
DIFFEOMORPHIC REGISTRATION FOR RETINOTOPIC MAPPING 
VIA QUASICONFORMAL MAPPING

Yanshuai Tu1, Duyan Ta1, Xianfeng David Gu2,3, Zhong-Lin Lu4,5, Yalin Wang1

1School of Computing, Informatics, Decision Systems Engineering, Arizona State Univ., Tempe, 
AZ;

2Department of Computer Science, State University of New York at Stony Brook, Stony Brook, 
NY;

3Center of Mathematical Sciences and Applications, Harvard Univ., Cambridge, MA;

4Division of Arts and Sciences, NYU Shanghai, Shanghai, China;

5Center for Neural Science and Department of Psychology, New York University, New York, NY

Abstract

Human visual cortex is organized into several functional regions/areas. Identifying these visual 

areas of the human brain (i.e., V1, V2, V4, etc) is an important topic in neurophysiology and 

vision science. Retinotopic mapping via functional magnetic resonance imaging (fMRI) provides a 

non-invasive way of defining the boundaries of the visual areas. It is well known from 

neurophysiology studies that retinotopic mapping is diffeomorphic within each local area (i.e. 

locally smooth, differentiable, and invertible). However, due to the low signal-noise ratio of fMRI, 

the retinotopic maps from fMRI are often not diffeomorphic, making it difficult to delineate the 

boundaries of visual areas. The purpose of this work is to generate diffeomorphic retinotopic maps 

and improve the accuracy of the retinotopic atlas from fMRI measurements through the 

development of a specifically designed registration procedure. Although there are sophisticated 

existing cortical surface registration methods, most of them cannot fully utilize the features of 

retinotopic mapping. By considering unique retinotopic mapping features, we form a 

quasiconformal geometry-based registration model and solve it with efficient numerical methods. 

We compare our registration with several popular methods on synthetic data. The results 

demonstrate that the proposed registration is superior to conventional methods for the registration 

of retinotopic maps. The application of our method to a real retinotopic mapping dataset also 

results in much smaller registration errors.

Index Terms—

Retinotopic Mapping; Diffeomorphic Registration; Beltrami Coefficient

1. INTRODUCTION

It is an important topic in vision science and neurobiology to identify and analyze visual 

areas of the human brain (i.e. the visual atlas) [1, 2]. Retinotopic mapping with functional 

magnetic resonance imaging (fMRI), provides a non-invasive way to delineate the 
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boundaries of the visual areas [3, 4]. It is well known in neurophysiology that retinotopic 

mapping is locally diffeomorphic (i.e. smooth, differentiable, and invertible) within each 

local area [5, 4]. However, the decoded visual coordinates from fMRI retinotopic mapping 

studies are not guaranteed to be diffeomorphic because of the low signal-noise ratio of 

fMRI. The non-diffeomorphic problem is more severe near the most important fovea region 

because the size of the neuronal receptive field is much smaller and the retinotopic 

organization is more complicated [2]. As a result, it is difficult and unreliable to directly 

delineate the visual atlas from a single subject’s retinotopy.

To get a better visual atlas, especially for the fovea, it is preferable to use more subjects and 

take advantage of the group average. However, individuals’ visual regions are different in 

size, shape and even location [6]. Directly averaging several individuals’ retinotopic maps 

cannot improve the result. Indeed, there are lots of methods and packages to register cortical 

surfaces, e.g. FreeSurfer [6], FSL [7], and BrainSuite [8]. Although very advanced, most of 

the methods are designed for diffeomorphic cortical wrapping using anatomical scalar 

information (e.g. curvature, thickness) only.

There is an opportunity to use retinotopic maps to improve registration of cortical areas. 

