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Abstract

Missing data is a common, difficult problem for network studies. Unfortunately, there are few 

clear guidelines about what a researcher should do when faced with incomplete information. We 

take up this problem in the third paper of a three-paper series on missing network data. Here, we 

compare the performance of different imputation methods across a wide range of circumstances 

characterized in terms of measures, networks and missing data types. We consider a number of 

imputation methods, going from simple imputation to more complex model- based approaches. 

Overall, we find that listwise deletion is almost always the worst option, while choosing the best 

strategy can be difficult, as it depends on the type of missing data, the type of network and the 

measure of interest. We end the paper by offering a set of practical outputs that researchers can use 

to identify the best imputation choice for their particular research setting.
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Introduction

Network data are often incomplete, with nodes and edges missing from the network of 

interest. Missing data can create problems when analyzing network data because network 

measures are often defined with respect to a fully observed graph (Borgatti et al., 2006; 

Smith and Moody, 2013). For example, measures that depend on the paths between all actors 

(e.g., closeness centrality and betweenness centrality) tend to be particularly sensitive to 

missing data (Kossinets, 2006; Smith et al., 2017; Rosenblatt et al., 2020). A researcher 

faced with incomplete network data must decide what, if any, imputation should be 

employed to limit the biasing effect of missing data (Huisman, 2009; Žnidaršič et al., 2018). 

Unfortunately, there are few clear guidelines for making imputation decisions. Recent work 

has shown that imputation can reduce the bias resulting from missing data, but we are only 

beginning to understand the returns to imputation (e.g., Koskinen et al., 2010; Gile and 

Handock, 2017; de le Haye et al., 2017; Krause et al., 2018a,b, 2020). For instance, is it 
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always best to impute network data, or can we sometimes get away with doing nothing? And 

more pressing, how should a researcher choose which imputation method is optimal? Does 

one approach offer a universally robust option, or does it depend on the circumstances of the 

study?

This paper is part of a three-paper series on missing network data, with the overall goal of 

offering practical advice and tools for network researchers faced with missing data (Smith 

and Moody, 2013; Smith et al., 2017). We focus on a common situation: where the network 

data is incomplete because a subset of actors has provided no information about their 

network ties (e.g., Galaskiewicz, 1991; Costenbader and Valente, 2003; Silk et al., 2018). 

For example, a network study of high school students may miss students because they were 

absent the day of the survey, or simply because they refused to participate in the study. Even 

automated data (e.g., based on Bluetooth proximity) may suffer from missing data problems 

(Wang et al., 2012).

Paper 1 and paper 2 of this series explored the effect of missing data on network measures 

across a wide range of networks and missing data scenarios. We find that bias can vary 

dramatically across settings, where the level of bias depends crucially on the measure of 

interest, the network being analyzed and the type of missing data (see also Frantz et al., 

2009; Huisman, 2009; Martin and Niemeyer, 2019). For example, the same measure (e.g., 

Bonacich centrality) calculated on the same network can yield very different levels of bias, 

depending on if the missing nodes are central or peripheral actors (Smith et al., 2017).

In this paper, we focus on the question of imputation: how do different imputation methods 

fare under different research settings—in terms of measures, network features and missing 

data types.1 In this way, we combine the literature on missing data effects (where is missing 

data most problematic?) with the literature on imputation (what kinds of strategies can we 

use to impute network data?). We consider a range of imputation methods, from simple 

imputation to more complex model- based approaches (Žnidaršič et al., 2017; Krause et al., 

2018a,b, 2020). Simple imputation approaches attempt to ‘rebuild’ the network as best as 

possible from the information found in the data itself (i.e., if i nominates j and j is missing 

we might impute a tie from j to i) (Huisman, 2009). Model-based approaches use 

sophisticated statistical models to probabilistically fill in the missing data (Koskinen et al., 

2010; Wang et al., 2016). From the perspective of a researcher, it is crucial to know which 

approaches will work for their particular setting. An approach that is effective for one 

measure and/or network type may be ineffective for another. The effectiveness of the 

approach may even depend on the type of missing data.

Our ultimate goal is to offer a set of practical outputs for researchers trying to decide what 

imputation approach to implement. A researcher will be able to identify the case closest to 

their own (in terms of measures, missing data type, and network features) and then use our 

results to look up the optimal imputation choice. A researcher would, of course, have to 

balance the performance of the imputation method (in terms of lowering bias) with the 

1Note that the problem of imputation of missing data is distinct from the problem of network inference from independently sampled 
data, as the kind of approaches that are likely to be successful in each case are different (Handcock and Gile, 2010; Smith, 2012; 
McPherson and Smith, 2019).
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difficulty of implementing it. Our results will make it easier for a researcher to perform such 

cost-benefit analyses, given the features of their research setting.

We begin the paper with a short background section on missing network data and 

imputation. We then describe the imputation methods of interest, as well as the networks, 

measures and sampling setup that will form the basis of the analysis. Our analysis follows 

past work in the literature. We begin by taking a complete network and simulating different 

missing data scenarios. We then impute the missing data (on the now incomplete network), 

recalculate the measures of interest, and compare the resulting value to the true value. We 

present results for three types of network measures: centrality, centralization and topology.

Theory

Our paper contributes to a growing literature on non-response treatments to missing network 

data (Wang et al., 2016; Žnidaršič et al., 2017; Krause et al., 2018a,b). We focus on a key 

form of missing data, actor non-response. We define a non-respondent as an actor that fails 

to offer any nomination information (i.e., no information on out-going ties). We assume that 

non-respondents are not completely missing, however, and can still be nominated by other 

actors.2 This is a common form of missing data, particularly in well-defined, bounded 

settings. For example, in a school, a student may be out sick the day of the survey but still be 

on the roster, so that other students could nominate them. In this way, we have observations 

of a non-respondent’s in-coming ties but not of their out-going ties.

The two most common approaches for inferring missing ties are simple imputation and 

model-based imputation. We discuss each in turn.

Simple imputation leverages information about the incoming ties to non-respondents to help 

reconstruct the network (Stork and Richards, 1992; Huisman, 2009). If node k is a non-

respondent and is nominated by i and j (who are not missing), we begin by including the ties 

from i→k and j→k. Additional heuristics can then be applied to help fill in the network. For 

example, a researcher may assume reciprocal ties going out from the non-respondents to 

those who nominated them, imputing k→i and k→j. Assuming reciprocity, however, runs 

the risk of adding ties that do not really exist, while doing no further imputation may fail to 

add ties that do exist. Much of the methodological work on simple imputation has asked how 

well such methods work in practice. For example, Huisman (2009) compared an imputation 

strategy based on the observed network’s density to a preferential attachment strategy and a 

unit imputation strategy. He found that simple imputation generated stable estimates of 

reciprocity, mean degree, and inverse geodesic distance for undirected networks with a 40 % 

non-response rate or less, but preformed less well for directed networks.

Recent work has considered more complicated (non-model based) imputation methods; 

where the rules for adding ties are dependent on other properties of the graph, like the 

reciprocity rate or the indegree of a node’s nearest neighbors (Žnidaršič et al., 2017). For 

example, Žnidaršič et al. (2017) explored a range of actor non-response treatments, finding 

2This information was ignored in Part I and Part II of this study, which assumed that non-respondents were completely removed from 
the network when calculating summary statistics.
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that imputing ties based on the incoming ties of ego’s k-nearest neighbors significantly 

reduces non-response bias in valued networks, but that the macro-structure of the network 

(e.g., core periphery networks, networks with cohesive subgroups, and hierarchical 

networks) significantly influences the effectiveness of such strategies (see also Žnidaršič et 

al., 2018).

Model-based imputation methods are an alternative approach for inferring missing data 

(Robins et al., 2004; Kolaczyk and Csárdi 2014´ ). As with simple imputation, model-based 

methods begin by leveraging the information provided by the incoming ties to non-

respondents. Model-based approaches, however, go further by proposing a parametric model 

that derives the likelihood of the observed data as a marginalization of the complete-data 

likelihood over the possible states of the missing variable (in our case a given adjacency 

matrix) (Gile and Handcock, 2017). The advantage of this approach is that it allows the 

researcher to incorporate more information about the network’s nodes, dyads, and local 

structure when estimating the likelihood of a given tie, as well as information about the 

survey instrument such as number of alters each respondent could nominate (Wang et al., 

2016). Similarly, a model-based approach makes it possible to impute ties between non-

respondents, which is difficult with simple imputation approaches. Model-based imputation 

also has the advantage of considering multiple plausible states of the network to generate a 

summary measure that accounts for the increased variability of parameter estimates due to 

imputation (Huisman and Krause, 2017). In this way, a researcher is better able to take into 

account the uncertainties in the imputation process, consistent with best practices from the 

literature on multiple imputation (Allison, 2002).

For example, Wang et al., 2016 used an imputation method based on exponential random 

graph models (ERGM); they found, on average that, 73 % of the missing ties could be 

effectively imputed, although smaller, sparser networks were harder to fit. Krause et al., 

2018a,b expanded on this approach by employing a Bayesian ERGM (see also Koskinen et 

al., 2013) to impute missing ties, finding that Bayesian models are particularly useful when 

the percentage of missing data approaches 50 % and the measure in question is sensitive to 

misspecification (such as with transitivity). The main disadvantage of model-based 

imputation is that it can be difficult to implement (given the need to specify and estimate a 

model). Model-based imputation may also introduce bias by over generalizing tendencies 

observed in information rich parts of the network to the entire network. Nevertheless, these 

methods are often warranted, particularly in longitudinal network analysis where missing 

data is likely due to the repeated nature of the sampling, and where biases present in the 

initial network will affect the estimates of all subsequent networks (Hipp et al., 2015; Krause 

et al., 2018a,b).

Imputation strategies thus have great potential to limit bias due to missing data. 

Nevertheless, the practical problem remains of how to choose an imputation approach in a 

given research setting, especially as an imputation method that works well in one setting 

may not work well in another (Hipp et al., 2015). Different factors such as the network type, 

the kind of missing data, and the measure of interest are likely to influence the performance 

of different imputation methods, as different conditions magnify (or hide) the relative 

weaknesses of each approach. For example, we might expect that estimates of transitivity for 
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a directed core-periphery network are particularly vulnerable to approaches that add 

reciprocated ties, as this runs the risk of inflating the estimated number of closed triads. In 

this case, the researcher should avoid reciprocated imputation; but what imputation strategy 

should be used, and are there other cases where reciprocated imputation works well?

In short, different approaches are likely to work better/worse in different settings, and it is 

crucial for a researcher to understand the consequences of different imputation choices. With 

this is mind, our analysis will extend past work by considering different imputation options 

across a much wider range of network types, measures and missing data features than is 

typically considered. It is only by considering such a complex set of conditions that we can 

begin to offer practical advice to researchers, as we can say under what conditions a given 

imputation approach is most appropriate.

Data

We examine the efficacy of different imputation methods across twelve empirical networks, 

seven directed networks and five undirected networks. These networks vary widely in terms 

of network features and substantive contexts, although all networks are limited to under 

1000 nodes. Medium to small networks are sensitive to missing data and are conducive to 

additional data collection efforts, making them particularly appropriate for the study of 

missing data and imputation methods (Gile and Handcock, 2017). All networks are binary. 

