Sex Age range

female male

healthy control 34 16 13 65–93

AD-NC 8 3 5 65–85

LBP 11 2 9 65–97

LATE-NC 9 5 4 65–93
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