First, unlike image registration where only scalar features are available, retinotopic mapping 

associates an estimated visual coordinate (although noisy) to each location of the visual 

cortex. Second, the quality of the estimated visual coordinates can be assessed with 

performance metrics, which can help us emphasize high-quality locations and under-weight 

poor-quality locations [3]. Benson and colleagues[9] have taken advantage of these features 

to register retinotopic measurements to a template. Their algorithm morphs the subject’s 

surface to fit template data and introduces several penalties to avoid overstretching. 

However, these penalties severely compromise registration accuracy.

Can we model retinotopic registration, especially the diffeomorphic constraint? It is easy to 

quantify visual coordinate differences after registration, e.g., with Euclidean distance. The 

question is how to define and quantify diffeomorphism. Fortunately, diffeomorphism has 

been long discussed in geometry. We use the Beltrami coefficient [10], an important concept 

in quasiconformal geometry, to quantify the diffeomorphic condition and model the 

registration as a function optimization problem with constraints. Our method eliminates 

redundant registration limitations and ensures diffeomorphic result. Then we apply the linear 

Beltrami solver [11] to solve the registration model. Our model may also adopt human-based 

landmarks as a rough/precise guideline to help registration. The proposed method improves 

the accuracy and robustness of retinotopic map registration.

2. PROBLEM RESTATEMENT

2.1. Retinotopic Mapping

We briefly introduce the idea of retinotopic mapping via fMRI. Assume a unit illumination 

light spot is on point v = v(1) , v(2) ∈ ℝ2 in the visual field, as shown in Fig. 1. After the 

visual system’s processing, the light spot will eventually activate a population of neurons. 
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The main purpose of retinotopic mapping is to find, the center v and the extent σ ∈ ℝ+ of its 

receptive field on the retina, for each point P = (X, Y , Z) ∈ ℝ3 on visual cortex.

fMRI provides a noninvasive way to determine v and σ for P, based on the following 

procedure. (1) Design a stimulus time sequence s (t; v), such that the stimulus sequence is 

unique for every visual coordinate, i.e., s (t; v1) ≠ s (t; v2), ∀ v1 ≠ v2; (2) Present the 

stimulus sequence to an individual and record the fMRI signals from the visual cortex; (3) 

For each fMRI time sequence on a cortical location, y (t; P), determine the corresponding 

receptive field, including its central location v and its size σ on the retina, that most-likely 

generated the fMRI signals. Specifically, given the neurons’ spatial response r (v′; v, σ) (a 

predefined model depicts of neural response around v) and the hemodynamic response 

function h (t) (a model of the time course of neural activation to a stimulus), the predicted 

fMRI signal can be written as:

y (v, σ) = β ∫ r v′; v, σ s t; vx, vy dv′ * ℎ(t) (1)

where, β is a coefficient that converts the units of response to the unit of fMRI activation, 

and * is the convolution operator. Then the perceptive center v and perceptive field size σ are 

estimated by minimizing the difference between predicted signal and measurement,

(v, σ) = arg min
(v, σ)∫ |y (v, σ) − y (t; P ) |2 dt, (2)

The retinotopic mapping of the entire visual cortex is obtained when (v,σ) is solved for 

every point on the cortical surface. The goodness of the estimation for each location is 

inferred by the variance explained, R2 = ∫ |y − y |2 dt / ∫ |y − y |2 dt.

2.2. Mathematical Model

In practice, cortical surface S is usually represented by a set of vertices PS = {P1, P2, …, Pn} 

= {Pi} and triangular faces FS = {Fi}, denoted by SS = (FS,PS). The fMRI signal is decoded 

for each location on cortical surface Pi ∈ PS according to Eq. (2). The decoding process 

generates a raw visual coordinate vi, perception size σi and variance explained Ri
2 for each 

vertex Pi. We use S = FS, PS, vs, σs, Rs
2  to denote the bundle data of cortical surface as 

well as the raw retinotopic measurements. Here we use capitalized subscript to denote all 

data of a subject, e.g. PS means all the point collection of the subject, and lowercase 

subscript to denote data of a point, e.g. Pi is for i–th point of the subject. If the visual 

coordinate vS is accurate, then the visual atlas is of high quality. However, vS is greatly 

influenced by the fMRI signal-noise ratio, head movement, subject’s behavior and so on 

[12].