Binary network data are still commonly used, and it is important to understand how missing 

network information affects this baseline case. The networks are the same as in papers I and 

II of this study.3 They include: “data on elites (corporate interlocks: “Mizruchi Interlock” 

and “River City Elite”), young youth networks (“Gest 6th graders”, “Prosper s220”)4, 

adolescent and young adult networks (“Sorority Friendship”, “High School (p13 & p24)”, 

the Gagnon prison network (MacRae, 1960), science networks (the sociological abstracts 

collaboration graph, the Social Networks article co-citation graph, and the biotechnology 

exchange network) and epidemiological networks (Colorado Springs HIV risk network - 

Morris and Rothenberg, 2011)5 “ (quoted from Smith and Moody, 2013). See Fig. 1 for plots 

and summary statistics (Table 1).

Measures

Our analysis includes 16 different measures which we broadly divide into three classes: 

centrality, centralization and topology. By looking at a wide range of measures, we can 

better describe the conditions under which different imputation approaches offer the best 

choice.

Centrality—Our centrality measures include in-degree, total degree, Bonacich power 

centrality, closeness and betweenness. For the undirected networks, we only include a 

measure of degree (as total degree, out-degree, and in-degree are the same). Note that 

3We thank the following authors for providing data for this study: Mark Mizruchi (Interlock network); Scott Gest (6th grade data); 
Lisa Keister (River City Elite); Walter Powell (Biotechnology exchange data).
4The Prosper data were made available through the following grants: NSF/HSD:0624158, W.T. Grant Foundation 8316 &NIDA 
1R01DA018225-01.
5The Colorado Spring HIV network was made available through NIH R01 DA 12831 (PI Morris).
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Bonacich power centrality is calculated on a symmetrized version of the network (for the 

directed networks). We calculate closeness centrality based on the inverse distance matrix, 

so that disconnected nodes have a value of 0 and directly connected nodes have a value of 1. 

We use the inverse distance matrix so that the summation does not include undefined values, 

a problem when pairs of people in the network cannot reach one another.

Centralization—Centralization measures the variation in the distribution of the given 

centrality measure, and is a graph-level statistic (whereas centrality captures an individual-

level characteristic). We include centralization scores for each of our centrality measures. 

Our measure of centralization is a simple standard deviation of the individual centrality 

scores.

Topology—We include six topological measures. We include two global measures of 

connectivity, component size and bicomponent size. We measure component size as the 

proportion in the largest component. We first calculate the number of actors in the largest 

component, defined as the largest set of actors connected by at least one path. We then 

divide by the size of the network, defined as the number of nodes in the network being 

analyzed (i.e., the observed network after any nodes have been removed as part of the 

missing data treatment). A bicomponent is defined as a set of actors connected by at least 

two independent paths (Moody and White, 2003). As with component size, we divide the 

size of the largest bicomponent by the size of the network being analyzed, yielding the 

proportion in the largest bicomponent. Our third measure is distance, measured as the mean 

inverse distance between pairs of nodes (meaning that higher values actually indicate lower 

distances). We scale the value by the log of network size.6 Our fourth measure is transitivity, 

measured as the relative number of two-step paths that also have a direct path; more 

substantively, transitivity captures the tendency for a “friend of a friend to be a friend”. Our 

fifth measure is the tau statistic, a weighted summary statistic based on the triad distribution 

(Wasserman and Faust, 1994). The tau statistic captures the local processes that govern tie 

formation (like clustering and hierarchy). The tau statistic is a summation over the specified 

triads, conditioned on the dyad distribution in the network. Here, we use the ranked-cluster 

(RC) weighting scheme.7 Our last topological measure is based on blockmodeling the 

network (White et al., 1976). We begin by partitioning the full network into a set of 

equivalence blocks, where nodes with similar pattern of ties are placed together.8 We use the 

Rand statistic (Rand, 1971) to compare the partitioning found in the incomplete data to the 

partitioning observed in the full, true network. The unadjusted Rand statistic shows the 

proportion of pairs in one partition (the true partitioning) that are placed together in a second 

partition (the partitioning under missing data).

6Different imputation strategies can yield different size networks to analyze, while component size, bicomponent size and distance are 
particularly sensitive to network size. We thus scale these measures, making it easier to interpret the results across imputation 
strategies.
7We do not claim that a ranked cluster weighting scheme will offer the best fit for every network; we are only concerned if this 
summary measure of the triad distribution is measured better/worse across imputation strategies.
8We utilize the simple CONCOR algorithm to place actors into equivalent blocks, setting the depth to 3 for all networks. We have also 
run analogous tests where the depth was allowed to vary across networks. Here, we determine the best fitting blockmodel on each 
network (without missing data), using that to set the depth when fitting the blockmodel on the networks with missing data. The results 
are very similar to what we see setting the depth to be constant and we only present those results here.
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Missing data

Our study is focused on the efficacy of different imputation methods under different 

conditions of missing data. In order to explore different level of missing data), we identify a 

portion of the nodes as non-imputation approaches, it is first necessary to generate missing 

data respondents, individuals for whom we have no information on out- from the observed 

data in a controlled, systematic way. We follow a going edges. We construct the observed 

(incomplete) network by standard protocol when inducing missing data: for each network 

(and removing the out-going edges from the non-respondents. Once the appropriate edges 

are removed, we apply different imputation methods to the same network, with the same 

missing data. We repeat this process 1000 times for each level of missing data: 1 %, 2 %, 5 

%, 10 %, 15 %, 20 %, 25 %, 30 %, 40 %, 50 %, 60 %, 70 %.9

We also consider different types of missing data, defined by which nodes are most likely to 

be non-respondents: central nodes, peripheral nodes, or nodes selected at random. Past work 

has shown that missing more central nodes generally yields larger bias (at least when the 

researcher takes no action to impute the missing cases) (Smith et al., 2017). Research 

contexts vary with respect to who is most likely to be a non-respondent. For example, central 

actors are less likely to provide nomination data when studying organizations (e.g., public 

officials in an elite network), where central actors are more likely to have scheduling 

conflicts and may be less willing to cooperate. Peripheral actors are more likely to be non-

respondents in settings like schools, where actors who are not socially embedded in the 

network are more likely to be disengaged and thus less likely to take the survey. Network 

measures are typically robust to missing peripheral members of the network, but imputation 

procedures may struggle in such cases. We have very little information about nodes on the 

periphery (as few people nominate them), making it harder to impute where ties should be 

added for those actors. It is unclear how different imputation procedures will fare when 

periphery nodes are non-respondents (compared to more central nodes).

Formally, our missing data conditions are set based on the correlation between centrality and 

the probability of being a non-respondent. We have five correlation values: strong negative 

correlation (−.75), weak negative correlation (−.25), missing at random (0), weak positive 

correlation (.25) and strong positive correlation (.75). Cases with a negative correlation 

between centrality and missingness correspond to situations where those on the periphery 

are more likely to be non- respondents. A zero correlation corresponds to random selection 

of non-respondents, while a positive correlation means that more central actors are more 

likely to be non-respondents. We consider two definitions of central actors, one based on 

closeness and one based on in- degree. There are thus 9 different missing data types (−.75 

closeness, −.75 in-degree, −.25 closeness, −.25 in-degree, 0, .25 closeness, .25 in- degree, 75 

closeness, and .75 in-degree). We will not distinguish between the closeness and in-degree 

results here as they offer very similar findings, so we simply aggregate them in the final 

figures and tables.

9Note that for the small networks it is likely that some of the 1000 samples will be duplicates, with the same pattern of missing data. 
This means that the variability in the smaller networks might be biased downwards slightly, especially at lower sampling rates. Our 
analysis here focuses on the expected level of bias, rather than the variability, and such concerns are thus minimized.
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Imputation methods

We consider the effectiveness of six different approaches for dealing with missing data. In 

each case, we first construct a network with missing data, where a subset of nodes is treated 

as non-respondents, with no out-going edge information. We then take the incomplete 

network and impute the missing edges using different imputation approaches. Fig. 2 presents 

the different imputation options in a simple network with 5 nodes. On the left-hand panel, 

we have the complete network with non-respondents and edges highlighted in red. Here, we 

see that nodes E and F are missing. All edges going from E or F to other actors (like E→D) 

will not be observed, including any edges between the non-respondents (see Handcock and 

Gile, 2010). A researcher will, however, typically have information on edges going to non-

respondents (for example D→E), and we assume that this is the case for our analysis.

Given these conditions, we break out the imputation methods into three large classes: 

listwise deletion, simple imputation and model-based. The simple imputation methods 

include asymmetric, symmetric and probabilistic treatments; the model-based methods 

include simple and complex exponential random graph models. Thus, we consider six 

approaches: listwise deletion, asymmetric, symmetric, probabilistic, model-based simple and 

model-based complex.

Listwise deletion—The simplest option is to remove all nodes with incomplete 

information from the network. This is pictured in the top right-hand plot in Fig. 2. Here, 

non-respondents are not present in the network, while all incoming ties to non-respondents 

are not considered. This amounts to listwise deletion, where only those cases with full 

information, or those present at the time of data collection, are included in the network used 

for analysis. In this case, E and F and all ties going to and from E and F are missing. Note 

that this is the typical strategy for most network studies (Smith et al., 2017; Silk et al., 2015). 

Also, note that listwise deletion will yield a network that is smaller than the true network.

Simple imputation—The second class of imputation methods that we consider is simple 

imputation. Here, the researcher uses the tie information from the observed nodes to the non-

respondents to help ‘fill in’, or reconstruct, the network (Huisman, 2009). The basic idea is 

that when an actor who is present in the survey nominates someone who is absent; that this 

is useful information that should not be thrown away, as is done in listwise deletion. For 

example, in Fig. 2, nodes A and D nominate E, who has missing data on all out-going ties. A 

simple imputation approach would begin by putting E back into the network with edges 

from A→E and D→E. This is demonstrated in the simple imputation plots in Panel B. Note 

that node F, who is also a non-respondent, is not put back into the network as none of the 

observed nodes nominated them. Once the missing nodes are put back, the researcher must 

decide on how to impute the missing edges from the non-respondents to the nodes who 

nominated them. No other ties are imputed. This means that all potential ties between non-

respondents who were put back into the network are assumed not to exist, taking a value of 0 

in the matrix.10 In our little example, we need to impute whether E sends ties back to A and 

D. Note that for undirected networks this choice is simple as all ties are reciprocated. The 

directed case is more difficult and we consider three different options.
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Asymmetric imputation—First, a researcher could employ an asymmetric approach, 

where no ties from non-respondents are added to the nodes who nominated them (past work 

has also labeled this null tie imputation; Žnidaršič et al., 2017). In the second plot in Panel 

B, we see that there are ties from D to E and A to E but no ties from E, the non-respondent, 

back to D or A. This strategy privileges the observed data by removing from consideration 

ties from the non-respondents to the respondents who nominated them. The downside of this 

approach is that it assumes that an asymmetry exists between all non-respondents and 

respondents, an assumption that is unlikely to be true in many cases. It could, however, be 

useful for certain measures, especially those where adding an incorrect tie badly biases the 

results (like transitivity).

Symmetric imputation—The second option is symmetric imputation (also referred to as 

reconstruction in past work: Huisman, 2009; Žnidaršič et al., 2017). Here, a researcher 

always assumes that an edge from a non-respondent to a respondent is reciprocated. In our 

example, the edges from A and D to E (non-respondent) is returned, so we impute edges 

E→A and E→D. In this case, a researcher would get the E→D edge correct but would 

incorrectly add the E→A edge. A symmetric option is likely to work well when the 

reciprocity rate is high. It is also likely to work well in cases where the measure of interest 

does not rely heavily on the direction of the ties or in cases where missing edges are more 

consequential than adding incorrect edges.

Probabilistic imputation—The last simple imputation option is probabilistic imputation. 

Here, edges from non-respondents to the respondents who nominated them are imputed 

probabilistically, based on the rate of reciprocity in the observed network. A researcher first 

calculates the reciprocity rate as the proportion of ties that exist such that if i nominates j 
then j also nominates i. For this initial calculation, we only include dyads where both i and j 
are observed nodes (i.e., both respondents). For our example network in Fig. 2, the 

reciprocity rate in the observed, incomplete network is .25. A researcher would then take this 

rate and use it to impute the ties from non-respondents to respondents. Here, our researcher 

would basically flip a weighted coin, adding an edge with the probability set to .25. This 

would be done, in this case, for E→A and E→D. This process can itself be repeated a 

number of times (as there will be stochastic variation). Each iteration will yield a slightly 

different network, which can then be used in subsequent analysis. One could then 

summarize the results over the imputed networks. In our analysis, we repeat the imputation 

process over 100 networks, using the mean value (for the statistic of interest) over the 100 

networks as the summary measure of interest. A probabilistic option falls somewhere 

between the asymmetric and symmetric options, in terms of adding or not adding edges. The 

probabilistic option is likely to be a fairly safe choice, although it may not always be the best 

option in every setting.

10This approach has the advantage of simplifying the analysis considerably, but also has the disadvantage of making pretty stringent, 
perhaps unrealistic, assumptions about the ties between missing actors. A researcher could alternatively opt for a more complicated 
approach. For example, one could assume that a ‘friend of a friend is a friend’, such that if i nominates j and i nominates k, then one 
would impute that j nominates k (with some probability), assuming that both j and k are missing. As a researcher adds increasingly 
more complicated imputation rules, however, the approach veers increasingly towards what a model-based approach is already doing 
and that is likely the better option; as one can include many terms, or rules, together in a single, systematic model.

Smith et al. Page 9

Soc Networks. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, the simple imputation methods have the advantage of being very easy to implement 

while taking advantage of data from the survey itself. The disadvantage is that these methods 

miss any edge from non- respondents to other non-respondents (such as E↔F). It also 

systematically misses any asymmetric edge from a non-respondent to an observed node 

(such as E→C). Couple these built-in biases with the possibility of adding edges that are not 

really there, and it is unclear how far we can push simple imputation options, particularly 

given difficult combinations of measures and missing data types.

Model-based—The third class of imputation methods is model-based approaches. Here, a 

researcher takes the observed network, and estimates a statistical network model predicting 

the presence/absence of a tie between all ij pairs. The researcher then takes the underlying 

model and uses the model to predict, probabilistically, the ties that exist for nodes that are 

missing. For example, we know that networks tend to be homophilous (i. e., two actors who 

are similar are more likely to form a tie). A researcher can estimate the strength of this 

tendency (e.g., in terms of race or gender) and then use that information to help predict if a 

missing edge exists. We assume that the researcher has basic information on all actors, even 

the missing cases. Thus, an actor may have missing network data but basic demographic (or 

other) information about them may still be available. This may be acquired through 

administrative records, third hand reports or even from the ‘missing’ respondent, as they 

may begin the survey but not finish it.

A model-based imputation approach is depicted at the bottom of Panel B in Fig. 2. We 

assume that a researcher employing a model-based approach will begin by first performing a 

simple asymmetric imputation of the data. For example, in Fig. 2, Actor E is put back into 

the network and edges from A→E and D→E are added. The researcher will then take the 

remaining non-respondents, those who received no nominations from the observed nodes 

and put them back into the network. In our example actor F would be added to the network. 

The next step is to estimate a model predicting an edge between actors, only including the 

observed edges in the model.

We use exponential random graph models (ERGM) to impute the missing data. There are a 

number of possible options, but ERGM is a commonly used model and is quite flexible, 

making it an ideal choice. ERGMs are statistical models used to test hypotheses about 

network structure and formation (Hunter et al., 2008; Wasserman and Pattison, 1996). 

Formally, we define a network, Yij, over the set of nodes N, where Y is equal to 1 if a tie 

exists and 0 otherwise. Define y as the observed network. Y is then a random graph on N, 

where each possible tie, ij, is a random variable. ERGMs estimate the Pr(Y=y), where the 

“independent variables” are counts of local structural features in the network (Goodreau et 

al., 2009; Robins et al., 2007), such as number of ties and homophily. The model can be 

written as:

P (Y = y) =
exp θTg(y)

κ(θ)
(1)

where g(y) is a vector of network statistics, θ is vector of parameters, and κ(θ) is a 

normalizing constant.
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In this case, the model is estimated based on the incomplete network, where edges from non-

respondents to other nodes are unobserved. Note that all missing edges are treated as NAs 

when estimating the model (i.e., missing instead of 0 s), and are thus not included in the 

estimation of the coefficients. The estimated coefficients may be biased, depending on the 

terms included and the type of missing data. It is, nonetheless, our best guess (given the data 

at hand) at what the underlying local tendencies are for the network. We can then take that 

estimated model and predict the missing edges. This amounts to simulating networks from 

the underlying model. Note that this includes missing edges from non-respondents to 

respondents (E→A) as well as edges between non-respondents (E and F). All observed 

edges (including edges from respondents to non-respondents) are held fixed and not allowed 

to vary as different networks are generated from the estimated model. In Fig. 2, we have 

plotted an example simulated network, with the missing edges colored green. This represents 

one possible imputation, or draw form the underlying model; another generated network 

would look slightly different (with different ‘green’ edges added to the network). A 

researcher could repeat this process a number of times, calculating the statistics of interest 

for each simulated network (with observed edges held fixed), summarizing over all of the 

calculated values.

The main benefit of a model-based approach is that we are able to recover nodes that are 

non-respondents and received no nominations from respondents (actor F in Fig. 2). We are 

also able to apply a better model to recover the edges between respondents and non-

respondents (i.e., going beyond just reciprocity). Model-based approaches are thus likely to 

fare well when looking at measures that capture structural features at an aggregate level, like 

component size. The main drawback to a model- based approach is that the imputed network 

will deviate further from the raw data than with any of the simple imputation approaches. 

Measures that are sensitive to getting the specific edges correct, such as centrality measures, 

may be more difficult for a model-based approach.

We consider two versions of model-based imputation. One we denote as ‘simple’ and the 

other we denote as ‘complex’. Each has the same basic form but the simple model includes 

fewer terms, and is thus easier to estimate.

Simple model-based—The simple model-based approach includes three basic terms. 

First, we include a term for the base rate of tie formation in the network (edges). Second, we 

include terms for homophily on two attributes.11 We assume these attributes are known for 

both non-respondents and respondents. Third, for directed networks, we include a term 

capturing reciprocity, the count of the number of dyads where ij exists and ji exists. We then 

take the estimated model12, based on number of edges, reciprocity, homophily and simulate 

a set of networks from the underlying model. Only the missing edges are allowed to vary run 

to run, as the observed edges are held fixed.13

11The attributes themselves are based on constructed variables. The attributes are constructed to maintain a desired level of homophily 
(low and high) for that attribute. This was done as there is no common attribute across all networks to include in the analysis. In 
general, the attributes mimic the kinds of data a researcher is likely to have at their disposable when estimating the initial model.
12The initial ERGM is estimated while constraining the max degree of each node to be below the observed outdegree (for the missing 
nodes this value is imputed).
13We hold the observed edges fixed as we assume those values are known and thus do not need to be imputed. A more general view of 
a model-based approach could allow all ties to vary probabilistically based on the estimated model. A researcher would then calculate 
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Within these simulations, we put constraints on the outdegree of each node, constraining the 

simulations so that each node has the same out- degree as the observed values (these values 

are imputed for the non-respondents).14 In this way, we ensure that out-degree in the 

simulated networks is consistent with the observed data, matching the respondents and 

matching our best guess for non-respondents. In the end, we calculate the statistics of 

interest for each generated network (we generate 100 networks each time)15 and take the 

mean over all networks as the measure of interest. All models are estimated in R using the 

ergm package (Handcock et al., 2019).

Complex model-based—The complex model-based approach is exactly the same as the 

simple approach expect that it includes a term to capture triadic processes. The simple model 

only includes terms at the node or dyadic level. For the complex model, we take the same 

model and add a GWESP (geometrically weighted edgewise shared partner) term to the 

model. GWESP is a weighted summation of the counts of how many shared partners each ij 
pair have (restricted to cases where i and j have a tie), capturing the tendency for groups (or 

local clusters) to emerge in the network. Adding GWESP allows us to capture tendencies 

towards transitivity and higher order closure. It also makes the model harder (and longer) to 

estimate.

In short, the model-based approach is more complicated than with simple imputation 

approaches. A researcher must make a number of difficult modeling choices (terms, 

constraints, etc.), and must then actually estimate and simulate from the specified model. 

Thus, one of the main questions of this study is about the relative payoffs and tradeoffs 

between simple imputation and model-based approaches. Simple imputation approaches are 

much easier to implement. But will they yield valid results? And if the model-based 

approach yields better estimates, is the improvement worth the added effort that a model-

based approach requires? Thus, we want to identify the conditions (measure of interest, type 

of missing data, etc.) where one can ‘get away with’ the simpler network options, compared 

to the conditions where a more complicated model-based approach is necessary.

It is worth noting that our model-based imputation approaches employ particular forms, with 

particular terms and constraints included. It is possible that alternative specifications (i.e., 

using a Bayesian approach) would offer better results than that presented here (Krause et al., 

2018a,b). Our results are, however, still instructive, as they represent the kinds of tradeoffs 

and models that a researcher in the field is likely to consider.

the network statistics of interest over a large set of possible networks, using the estimated features in the analysis of interest. The 
advantage of this approach is that captures the uncertainty in the underlying network. The disadvantage is that it requires the 
researcher to have a very good model of the network, otherwise the estimated features will not reflect the actual population.
14For the non-missing nodes, we constrain out-degree to match the observed network perfectly (as we know all edges from i to other 
nodes). For missing nodes, we first predict what each missing node’s outdegree would have been, had they filled out the survey. We 
first estimate a model predicting outdegree based on indegree, restricted to the non-missing cases. Using this regression model as a 
basis for prediction, we then predict the outdegree of each missing case based on their indegree (the nominations from non-missing 
nodes to the missing node), adjusting for the fact that the indegree is itself biased (missing any nomination from other missing nodes).
15Note that this is different than the sample of 1000 networks (for each level of missing data) that the entire analysis is run over.
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Presentation of results

Our results offer a presentation challenge. We have 12 networks, 5 missing data types, 12 

missing data levels, 16 measures, and 6 imputation approaches. For each of these 

combinations, there are 1000 iterations (with different actors treated as non-respondents 

each time). The combinatorics make it difficult to present the results in a raw form. Our 

strategy is to calculate summary statistics across these iterations and then to use different 

plots and regression models as a means of summarizing the results.

For each scenario (network, measure, and missing data type), we begin by comparing the 

true values to that observed in the networks with missing data—where a subset of nodes are 

treated as non- respondents and different imputation strategies are used to deal with the 

missing data. We first calculate a bias score, capturing how far the observed value is from 

the true value. The observed value is the measure calculated on the imputed networks (i.e., 

the network we observe the imputation is performed). For the centrality scores, we calculate 

the centrality of the nodes in the complete network (no missing data), calculate it again 

using the networks with imputed data, and correlate these two vectors. The higher the 

correlation, the greater is the effectiveness of that imputation method for that missing data 

scenario. To make this a bias score, we calculate 1 minus the correlation between the true 

and observed centrality scores.

bias centrality = 1 − cor (True, Observed) (2)

When we correlate the two vectors, we only include respondents, thus excluding non-

respondents that we have brought back into the network through the imputation process. 