How can we assign a new visual coordinate v, such that it is most likely inferred by the 

measurements from all the subjects’ data? One promising approach is registering each 

subject to a presumed template or mathematical model [9, 13] and then assigning the 

registered template value to the subject. In this work, we wish to find a registration method 
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and a presumed template T = FT , PT , vT , σT , RT
2 , such that the overall registration cost 

from all subjects’ data to the template is minimal, i.e., T = arg minT ∑J R(T, SJ), where R is 

the registration cost between the template T and J-th subject’s data SJ.

The remaining problem is to define the diffeomorphic registration function and its cost. 

Obviously, it is easier to discuss the problems on 2D instead of the original 3D cortical 

surface. If we can find a diffeomorphic function from the cortical surface to a parametric 

domain, then the 3D registration can be simplified as a 2D problem, because the composite 

of two diffeomorphic functions is still diffeomorphic. Fortunately, a discrete conformal 

(angle preserving) mapping of the occipital region is handy [14]. Specifically, as shown in 

Fig. 2, we first define a feature point that corresponds to the fovea as the center point. We 

then calculate the geodesic distances from all vertices to the center point [15]. We only 

consider the portion of cortical surface whose geodesic distance to the center point is within 

a certain value, and map this patch to a unit disk, c : P u, u = u(1) , u(2) ∈ ℝ2. Similarly, 

we obtain a similar portion of cortical surface and map it to a parametric space, 

c′ : P ′ u′ , u′ = u′(1) , u′(2) ∈ ℝ2 for template cortical surface (Fig. 2(c) gray color region). 

If we find a registration function f : u ↦ u′ in the parametric space, we can get the 

registration for the two cortical mesh as P′ = c−1 ○ f ○ c (P). Ideally, f tries to: (1) minimize 

the retinotopic visual coordinate differences between the subject and the template, i.e. ∫ w |

vs (f) − vT |2 du (w is proportional to the variance R2); (2) ensure diffeomorphism; (3) 

introduces some smoothness. In geometry, diffeomorphism can be quantified by Jacobian, 

Beltrami coefficient, and etc.

We adopt Beltrami coefficient to quantify the diffeomorphism, considering that Beltrami 

coefficient also quantifies angle deviation. The reason we care about angle deviation is that 

previous work shows retinotopic mapping preserve angle to a considerable extent [16]. Since 

cortical surface is conformal to visual space to some extent and we map cortical surface to 

the parametric space by conformal mapping, the registration f should also preserve the angle 

to some extent. The Beltrami coefficient, associated with f is defined as,

μf = ∂f
∂u(1) + i ∂f

∂u(2) / ∂f
∂u(1) − i ∂f

∂u(2) . (3)

If |μf|1 < 1 then f is diffeomorphic. Considering the diffeomorphic condition, angle 

minimization, and smoothness requirements, we seek f minimizing the energy in Eq. (5),

E = ∫ w |vS (f) − vT |2 + λ1 |μf|2 + λ2 | ∇f |2 du . (4)

2.3. Numerical Method

It is extremely costly to minimize energy in Eq. (4) directly as it mixes Beltrami coefficient 

μf and mapping function f. The solution is to alternatively solve with respect to the mapping 

function and Beltrami coefficient in separate steps. Unavoidably, we need tools to convert 

the mapping function and Beltrami coefficient back and forth.
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2.3.1. Beltrami Coefficient—Given the explicit form of function f, we can compute the 

Beltrami coefficient μf according to (Eq. 3). In the discrete case, f is interpreted linearly on 

each triangle. As shown in Fig. 3(a), for u within the triangle, f (u) = αivi + ajvj + αkvk, 

where vi = fc (ui) , vj = fc (uj), and vk = fc (uk). The coefficients αi,αj,αk are called the 

barycentric coefficients. Specifically, αi (similarly for αj and αk) is the area portion of 

triangle Δuujuk relative to Δuiujuk, i.e. αi = Area (Δuujuk) / Area (Δuiujuk). Now we can 

compute the Beltrami coefficient μfc according to (Eq. 3).