This makes the calculations consistent across different imputation strategies. It is also the 

likely choice that researchers would make in their own analysis (as the bias will be much 

higher for non-respondents). We have also performed an analysis where we keep all actors in 

the calculation (respondents and non-respondents). The imputation strategies fare much 

worse in this case, suggesting some of the costs of including the missing cases. The results 

for this additional analysis are presented in Table A13 in the Appendix.16

We use a standardized bias score for our graph level measures of centralization and 

topology. We define bias as:

bias centralization; topology = True − Observed
True (3)

A bias score captures how much the observed score (in the imputed networks) differs from 

the true value. The bias scores are relative to the size of the true value, making it easier to 

compare across networks and statistics. The bias scores can be negative (over-estimates) or 

16Note that the main analysis does not include results for out-degree, but the additional results do. This is the case because out-degree 
will be recorded perfectly for those nodes that are respondents (as we know who they nominated), so no bias is possible there and the 
imputation results are not very informative. When we include non-respondents in the calculation, bias is once again possible for out-
degree and the imputation results are worth reporting. See Table A13 for results that include out-degree.
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positive (under-estimates). For simplicity, we take the absolute value of the bias scores, 

making them comparable in all analyses.

We begin each set of results with a bias ratio table. The bias ratio tables show the total 

improvement in the measure for each imputation type relative to listwise deletion. We first 

calculate the total bias that results from doing listwise deletion. We calculate the bias score 

(for the given measure) under listwise deletion, summing up the bias at each level of missing 

data to arrive at a total bias score. We then repeat this process for the same network and 

missing data, but now we assume that the data are imputed under different approaches. We 

take the total bias under each imputation approach and divide that by the total bias under 

listwise deletion, multiplying it by a 100 to arrive at a percent decrease in bias (or 

improvement in fit). Larger values are better, with negative values suggesting that the 

imputation method actually performed worse than listwise deletion.

For our second set of analyses, we take the bias scores and regress them on the level of 

missing data. We thus predict bias for each scenario as a function of percent missing nodes: 

bias = β0 + β1
%missing

10 . The estimated slope coefficient, β1, captures the expected increase 

in bias for a 10 % increase in number of non-respondents. The slope coefficients (β 1) are 

used as a summary measure, showing how quickly bias increases as the level of missing data 

goes up.

We then use a series of regression models to summarize the results, providing an overall 

picture of bias across all networks, measures, missing data types and imputation approaches. 

We run separate Hierarchical Linear Models (HLM) for each measure, using the bias slopes 

(β1) as the dependent variable (bias slopes are nested within networks). Larger coefficients 

mean that bias is predicted to be higher, as bias increases at a faster rate as missing data 

increases. Our main independent variable is the type of imputation, represented by a set of 

dummy variables: Asymmetric, Probabilistic, Symmetric, Model-based simple and Model-

based complex. Listwise deletion serves as the reference category. We also include a variable 

for missing data type, ranging from −.75 (low degree nodes are more likely to be non-

respondents) through .75 (high degree nodes are more likely to be non-respondents). The 

remaining variables capture network properties that may be correlated with higher levels of 

bias. We include predictors for network size (logged) and concentration (measured as the 

standard deviation of in- degree). We run separate models for the directed and undirected 

networks. We also include interactions between imputation type and the missing data type, 

as well as interactions between imputation type and network features. In this way, we can 

see the relative effectiveness of different imputation strategies under a variety of conditions. 

See Tables A2, A4, A6, A8, A10, and A12 in the Appendix.

We use the estimated regression models to produce a series of summary plots. We present 

two basic figures for each measure type (centrality, centralization, topology). The first figure 

focuses on the effectiveness of different imputation approaches across different measures 

and types of missing data. For each subplot, the x-axis is the level of missing data and the y-

axis is the expected bias, under the scenario of interest. The results are based on a network 

with moderate features, one that is medium sized and moderately/weakly centralized. We 

have results for each measure and three different types of missing data (missing low 
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centrality nodes, random missing data and missing high centrality nodes). Within each 

subplot there are 6 lines, one for each of the imputation approaches. The lines represent the 

predicted bias based on the regression model, using the regression coefficients for that model 

and setting the network features to the scenario of interest. Higher values in the plot indicate 

more bias and thus worse performing imputations. The second set of figures focuses on the 

effectiveness of imputation approaches across networks with different features. Here, we 

systemically vary the size and centralization of the networks, but hold the type of missing 

data fixed (only looking at random missing data). We include 4 combinations of size and 

centralization: large centralized, small centralized, large decentralized, small decentralized. 

The key question is how well different imputation methods fare for different measures under 

different conditions.

Results

Centrality

We begin our discussion of centrality by examining the undirected networks as they 

represent the simpler case. Table 2 captures a qualitative summary of the ‘best’ imputation 

approach under different conditions, while the main numerical results are presented in Fig. 3 

and Tables A1 and A2. Table A1 is our bias ratio table, where each value in the table reports 

the decrease in total bias (over all levels of missing data and all runs) for that imputation 

approach compared to listwise deletion. Fig. 3 presents example predicted bias plots for one 

network for 3 different missing data types. The results are based on the HLM results 

presented in Table A2, predicting bias as a function of the missing data type and network 

characteristics.

The results for degree are very straightforward. We see that all imputation methods lower the 

bias to 0, or perfectly impute the missing data. The imputation methods add ties between i 
and j in cases where i nominates j and j is a non-respondent. There is no error possible here 

as the return tie (j to i) is assumed to be reciprocated, as the network is undirected. Note that 

this perfect correlation only holds if we restrict our attention to the degree of the respondents 

in the network (as there could be still unobserved edges between the missing cases that leads 

to bias).17

Bonacich, closeness and betweenness centrality offer a slightly more complicated story. In 

general, we find that the model-based imputation methods offer the best option, although the 

differences between the model-based and symmetric approaches are relatively small, 

especially for Bonacich centrality. For example, looking at closeness for the Biotech 

network, total bias decreases by 83 % using the model-based approaches and 78 % using the 

symmetric option, assuming we are missing high centrality nodes. The differences are even 

smaller when missing low centrality nodes, where the symmetric option is even sometimes 

17We present additional results in the appendix. Table A13 shows the maximum level of missing data that a researcher could have and 
still maintain at least a .9 correlation with the true centrality values. Higher values suggest the strategy is more robust to missing data. 
We present these results for the case where non-respondents are not kept in the correlation calculation (as in the main analysis), and 
for the case where the non-respondents are kept in the correlation calculation. Overall, keeping the non-respondents in the calculation 
increases bias. This is particularly true for out-degree, which is perfectly recorded amongst respondents, while trying to impute the 
missing cases (where there is no information on out-going ties) can lead to considerable bias.
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preferred. More generally, we see that imputing (using any option) drastically reduces the 

bias compared with listwise deletion. Looking at betweenness with 40 % of the network 

missing and missing high degree nodes (assuming the network is medium-sized and 

decentralized), we would expect a bias of .21 under listwise deletion, .07 under the 

symmetric approach, and .052 under the simple and complex model-based approaches. The 

symmetric approach is particularly attractive here because it is so simple to implement, but 

still yields results that are close to the more onerous model-based approaches. See Fig. 3 for 

the full results.

We now turn to the directed networks, where the results are more variable across measures 

and networks. The main results are presented in Tables A3 and A4 and Fig. 4. We will also 

refer to Table 2, capturing the best option for each scenario (in terms of measure, missing 

data type, etc.). Looking at indegree, we see that the probabilistic imputation method fares 

the best, although the real story is how badly imputation methods perform in general. The 

probabilistic approach is only marginally better than listwise deletion, while the symmetric 

and model-based approaches are actually worse than listwise deletion.

Looking at Table A3, the bias ratio table, we see negative numbers for the symmetric and 

model-based approaches, suggesting higher bias than listwise deletion. Indegree is difficult 

to impute because it is based on the specific number of nominations sent to each actor. An 

imputation method will add ties that are generally consistent with the existing data, but this 

does not mean that it will add the specific ties sent to a specific actor.

The imputation methods are more effective for total degree and Bonacich power centrality. 

With total degree, for example, the probabilistic and asymmetric approaches are almost 

always better than listwise deletion, and typically outperform the model-based and 

symmetric approaches. For example, in our large, moderately centralized network, the 

expected bias under 30 % missing data (with high degree nodes) is .049, .052, .062, .073, 

and .15 for the asymmetric, probabilistic, symmetric, model-based (simple) and listwise 

deletion approaches respectively. Fig. 4 also makes clear that the differences between 

listwise deletion and the imputation methods are highest when central nodes are more likely 

to be non-respondents. The returns to imputation are larger when central nodes are non-

respondents because the bias under listwise deletion can be quite high (see Smith et al., 

2017), while the imputation methods see only a slight increase in bias when missing central 

actors. The imputation methods tend to fare well when central nodes are non-respondents 

because there is so much information about central nodes (i.e. many people nominate them), 

making it easier to impute ties for those actors.

The exceptional case, as it often is, is the RC elite network, where imputation using the 

model-based or symmetric approaches are worse than listwise deletion, especially when 

missing less central nodes (the probabilistic and asymmetric approaches are similar to 

listwise deletion). The RC elite network is highly centralized, meaning if low centrality 

nodes are non-respondents, and we add reciprocated ties from the highly centralized node 

back to the peripheral nodes, and they do not exist, then we may greatly deviate from the 

true centralities in the network. There is, in that sense, the danger of over fitting/imputing 

what is essentially a hub and spoke structure.
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Closeness offers a different story than the degree-based measures. All imputation methods 

are still better than listwise deletion, but here the model-based approaches fare considerably 

better. The model-based approaches are generally the best option, except for a few cases in 

the smaller networks (most noticeably the Sorority network where the probabilistic approach 

is best). For example, in the Proper network, the improvement using the model-based 

approach (simple or complex) is around 79 % compared to 61 % with probabilistic 

imputation or 67 % with symmetric imputation (missing high degree nodes).

Fig. 5 offers a final set of comparisons, focusing on the performance of different imputation 

approaches in networks with different features. The figure presents the predicted bias for 

four different example networks, with varying combinations of size and centralization. The 

results are presented for directed networks with random non-response (also the case for Figs. 

8 and 11) We focus on the results for betweenness centrality as the effect of centralization is 

so stark here. Overall, the probabilistic approach is consistently the best for betweenness, but 

otherwise the results are quite contingent. When the network is decentralized, the model-

based and symmetric approaches perform adequately, offering better results than listwise 

deletion (although not as good as the probabilistic option). When the network is centralized, 

however, the model-based approach is the worst option, often little better than listwise 

deletion. We get similar results for closeness, where the model-based approaches are 

particularly preferred in large, decentralized networks (although the differences are less 

extreme). The symmetric and model- based approaches fare less well in centralized 

networks because both approaches tend to add more ties to the reconstructed network, 

potentially underestimating the centrality of the key actors while overestimating the 

centrality of the peripheral actors.

Overall, for the directed networks, simple imputation strategies are preferred when 

estimating degree-based centrality measures, with probabilistic, asymmetric or sometimes 

even listwise deletion faring quite well. These imputation methods are less biased when 

estimating degree-based measures because they stick close to the actual data, and thus are 

better at recovering the specific number of alters. In contrast, with the path-based measures 

(particularly closeness), more complicated model-based approaches perform well, along 

with the probabilistic approach. For these path-based measures, the advantage of recovering 

more of the paths tends to outweigh the risk of (potentially) inflating the degree of any one 

node, as the model-based approaches are able to recover the pattern of ties. The probabilistic 

approach is unique in that it performs well in almost every case, a robust option when 

measuring centrality scores on directed networks.

Centralization

The centralization results are presented in Figs. 6 and 7, as well as Tables A5–A8. Table 3 

offers a broad qualitative summary of the findings. We again start with a brief discussion of 

the undirected networks. Looking at degree centralization, all methods fare equally well in 

reducing bias and all outperform listwise deletion by a considerable margin (although some 

bias remains even after imputation). The returns to imputation are especially large when 

central nodes are more likely to be missing. For example, for an undirected, large, 

moderately centralized network with 40 % missing data, the predicted bias is .48 under 
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listwise deletion and .13 after applying any of the imputation methods (assuming central 

nodes are more likely to be missing).

The results are quite different for Bonacich Power centralization, as listwise deletion is 

actually a better option than any of the imputation methods for every network but the small 

Interlock network (see Table A5 and Fig. 6). In general, the bias for Bonacich Power 

centralization is quite low, even when high degree nodes are non-respondents and we use 

listwise deletion. Thus, any imputation method that adjusts the centrality of the respondents 

(while excluding the missing cases from the calculation) runs the risk of adding bias where 

little was present to begin with.

The closeness results show the clearest differentiation between imputation options, with the 

model-based approaches (simple or complex) being preferred over listwise deletion and the 

symmetric approach. This holds across all missing data types and networks. For example, 

for the Co-authorship network, the total decrease in bias is 85 % for the complex model 

(compared to listwise deletion) and 73 % under the symmetric option. The median bias for 

the Co-authorship network with 30 % missing data is less than .05 with the model-based 

approach (under random missing nodes); compare this to .88 bias under listwise deletion.

Overall, the undirected networks for the centralization measures yield a straightforward 

story. In every case besides Bonacich Power, it is better to impute than listwise deletion, and 

in most cases any of the imputation approaches will work, making simple imputation 

particularly attractive. Note that the returns to imputation are typically larger when more 

central nodes are non-respondents, as imputation tends to weaken the deleterious effects of 

missing central actors.

We now turn to the directed networks, presented in Fig. 7 and Table A7 (the bias ratio table). 

We start with indegree centralization. The results clearly point to the complex model-based 

approach offering the greatest reduction in bias, followed by the symmetric approach and the 

simple model-based approach. The asymmetric and probabilistic methods do not offer much 

(or any) improvement over listwise deletion. For example, looking at Fig. 7, the expected 

bias for a large, moderately centralized network (under random missing nodes) with 30 % 

missing data is about .05 for the complex-model imputation, .127 for symmetric imputation, 

and .26 for listwise deletion and asymmetric imputation. The results are similar for total 

degree centralization, although here the asymmetric and probabilistic approaches are 

somewhat better than listwise deletion. Additionally, the symmetric approach offers no 

worse estimates than the model-based approach, and is often the best option. For example, 

the decrease in total bias for the HS 24 network (missing low degree nodes) is 87 % for both 

the symmetric and the complex model-based approach. The decrease is 31 % for the 

asymmetric option and 48 % for the probabilistic option.

The Bonacich centralization results mirror the undirected results in many ways, with most 

imputation methods offering worse estimates than listwise deletion under conditions of 

missing data (note that the symmetric, asymmetric and probabilistic are all equivalent in this 

case). The exceptions are the model-based approaches, which consistently outperform 

listwise deletion for all directed networks, save for the RC elite network (where listwise 
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deletion is preferred). Thus, while a symmetric imputation would be a good option for 

indegree or total degree centralization, this does not extend to the case of Bonacich power. 

Boncacich centrality depends on the degree of one’s neighbors, while the symmetric 

approach only imputes the degree of the missing nodes in a limited way, compared to the 

model-based approach. Symmetric imputation, thus, tends to overestimate the level of 

centralization in the network for Bonacich centrality (as the method potentially 

underestimates the degree of one’s neighbors).

Closeness and betweenness centralization offer more contingent, complicated stories. The 

best imputation approach for closeness centralization depends heavily on the features of the 

network and the kinds of nodes that are missing. When the network exhibits low to moderate 

centralization and central nodes are more likely to be non-respondents (bottom row in Fig. 

7), the best option is either the model- based or the symmetric approach. On the other hand, 

when low centrality nodes are more likely to be non-respondents, the best options are the 

probabilistic or symmetric approaches. For example, consider the Prison network, which has 

low centralization. When low degree nodes are non-respondents, the median bias is .11, .12 

and .15 under the probabilistic, symmetric and model-based approaches, assuming 40 % 

missing data. When high degree nodes are non-respondents, the analogous values are: .20 

(probabilistic), .15 (symmetric), and .10 (model- based). In this case, the symmetric 

approach would be a robust choice, although not necessarily the best one in terms of 

lowering bias. Simple imputation works less well for the more centralized networks. 

Listwise deletion is often just as good (or even better) as the imputation methods, especially 

when the network is very centralized (such as the RC elite network) or the non-respondents 

are less central. See Table A7 for the full results.

For betweenness, the results also depend heavily on the features of the network, and we can 

see this most clearly in Fig. 8. Fig. 8 presents the expected bias (based on the regression 

results presented in Table A8) for four different kinds of networks: large centralized, small 

centralized, large decentralized and small decentralized. The bottom row shows the results 

for betweenness. For the decentralized networks, the model- based and symmetric 

approaches are clearly preferred. For moderately centralized networks, the model-based 

approaches remain a good option. The model-based approaches fare quite poorly, however, 

for the RC elite network, the most centralized network. Here taking a model-based approach 

yields worse bias than listwise deletion, making the probabilistic and asymmetric 

approaches more appropriate. More striking, perhaps, is the poor performance of the 

symmetric option. In centralized networks, measures of betweenness centralization are 

sensitive to any imputation that changes the paths from the most central actors; thus, 

strategies that tend to add more ties (and thus paths between actors), like symmetric 

imputation, perform worse when the network is very centralized. Thus, the best option for 

decentralized networks is not an ideal choice for centralized ones.

In sum, the story is simple with undirected networks. All imputation methods are better than 

listwise deletion, with simple imputation methods being particularly attractive due to their 

ease of use. The case of directed networks is harder, as the ideal choice depends on the 

measure, the type of missing data and the type of network. In general, when there are 
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contingent choices, the model-based approach performs comparatively well when the 

network is decentralized and/or the non-respondents have high degree.

Topology

We end the results section with a discussion of the topology measures, again starting with 

the undirected networks. The results are presented in Fig. 9 and Table A9. See Table 4 for an 

overall picture of the best imputation methods. Looking at Fig. 9, we can see that all 

imputation methods fare better than listwise deletion for component size, bicomponent size 

and distance, and that there are large returns to imputation. We also see that the ideal choice 

of imputation method depends on the type of missing data. When high centrality nodes are 

more likely to be non-respondents, the best choice is the model-based approach (simple or 

complex). For example, the expected bias for bicomponent size when the network is large, 

moderately centralized, and missing 30 % of the data (in Fig. 9) is .57 when listwise deletion 

is applied, .20 for the symmetric strategy, and .07 for the complex model- based strategy. 

The analogous values when low centrality nodes are non-respondents are: .23 (listwise 

deletion), .06 (symmetric), and .11 (model-based) suggesting that the symmetric approach is 

actually favored when missing less central nodes, although the model-based approach 

remains a good option.

The transitivity results show a different kind of pattern, where the best choice depends on the 

network being analyzed. When the network is decentralized, the simple model-based 

approach is the best option, followed by symmetric imputation (in most cases).18 The results 

are very different for the centralized networks, however. Here, all of the imputation methods 

perform poorly and listwise deletion is the most viable option. For example, looking at Table 

A9, we see negative values for the bias reduction in the HIV network and the Co-citation 

network (two highly centralized networks), meaning the imputation methods perform worse 

than listwise deletion. The imputation methods perform poorly in the centralized networks 

because transitivity tends to be unevenly distributed across the network (i.e., we may have 

lower levels with the most centralized actors), making imputation difficult for methods that 

do explicitly account for such variation.

Finally, looking at the CONCOR results, we see that the bias is quite low overall and the 

returns to imputation are small. For example, for the Co-authorship network, the median bias 

at 50 % missing is only .25 for listwise deletion and .20 for any of the imputation methods.

The results for the directed networks are presented in Fig. 10 and Table A11. Component 

and bicomponent size are similar to what we saw in the undirected case, but here the model-

based approaches (simple or complex) are more uniformly the best option, followed by the 

simple imputation approaches.19 For example, for bicomponent size, the drop in total bias 

(compared with listwise deletion) under the model-based approach is 95 % for the Prosper 

network under random missing data; compare this to only 39 % using simple imputation. Or, 

looking at Fig. 10, the expected bias is almost 0 under the model-based approaches, 

18Note that the complex model-based approach performs poorly with transitivity, suggesting that the fitted model is predicting more 
transitive relations than found in the actual data.
19Note that in this case the asymmetric probabilistic and symmetric options all offer the same levels of bias as the measures of interest 
are based on the symmetrized version of the (imputed) network.
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outperforming the simpler options in all cases (but especially so when high degree nodes are 

more likely to be non-respondents).

The distance results are much more sensitive to the type of missing data. For example, for 

the Prosper network under missing high degree nodes, the decrease in total bias is 81 % for 

the model-based approach, 73 % for the symmetric approach and 33 % for the probabilistic 

approach.20 When low centrality nodes are non-respondents, the model- based approach 

actually yields 7 % more bias than listwise deletion while the symmetric approach has a 

slight improvement over listwise deletion, with a 15 % decrease in total bias. The 

probabilistic approach offers the best option in this case, with a decrease of 35 %. The 

symmetric and probabilistic strategies are both relatively information light methods 

(assuming either full reciprocation or reciprocation based on the observed reciprocity rate), 

and thus tend to perform comparatively better when there is little information about the non-

respondents, as is true when trying to impute ties for peripheral nodes. Note that the 

asymmetric option performs quite poorly in these cases, offering worse or similar estimates 

as listwise deletion.

The transitivity results are straightforward in the directed case. The only consistently viable 

option that performs better than listwise deletion is the asymmetric imputation approach. 

Thus, the worse option for distance is the best option for transitivity. For example, looking at 

Fig. 10, the expected bias for our directed, moderately centralized network is .03 under the 

asymmetric approach, .053 under listwise deletion, .11 under the model-based 

approach, .145 under the probabilistic approach, and .18 under the symmetric approach 

(assuming 30 % missing random data). These results indicate that imputation that attempts 

to go beyond the raw data alters the underlying transitivity estimate in a way that is worse 

than listwise deletion, which has low bias in itself. See Fig. 10 and Table A11 for tau 

statistic and CONCOR results.

Fig. 11 offers a different kind of comparison, presenting the predicted bias for four example 

networks with different combinations of size and centralization. The figure is limited to 

three measures, component size, distance and transitivity. Overall, looking at Fig. 11, the 

best imputation method does not strongly depend on the features of the network. The best 

choice for large decentralized networks tends to be the best choice for small centralized 

networks (making the choice easier from the point of view of the researcher). There are, 

however, differential returns to different methods, depending on the features of the network 

and the measure of interest. For example, for distance, the returns to symmetric imputation 

(in terms of how much is gained relative to listwise deletion) is highest in decentralized 

networks—especially large decentralized networks where the bias is high if listwise deletion 

is applied. For transitivity, we see that the asymmetric approach is consistently the best, but 

that the model-based and probabilistic approaches fare relatively better in the decentralized 

networks.