2.3.2. Linear Beltrami Solver (LBS)—We briefly introduce the LBS to recovery 

function f = (f(1), f(2)) for the given Beltrami coefficient μ = ρ + iτ. It is first introduced in 

[17, 11]. According to the definition, i.e. Eq. (4), we have,

∂f
∂u(1) + i ∂f

∂u(2) / ∂f
∂u(1) − i ∂f

∂u(2) = ρ + iτ . (5)

After re-organizing Eq. (5) and eliminating f(2), we derive,

∇ ⋅ A∇f(1) = 0, (6)

where A =
α1 α2
α2 α3

, α1 = (ρ − 1)2 + τ2
1 − ρ2 − τ2 , α2 = −2τ

1 − ρ2 − τ2  and α3 = 1 + 2ρ + ρ2 + τ2
1 − ρ2 − τ2 , ∇f(1) = 

(∂f(1)/∂u(1) + ∂f(1)/∂u(2)), and the divergence ∇ on vector G = A∇f(1) = (G(1), G(2)) is defined 

as ∇·G = ∂G(1)/∂u(1)+∂G(2)/∂u(2). By solving the partial equation Eq. (6) with certain 

boundary conditions, we can solve f(1). Similarly, f(2) can be solved.

In the discrete case, gradient operator ∇f(1) (u) can be written out with the linear 

interpretation. For discrete divergence ∇ · G operator, it is approximated on each vertex of its 

dual-cell (a cell consisted of neighboring triangles’ circum-centers). In specific, as shown in 

Fig. 3(b), consider the center vertex with its neighbors N(ui), we approximate ∇ · G (ui) as 

the average of divergence on D, which is written as,

∇ ⋅ G = 1
D ∫

∂D
Gds = 1

|D| ∑
Tj ∈ N zi

GTj ⋅ uk − uj . (7)

According to these approximations, we have a set of linear equations for fi and its neighbors. 

Finally, we can write Eq. (6) in a matrix form and solve f efficiently.

2.3.3. Laplacian Smoothing and Chopping—Now we can convert between the 

mapping function and Beltrami coefficient back and forth. During the registration, we apply 

the smooth operation to the function f to make the registration smooth, namely the Laplacian 

smoothing. In specific, for a scalar function g, we get a smooth version of g′ by solving the 

following equation,

g′ = argmin
g ∫ |∇g |2 + λ∫ g − g′ 2, (8)
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where λ is a constant. Eq. (8) can be efficiently solved by its Euler-Lagrange equation, i.e. 

(−∇ · ∇ + 2λI) ν = 2λμ. We apply the smooth process to f(1) and f(2), separately.

As we discussed, for diffeomorphic mapping, the Beltrami coefficient |μ| < 1. Equivalently, 

if there is a point whose |μ| > 1, the mapping is non-diffeomorphic. To pursue a 

diffeomorphic mapping, we will shrink the magnitude of |mu| and keep the argument arg μ 
(notice μ is a complex function), i.e. ν′ = ν/ |ν|, if |ν| > 1. This is called Chop.