20Note that for the highly centralized RC elite network only the probabilistic option is better than listwise deletion, with the model-
based approaches and symmetric options not performing well. Thus, the model-based approach and the symmetric option (which 
symmetrizes ties to the central actor) does not work so well when one or two actors dominate the network.
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Overall, the topology results suggest that the best imputation choice depends on the type of 

missing data, the type of network and the measure of interest. For example, we see measures 

that capture large structural features, like component size or distance, are best imputed based 

on the model-based or symmetric options. Other measures that are more local, like 

transitivity, are harder to impute and often listwise deletion is the best option. The type of 

missing data also matters greatly here, as the model-based approaches tend to perform better 

when more central nodes are missing, with this being true in both the directed and 

undirected cases.

Conclusion

Missing data is a difficult problem faced by network researchers. Traditional measures 

assume a full census of a bounded population (Laumann et al., 1983; Wasserman and Faust, 

1994). In practice, a full census is often difficult to come by, as nodes and/or edges may be 

missing, offering an incomplete picture of the full network structure. It is thus important to 

understand how much bias results from missing data and how successful different 

imputation methods are under different conditions. This can be difficult to gauge, however, 

as there are few general, practical guidelines on how to address missing network data. This 

paper takes up this problem directly, showing how different imputation methods fare across 

a range of circumstances, including different networks, missing data types and measures of 

interest. We also consider a number of different imputation methods, ranging from simple 

network imputation to more complicated model-based approaches. The hope is that our 

results will make it easier for a researcher to choose an imputation method, given the 

particular features of their study.

Overall, we find that doing listwise deletion is almost always the worst option. Which 

imputation method performs best, however, is quite contingent, depending on the type of 

missing data, the type of network and the measure of interest. In this way, it is an easy 

choice to impute, but a harder choice to decide which method to employ. For example, for 

degree-based measures of centrality (on directed networks), we see that very simple 

approaches, including the asymmetric option, fare well. On the other hand, path-based 

measures (like closeness and betweenness) tend to require more complicated options, either 

probabilistic imputation or a model-based approach. In a similar way, we find that model-

based approaches are particularly effective for structural measures, like bicomponent size or 

distance, but fare less well when estimating more local measures, like transitivity. The 

results also suggest that the type of network and missing data affect the performance of the 

imputation methods (Žnidaršič et al., 2018; Krause et al., 2020). For example, the model-

based approaches are comparatively more effective when the network is decentralized and 

non-respondents have high degree.

How to choose an imputation strategy

In short, different imputation methods are appropriate in different research settings, 

depending on the particular combination of missing data type, network and measure. Thus, a 

researcher must navigate a set of complex dependencies when making imputation decisions, 

especially since the size and type of network (e.g., large bipartite graphs) can make model-
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based imputation approaches intractable. To make this task easier, we have summarized our 

results in a simplified format in Fig. 12.

The goal of Fig. 12 is to provide a user-friendly guide to imputation decisions. The figure is 

organized around a number of key factors, such as network type (directed/undirected; 

centralized/decentralized) and measure of interest.21 The figure is presented as a kind of 

branching structure, or decision tree, with the final branch showing the optimal choice of 

imputation method, given the features along the path. In selecting the optimal imputation 

strategy, we have tried to balance the best performing method with the difficulty of 

implementation. A researcher would simply follow the relevant path for their research 

setting and choose the best imputation method (noting that other imputation strategies may 

also offer reasonable results). For example, a researcher with a directed, decentralized 

network measuring betweenness or closeness centralization would do well using a 

symmetric imputation approach. The same researcher with a centralized network would do 

better using a probabilistic option. Such contingent decisions are hard to make without a 

guide, showing the clear utility of Fig. 12, as well as the more detailed summary tables 

presented earlier in the text.

It is important to note that Fig. 12 focuses on the optimal imputation method, but there are 

other factors that should be considered when making an imputation choice. First, a 

researcher must balance the performance of a method with the difficulty of implementing it. 

For example, a model-based approach can be difficult and expensive (time- wise) to 

implement. A researcher must already have a working knowledge of statistical network 

models, decide on the specific model to estimate, estimate the model, and so on. This is 

quite burdensome compared to the simple imputation options, which in many cases offer 

similar results. Thus, it is conceivable that a researcher would opt for simple imputation even 

when the model-based approach offers strictly lower bias. Of course, even with simple 

imputation options, a researcher must do a considerable amount of careful consideration, 

picking the right option for their particular scenario. In a similar way, a researcher may opt 

for a ‘safe’ choice that performs well across many settings, even if it is not necessarily the 

best (predicted) option in their particular case. Our results suggest that the probabilistic 

approach to network imputation is robust to different measures and networks, making it a 

good option overall. Finally, we note that a model-based approach may fare better under 

different specifications (e.g., Bayesian), as a better-specified model (i.e., one that captures 

the true tie formation processes) will offer improved estimates.

Limitations and considerations

Our analysis rests on a number of assumptions that must be considered when interpreting the 

results. For example, we assumed that the non-respondents are identifiable, so that 

respondents could still nominate them. This implicitly assumes a well-bounded, clearly 

defined population. Such conditions will not hold in all research settings, however, with 

important implications for the viability of different imputation strategies. Most clearly, the 

simple imputation approaches cannot be applied when missing nodes are unable to be 

21Note that we have collapsed some of the measures into broader classes (e.g. closeness and betweenness are placed together as path-
based).
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identified (as there is no information to reconstruct the network). Model-based approaches 

could, in theory, still be used, as long as the size of the population was known, but their 

effectiveness will likely be reduced. There is no edge information on the missing nodes, 

making it difficult to predict how the missing nodes fit into the larger network. Listwise 

deletion could, of course, still be applied without complication.

Our analysis also assumes that the observed network is recorded without error. This 

assumption is unlikely to strictly hold in practice. Actors may forget to nominate people they 

should have (Brewer, 2000; Bell et al., 2007), while potentially nominating those they 

should not; for example, nominating an aspirational friend who is, in fact, not actually a 

friend (Almaatouq et al., 2016). Finally, there could be conflicting reports about the nature 

of the relationship (An and Schramski, 2015). Any measurement error in the observed data 

will end up being factored into the imputation process, and thus may lead to somewhat 

poorer results than reported in our own analysis. This may be particularly deleterious to the 

simple imputation approaches. If a researcher imputes a tie from j→i because i nominates j, 
then it is problematic if i→j does not really exist and is simply measurement error; as one 

imputes based on a false premise. Model-based approaches may fare better, as the model 

imputes probabilistically, based on general tendencies observed throughout the whole 

network, thus minimizing the effect of particular mistakes in the data.22 Ultimately, these 

are open questions deserving of more concerted work in the future.

Final thoughts

This set of papers began with a simple goal — to describe the consequences of missing data 

for typically used network measures (Smith and Moody, 2013). Overall, we have shown that 

the effect of missing data is highly contingent, depending on the circumstances of the study, 

as well as the actions of the researcher. Here, we emphasize the role of the researcher in 

reducing bias. Our results suggest that a researcher choosing an effective imputation method 

for their setting can greatly reduce the bias due to missing data, even in cases with difficult 

conditions (i.e., non-respondents tend to be central to the network). A study with over 50 % 

non-respondents can, potentially, still yield valid estimates. In the end, the hope is that our 

results can be used as a practical guide for researchers choosing an imputation strategy, and, 

more generally, dealing with the difficult problem of missing network data.
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Appendix A

Table A1

Percent Decrease in Total Bias under Different Imputation Strategies: Centrality Measures 

for Undirected Networks.

Measure Imputation Interlock Coauthor Co-citation Biotech HIV

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

−.7
5 0 .75 −.7

5 0 .75 −.7
5 0 .75 −.7

5 0 .75 −.7
5 0 .75

Degree Symmetric 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Model-
based 
Simple

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Model-
based 
Complex

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Bon Power Symmetric 96 93 91 96 95 89 95 94 93 95 92 92 90 88 86

Model-
based 
Simple

95 95 94 98 97 91 97 96 96 96 93 93 91 90 89

Model-
based 
Complex

93 94 94 98 96 91 98 97 97 96 94 93 93 92 92

Closeness Symmetric 91 85 80 89 82 75 92 90 86 85 83 78 88 86 82

Model-
based 
Simple

93 91 87 90 86 80 94 94 92 91 89 84 91 90 85

Model-
based 
Complex

93 91 86 91 85 77 93 93 91 90 88 83 91 89 84

Betweenness Symmetric 86 79 67 86 78 56 83 74 49 90 88 79 87 82 62

Model-
based 
Simple

87 86 77 74 81 68 79 74 60 88 88 84 65 75 70

Model-
based 
Complex

86 84 76 83 82 64 78 73 62 88 88 81 79 82 73

Table A2

Centrality Bias Slope Regressions: Undirected Networks.

Variables Model 1 Degree
Model 2 Bon. 
Power

Model 3 
Closeness

Model 4 
Betweeness

Intercept −1.925*** −2.572 −2.834** −1.802

(0.46) (1.7) (0.94) (1.33)

Correlation with Centrality 0.92*** 1.199*** 0.626*** 0.517***
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Variables Model 1 Degree
Model 2 Bon. 
Power

Model 3 
Closeness

Model 4 
Betweeness

(0.15) (0.11) (0.05) (0.07)

In-degree Std. Dev. −0.166*** −0.174 −0.075 −0.041

(0.03) (0.13) (0.07) (0.1)

Log of Size −0.166 0.016 0.035 −0.206

(0.09) (0.35) (0.19) (0.27)

Symmetric Imputation −40.255*** −3.407** −2.313** −0.397

(0.6) (1.06) (0.89) (0.63)

Simple Model-Based 
Imputation

−39.492*** −3.772*** −2.771* −1.214

(1.22) (1.1) (1.21) (0.87)

Complex Model-Based 
Imputation

−39.492*** −3.31** −2.712* −0.703

(1.59) (1.09) (1.1) (0.58)

Correlation with Centrality* 
Symmetric Imputation

−0.871*** 0.292 0.261*** 0.68***

(0.21) (0.16) (0.08) (0.1)

Correlation with Centrality* 
Simple Model-Based 
Imputation

−0.718*** 0.225 0.267*** 0.234*

(0.21) (0.16) (0.08) (0.1)

Correlation with Centrality* 
Complex Model-Based 
Imputation

−0.718*** 0.232 0.291*** 0.34***

(0.21) (0.16) (0.08) (0.1)

In-degree Std. Dev.* 
Symmetric Imputation

0.146** −0.03 −0.064 0.085

(0.04) (0.08) (0.07) (0.05)

In-degree Std. Dev.* Simple 
Model-Based Imputation

0.198* −0.071 −0.054 0.116

(0.09) (0.08) (0.09) (0.07)

In-degree Std. Dev.* Complex 
Model-Based Imputation

0.198 −0.111 −0.045 0.113*

(0.12) (0.08) (0.08) (0.04)

Log of Size* Symmetric 
Imputation

0.211 0.224 0.337 −0.257*

(0.12) (0.22) (0.18) (0.13)

Log of Size *Simple Model-
Based Imputation

0.029 0.294 0.345 −0.15

(0.25) (0.23) (0.25) (0.18)

Log of Size* Complex Model-
Based Imputation

0.029 0.241 0.333 −0.242*

(0.33) (0.22) (0.23) (0.12)

N 180 180 180 180

Networks 5 5 5 5

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop 
in correlation (between the empirical and the observed) for a 10 % increase in the amount of missing data. Larger numbers 
mean larger bias with more missing data. The correlation with centrality takes four values: − .75, − .25, .25, and .75.
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Table A3

Percent Decrease in Total Bias under Different Imputation Strategies: Centrality Measures 

for Directed Networks.

Measure Imputation

Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

−.7
5 0 .75 −.7

5 0 .75 −.75 0 .75 −.7
5 0 .75 −.75 0 .75 −.7

5 0 .75 −.7
5 0 .75

Indegree Probabilistic 4 5 6 6 14 20 −6 −2 2 2 3 3 −1 −1 −1 6 7 9 10 12 15

Symmetric −31 −25 −27 −24 −7 5 −103 −92 −71 −54 −51 −50 −226 −238 −277 −42 −41 −41 −29 −25 −21

Asymmetric 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model-
based 
Simple

−52 −44 −42 −44 −29 −15 −68 −59 −46 −78 −63 −52 −218 −254 −262 −71 −64 −57 −59 −51 −40

Model-
based 
Complex

−43 −37 −34 −35 −20 −9 −63 −52 −37 −65 −51 −41 −168 −190 −210 −50 −44 −34 −42 −33 −22

Total Degree Probabilistic 60 63 68 69 74 77 52 55 61 61 63 67 0 6 47 57 60 67 63 66 71

Symmetric 51 56 63 64 71 76 34 40 52 49 53 60 −120 −108 −15 44 48 57 53 58 66

Asymmetric 60 62 67 67 71 74 57 58 63 62 63 67 1 7 48 59 62 67 64 66 71

Model-
based 
Simple

40 47 53 52 60 67 39 43 51 37 43 51 −79 −79 −10 35 41 50 43 48 57

Model-
based 
Complex

43 48 55 55 62 68 43 47 55 41 47 55 −45 −44 7 42 47 57 48 53 62

Bon Power Probabilistic 55 57 62 56 60 64 57 58 60 57 57 61 66 73 87 63 66 73 64 67 70

Symmetric 55 57 62 56 60 64 57 58 60 57 57 61 66 73 87 63 66 73 64 67 70

Asymmetric 55 57 62 56 60 64 57 58 60 57 57 61 66 73 87 63 66 73 64 67 70

Model-
based 
Simple

40 49 57 38 48 57 42 49 57 29 37 49 53 60 80 31 41 53 37 45 56

Model-
based 
Complex

39 49 57 36 47 56 47 53 61 32 40 52 57 63 80 43 51 63 44 52 62

Closeness Probabilistic 49 56 62 55 59 64 79 84 88 51 56 61 48 49 51 62 66 70 67 72 75

Symmetric 36 51 62 42 48 54 83 90 93 58 64 67 −77 −58 −46 78 83 86 78 83 87

Asymmetric 33 39 46 40 47 54 32 32 34 21 28 35 49 49 53 8 9 12 7 9 13

Model-
based 
Simple

49 65 73 33 52 61 87 94 95 66 76 80 0 15 18 79 85 88 84 89 91

Model-
based 
Complex

49 63 71 37 52 59 88 94 96 67 76 79 10 24 23 81 86 89 85 89 91

Betweenness Probabilistic 30 32 32 22 21 22 29 35 34 28 29 28 23 21 13 37 37 34 46 46 45

Symmetric 3 13 20 4 4 6 −18 −3 4 1 14 16 −151 −136 −95 10 12 11 25 28 29

Asymmetric 24 24 24 13 13 13 19 15 13 11 10 10 51 46 38 9 8 7 10 9 8

Model-
based 
Simple

−22 −3 9 −8 −2 3 −4 6 8 −10 6 11 −145 −144 −110 −6 0 1 10 15 19
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Measure Imputation

Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

−.7
5 0 .75 −.7

5 0 .75 −.75 0 .75 −.7
5 0 .75 −.75 0 .75 −.7

5 0 .75 −.7
5 0 .75

Model-
based 
Complex

−15 1 11 −1 4 6 7 16 15 −1 12 14 −120 −109 −80 7 12 12 19 23 27

Table A4

Centrality Bias Slope Regressions: Directed Networks.

Variables Model 1 
Indegree

Model 2 Total 
Degree

Model 3 Bon. 
Power

Model 4 
Closeness

Model 5 
Betweeness

Intercept −2.598*** −2.476*** −2.198*** −2.973* −2.652***

(0.7) (0.6) (0.23) (1.37) (0.19)

Correlation with 
Centrality

0.309*** 0.31*** 0.411*** 0.197*** 0.202***

(0.04) (0.03) (0.03) (0.05) (0.02)

In-degree Std. Dev. −0.356*** −0.273*** −0.138*** −0.058 −0.114***

(0.06) (0.06) (0.02) (0.13) (0.02)

Log of Size 0.107 0.073 −0.037 0.094 0.103**

(0.15) (0.13) (0.05) (0.29) (0.04)

Asymmetric Imputation 0.019 −0.845 −0.286 −2.184*** −0.822

(0.2) (0.57) (0.35) (0.57) (0.44)

Simple Model-Based 
Imputation

0.448 −0.506 −0.868* 0.723 0.466

(0.57) (0.92) (0.44) (1.97) (0.42)

Complex Model-Based 
Imputation

0.544 −0.483 −0.491 0.938 0.556

(0.5) (0.81) (0.34) (2.15) (0.45)

Probabilistic Imputation 0.145 −0.915 −0.286 −0.909 0.046

(0.24) (0.51) (0.34) (2.26) (0.35)

Symmetric Imputation 0.544 −0.811 −0.286 0.358 0.262

(0.42) (0.97) (0.32) (1.5) (0.32)

Correlation with 
Centrality* Asymmetric 
Imputation

0.01 −0.196*** −0.193*** −0.158* 0.035

(0.06) (0.04) (0.04) (0.07) (0.03)

Correlation with 
Centrality* Simple 
Model-Based Imputation

−0.075 −0.224*** −0.286*** −0.475*** −0.098**

(0.06) (0.04) (0.04) (0.07) (0.03)

Correlation with 
Centrality* Complex 
Model-Based Imputation

−0.077 −0.215*** −0.292*** −0.431*** −0.077*

(0.06) (0.04) (0.04) (0.07) (0.03)
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Variables Model 1 
Indegree

Model 2 Total 
Degree

Model 3 Bon. 
Power

Model 4 
Closeness

Model 5 
Betweeness

Correlation with 
Centrality* Probabilistic 
Imputation

−0.033 −0.219*** −0.193*** −0.192** 0.009

(0.06) (0.04) (0.04) (0.07) (0.03)

Correlation with 
Centrality* Symmetric 
Imputation

−0.064 −0.284*** −0.193*** −0.32*** −0.074*

(0.06) (0.04) (0.04) (0.07) (0.03)

In-degree Std. Dev.* 
Asymmetric Imputation

0.003 0.207*** −0.046 −0.055 −0.102*

(0.02) (0.05) (0.03) (0.05) (0.04)

In-degree Std. 
Dev.*Simple Model-
Based Imputation

0.168** 0.229** −0.069 0.108 0.088*

(0.05) (0.09) (0.04) (0.18) (0.04)

In-degree Std. 
Dev.*Complex Model-
Based Imputation

0.154*** 0.205** −0.064* 0.109 0.105*

(0.05) (0.07) (0.03) (0.2) (0.04)

In-degree Std. Dev.* 
Probabilistic Imputation

0.029 0.21*** −0.046 −0.041 −0.017

(0.02) (0.05) (0.03) (0.21) (0.03)

In-degree Std. Dev.* 
Symmetric Imputation

0.218*** 0.318*** −0.046 0.059 0.059*

(0.04) (0.09) (0.03) (0.14) (0.03)

Log of Size* 
Asymmetric Imputation

−0.005 −0.163 −0.087 0.358** 0.187*

(0.04) (0.12) (0.08) (0.12) (0.09)

Log of Size *Simple 
Model-Based Imputation

−0.111 −0.169 0.111 −0.553 −0.2*

(0.12) (0.2) (0.09) (0.42) (0.09)

Log of Size* Complex 
Model-Based Imputation

−0.138 −0.171 0.019 −0.584 −0.227*

(0.11) (0.17) (0.07) (0.46) (0.1)

Log of Size * 
Probabilistic Imputation

−0.055 −0.145 −0.087 0.002 −0.085

(0.05) (0.11) (0.07) (0.48) (0.07)

Log of Size* Symmetric 
Imputation

−0.175 −0.201 −0.087 −0.359 −0.163*

(0.09) (0.21) (0.07) (0.32) (0.07)

N 378 378 378 378 378

Networks 7 7 7 7 7

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop 
in correlation (between the empirical and the observed) for a 10 % increase in the amount of missing data. Larger numbers 
mean larger bias with more missing data. The correlation with centrality takes four values: −.75, −.25, .25, and .75.
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Table A5

Percent Decrease in Total Bias under Different Imputation Strategies: Centralization 

Measures for Undirected Networks.

Measure Imputation Interlock Coauthor Cocitation Biotech HIV

−.
75 0 .7

5 −.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75

Degree Symmetric 64 76 64 62 83 67 52 84 64 54 79 56 58 85 62

Model-
based 
Simple

63 76 64 63 83 68 52 84 64 54 79 55 58 84 62

Model-
based 
Complex

63 76 64 63 83 68 52 84 64 54 79 55 58 84 62

Bon Power Symmetric −9 15 43 −313 −251 −89 −374 −583 −158 −588 −249 −82 −815 −411 −130

Model-
based 
Simple

28 54 63 −229 −107 −61 −391 −492 −70 −701 −300 −95 −922 −509 −176

Model-
based 
Complex

25 54 61 −175 −76 −131 −308 −226 −100 −689 −292 −134 −855 −413 −127

Closeness Symmetric 78 66 61 82 73 65 79 80 77 80 77 76 86 83 84

Model-
based 
Simple

86 82 77 89 86 78 87 87 78 93 93 91 96 95 91

Model-
based 
Complex

85 81 77 90 85 76 88 88 78 93 93 90 95 94 92

Betweenness Symmetric 81 74 62 80 83 76 76 64 44 78 78 67 83 89 86

Model-
based 
Simple

78 79 76 69 58 50 88 85 77 66 72 69 88 81 69

Model-
based 
Complex

77 78 75 79 66 54 87 78 66 67 73 67 90 83 68

Table A6

Centralization Bias Slope Regressions: Undirected Networks.