2.3.4. Simple Registration Regardless Diffeomorphism—To take advantages of 

the features from retinotopic mapping, instead of updating the registration function using 

scalar features, we search (by brute-force) retinotopic visual coordinates within the nearby 

cortical surface region fi′ − fi < r0, and update the registration by,

fi′ = argmin
fi′

vS fi′ − vT
2 , fi′ − fi < r0 (9)

2.3.5. Algorithm—The overall registration process is summarized in Alg. 1.

3. RESULTS

3.1. Performance on Synthetic Data

We generate synthetic subject and template data in the scenario of retinotopic mapping 

according to the double-sech model, proposed by Schira et al. [13]. The subject and template 

data are generated by two different sets of parameters. The subject data is added with a small 

and big amount of uniform noise, respectively. We calculate the ground truth registration 

displacement from the subject to the template. Then we use several methods to register the 

noisy subject data to the predefined template and get registration displacement. Eventually, 

we report the registration error (difference between method’s registration displacement and 

ground truth displacement) in Tab. 1. We found (1) the proposed algorithm achieves the 

smallest registration error and ensures diffeomorphism (2) LDDMM and QCHR can also 

achieve almost diffeomorphic result, however, our method is more precise; (3) TPS is fast, 

Tu et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but the method’s accuracy is bad; (4) LDDMM, D-Demos, and QCHR ensure 

diffeomorphism for image registration, however, they cannot guarantee overall 

diffeomorphism when we consider the visual coordinates as intensity of image; (5) Because 

of an alternative scheme in our method, it usually takes approximately 100 to 150 seconds to 

register.

3.2. HCP Data

We apply our registration to the first twenty subjects of the Human Connectome Project 

(HCP) retinotopic dataset [21]. The original retinotopic result is available at [22]. We 

initialize a template by averaging the subjects’ data. Then we register all subjects’ data to the 

initial template. Fig. 5 shows one subject’s registration process. The curves are the 

boundaries of V1/V2/V3 inferred from the template. We see the before our registration (Fig. 

5(a)), the boundary is not perfectly aligned especially in the fovea region. We shall mention 

the readers that, Fig. 5(a) result is indeed from a registration result which used both the 

structural as well as some fMRI feature [12]. This means our alignment can further improve 

the result by incorporation more retinotopic information. Besides the subject registration, 

We further define the overall registration cost as the sum of visual coordinate error across 

subjects in the dataset. After registering all subjects’ data, we take the average of the 

subjects and use the same method to register the template to the average data. This process is 

repeated until we are satisfied. Fig. 6(a)–(c) shows the first, second, and last iteration of the 

template, respectively. Fig. 6(d) shows the registration cost, overall visual error, is decreased 

during the process. The decreased overall visual error means we slightly improved the 

template for human retinotopic maps.

4. CONCLUSION AND FUTURE WORK

We proposed a model for the retinotopic registration. We plan to use this framework for 

higher visual regions.
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Fig. 1. 
Illustration of the visual system.
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Fig. 2. 
Illustration of several spaces and registration.
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Fig. 3. 
(a) Illustration of approximate the mapping in discrete; (b) The divergence approximation on 

the vertex ring.
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Fig. 4. 
Template and subject: (a) Template; (b) Perfect subject; (c) Subject data with a small added 

noise (Peak Signal-Noise Ratio is 20 dB); (d) Subject data with a big added noise (Peak 

Signal-Noise Ratio is 10 dB); (e) Ground truth displacement. Red/black curves are for 

eccentricity/angle contour. Landmarks are marked for (a)-(d).
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Fig. 5. 
Before (left two figures) and after registration (right two figures) of the left hemisphere of 

the subject ‘102816’.
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Fig. 6. 
The template morphing process.
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Table 1.

Compare registration performance relative to the ground truth. Results for small noise and big noise cases are 

reported respectively (Running time is reported in average). Landmarks/anchors are given for methods with 

“*” a symbol.

Method
Registration Error

# Overlap Triangles Time/(s)
Mean Max

TPS* [18] 0.75/4.47 1.87/14.43 2/18 0.36

Bayesian* [9] 3.89/3.98 6.59/9.45 2079/2469 110

D-Demos [19] 1.12/1.20 2.34/2.59 2377/2473 1.6

LDDMM [20] 0.59/0.64 1.27/1.49 1/1 86

QCHR* [11] 0.06/0.10 0.62/0.47 1/0 173

Proposed* 0.04/0.08 0.12/0.19 0/0 123
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