Variables Model 1 Degree
Model 2 Bon. 
Power

Model 3 
Closeness

Model 4 
Betweeness

Intercept −2.723*** −2.284 −2.387 −1.912***

(0.35) (1.35) (1.22) (0.21)

Correlation with Centrality 0.39** 0.423*** −1.254*** 0.097

(0.13) (0.1) (0.06) (0.07)

In-degree Std. Dev. 0.016 −0.147 0.042 −0.011

(0.03) (0.1) (0.09) (0.02)

Log of Size 0.038 −0.265 −0.123 0.003

(0.07) (0.27) (0.25) (0.04)

Symmetric Imputation −1.378* −0.881 −0.749 0.107
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Variables Model 1 Degree
Model 2 Bon. 
Power

Model 3 
Closeness

Model 4 
Betweeness

(0.61) (1.37) (0.99) (0.82)

Simple Model-Based 
Imputation

−1.324* −3.054** 0.096 −0.942

(0.65) (0.94) (1.43) (1.46)

Complex Model-Based 
Imputation

−1.324 −3.16** −0.211 −0.878

(1.1) (1.02) (1.63) (1.09)

Correlation with Centrality* 
Symmetric Imputation

−0.036 −0.784*** 1.18*** 0.271**

(0.18) (0.15) (0.09) (0.1)

Correlation with Centrality* 
Simple Model-Based 
Imputation

−0.044 −0.909*** 1.265*** 0.111

(0.18) (0.15) (0.09) (0.1)

Correlation with Centrality* 
Complex Model-Based 
Imputation

−0.044 −0.788*** 1.291*** 0.311**

(0.18) (0.15) (0.09) (0.1)

In-degree Std. Dev.* 
Symmetric Imputation

−0.01 0.184 −0.132 0.098

(0.05) (0.1) (0.07) (0.06)

In-degree Std. Dev.* Simple 
Model-Based Imputation

−0.011 0.178* −0.05 −0.081

(0.05) (0.07) (0.11) (0.11)

In-degree Std. Dev.* Complex 
Model-Based Imputation

−0.011 0.099 −0.063 −0.025

(0.08) (0.08) (0.12) (0.08)

Log of Size* Symmetric 
Imputation

0.022 0.189 0.277 −0.413*

(0.13) (0.28) (0.2) (0.17)

Log of Size *Simple Model-
Based Imputation

0.014 0.555** −0.158 −0.003

(0.13) (0.19) (0.29) (0.3)

Log of Size* Complex Model-
Based Imputation

0.014 0.638** −0.075 −0.056

(0.22) (0.21) (0.33) (0.22)

N 180 180 180 180

Networks 5 5 5 5

Note: The regression uses the beta slopes from each line as the dependent variable. The direction of the bias is ignored 
when calculating the regressions. The betas represent the expected increase in bias for a 10 % increase in the amount of 
missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: 
−.75, −.25, .25, and .75.

Smith et al. Page 31

Soc Networks. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table A7

Percent Decrease in Total Bias under Different Imputation Strategies: Centralization 

Measures for Directed Networks.

Measure Imputation Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24

Correlation 
with 
Centrality

Correlation 
with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

−.7
5 0 .7

5
−.7
5 0 .7

5
−.7
5 0 .75 −.7

5 0 .75 −.75 0 .75 −.7
5 0 .75 −.7

5 0 .75

Indegree Probabilistic 4 5 5 14 15 16 7 7 8 6 6 5 0 0 0 6 6 7 9 10 10

Symmetric 43 44 44 58 66 70 49 50 55 51 50 51 6 6 8 36 40 44 46 51 54

Asymmetric 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model-
based 
Simple

54 50 45 54 60 60 42 37 32 55 50 44 6 4 6 36 35 33 43 42 39

Model-
based 
Complex

56 62 58 36 62 68 77 70 61 66 73 65 27 20 17 72 67 60 79 74 66

Total Degree Probabilistic 43 42 39 60 66 67 60 61 63 58 59 57 7 7 8 39 43 46 48 52 54

Symmetric 52 66 72 40 58 66 78 79 80 70 77 81 20 19 22 76 82 87 87 92 93

Asymmetric 25 25 23 38 42 42 43 45 48 38 40 40 7 6 8 26 30 33 31 35 37

Model-
based 
Simple

57 64 61 56 69 76 72 72 72 76 79 77 13 10 13 57 60 61 66 69 70

Model-
based 
Complex

45 61 67 33 61 71 80 82 82 62 76 82 33 26 23 83 83 80 87 89 85

Bon Power Probabilistic 1 10 19 −13 −7 1 −86 −79 −62 −58 −43 −25 −213 −192 −203 −74 −69 −55 −82 −82 −63

Symmetric 1 10 19 −13 −7 1 −86 −79 −62 −58 −43 −25 −213 −192 −203 −74 −69 −55 −82 −82 −63

Asymmetric 1 10 19 −13 −7 1 −86 −79 −62 −58 −43 −25 −213 −192 −203 −74 −69 −55 −82 −82 −63

Model-
based 
Simple

47 58 58 53 66 67 25 40 44 26 33 32 −361 −200 −186 21 28 10 16 10 −4

Model-
based 
Complex

46 57 59 56 64 66 40 56 52 35 46 39 −391 −227 −233 45 51 30 46 46 25

Closeness Probabilistic 7 23 28 24 33 36 −18 20 25 19 45 43 −106 −48 34 −4 53 57 −8 59 71

Symmetric −14 14 37 26 47 56 −12 19 −18 34 68 72 −1824 −2102 −1381 −19 12 −3 5 48 35

Asymmetric −3 −8 −4 −13 −5 1 −12 −3 15 −11 2 6 −80 −26 44 3 3 5 5 15 17

Model-
based 
Simple

−27 25 46 9 36 50 −10 7 −47 4 50 54 −566 −540 −317 −32 −7 −26 −9 11 −4

Model-
based 
Complex

−33 28 52 23 53 63 −12 16 −25 15 70 75 −264 −223 −127 −36 35 17 −9 52 33

Betweenness Probabilistic 46 40 36 48 42 39 35 30 25 62 56 50 35 30 27 65 58 51 50 36 25

Symmetric 72 72 68 71 69 64 7 −2 −16 67 64 62 −771 −675 −556 43 33 19 45 30 14

Asymmetric 15 11 8 10 7 5 58 44 25 26 16 11 24 19 16 35 12 −20 40 7 −33

Model-
based 
Simple

67 67 67 58 61 62 0 −3 −2 25 34 38 −1231 −1073 −886 9 12 11 −22 −25 −21

Smith et al. Page 32

Soc Networks. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Measure Imputation Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24

Correlation 
with 
Centrality

Correlation 
with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

−.7
5 0 .7

5
−.7
5 0 .7

5
−.7
5 0 .75 −.7

5 0 .75 −.75 0 .75 −.7
5 0 .75 −.7

5 0 .75

Model-
based 
Complex

69 68 66 63 65 63 34 32 27 42 50 53 −939 −724 −526 42 43 39 21 18 19

Table A8

Centralization Bias Slope Regressions: Directed Networks.

Variables
Model 1 
Indegree

Model 2 Total 
Degree

Model 3 Bon. 
Power

Model 4 
Closeness

Model 5 
Betweeness

Intercept −2.877*** −3.012*** −2.12*** −3.022*** −1.443

(0.15) (0.14) (0.62) (0.9) (0.79)

Correlation with 
Centrality

0.21*** 0.234*** 0.28*** 0.556*** 0.072

(0.03) (0.04) (0.05) (0.1) (0.04)

In-degree Std. Dev. 0.06*** 0.074*** −0.228*** −0.278 −0.103

(0.01) (0.01) (0.06) (0.15) (0.13)

Log of Size 0.027 0.029 −0.085 0.148 −0.066

(0.03) (0.03) (0.13) (0.22) (0.19)

Asymmetric Imputation 0 −0.611 −0.658* 0.751 −0.02

(0.15) (0.47) (0.29) (0.69) (0.24)

Simple Model-Based 
Imputation

−1.808*** −1.489 −2.423** −0.973 −1.321

(0.42) (0.92) (0.82) (0.81) (1.2)

Complex Model-Based 
Imputation

0.346 1.953 −1.173 −0.567 −0.969

(1.16) (1.03) (1.1) (0.97) (1.06)

Probabilistic Imputation −0.176 −1.426 −0.658 1.792* 0.844

(0.28) (0.82) (0.42) (0.91) (0.79)

Symmetric Imputation −1.773 2.302* −0.658 0.209 −1.055

(1.03) (1.03) (0.74) (1.39) (1.1)

Correlation with 
Centrality* Asymmetric 
Imputation

0 −0.048 −0.133 −0.13 0.21***

(0.04) (0.06) (0.07) (0.14) (0.05)

Correlation with 
Centrality* Simple 
Model-Based Imputation

0.101* −0.085 −0.302*** −0.487*** −0.283***

(0.04) (0.06) (0.07) (0.14) (0.05)

Correlation with 
Centrality* Complex 
Model-Based Imputation

0.159*** −0.19*** −0.219** −0.659*** −0.134*

(0.04) (0.06) (0.07) (0.14) (0.05)
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Variables
Model 1 
Indegree

Model 2 Total 
Degree

Model 3 Bon. 
Power

Model 4 
Closeness

Model 5 
Betweeness

Correlation with 
Centrality* Probabilistic 
Imputation

0.005 −0.047 −0.133 −0.46** 0.177**

(0.04) (0.06) (0.07) (0.14) (0.05)

Correlation with 
Centrality* Symmetric 
Imputation

−0.094* −0.319*** −0.133 −0.572*** 0.28***

(0.04) (0.06) (0.07) (0.14) (0.05)

In-degree Std. Dev.* 
Asymmetric Imputation

0 0.054 0.094*** −0.008 −0.257***

(0.01) (0.04) (0.03) (0.11) (0.04)

In-degree Std. 
Dev.*Simple Model-
Based Imputation

0.173*** 0.223** 0.231** 0.32* −0.083

(0.04) (0.09) (0.08) (0.13) (0.2)

In-degree Std. 
Dev.*Complex Model-
Based Imputation

0.223* 0.249** 0.32** 0.388* −0.116

(0.11) (0.1) (0.1) (0.16) (0.17)

In-degree Std. Dev.* 
Probabilistic Imputation

0.024 0.129 0.094* 0.135 0.046

(0.03) (0.08) (0.04) (0.15) (0.13)

In-degree Std. 
Dev.*Symmetric 
Imputation

0.159 0.308** 0.094 0.384 0.376*

(0.1) (0.1) (0.07) (0.23) (0.18)

Log of Size* Asymmetric 
Imputation

0 −0.008 0.153* −0.135 0.119*

(0.03) (0.1) (0.06) (0.17) (0.06)

Log of Size *Simple 
Model-Based Imputation

0.07 −0.119 0.193 −0.126 0.079

(0.09) (0.2) (0.18) (0.19) (0.29)

Log of Size* Complex 
Model-Based Imputation

−0.477 −0.86*** −0.137 −0.288 0.016

(0.25) (0.22) (0.23) (0.23) (0.25)

Log of Size * 
Probabilistic Imputation

−0.002 0.025 0.153 −0.546* −0.283

(0.06) (0.17) (0.09) (0.22) (0.19)

Log of Size*Symmetric 
Imputation

0.055 −0.958*** 0.153 −0.459 −0.202

(0.22) (0.22) (0.16) (0.34) (0.27)

N 378 378 378 324 324

Networks 7 7 7 7 7

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop 
in correlation (between the empirical and the observed) for a 10 % increase in the amount of missing data. Larger numbers 
mean larger bias with more missing data. The correlation with centrality takes four values: −.75, −.25, .25, and .75.
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Table A9

Percent Decrease in Total Bias under Different Imputation Strategies: Topology Measures 

for Undirected Networks.

Measure Imputation Interlock Co-author Co-citation Biotech HIV

−.
75 0 .7

5 −.75 0 .75 −.7
5 0 .75 −.

75 0 .7
5 −.75 0 .75

Component Symmetric 89 86 74 95 92 83 94 94 93 94 94 91 96 96 96

Model-
based 
Simple

81 89 86 95 96 96 86 92 97 85 88 91 91 93 94

Model-
based 
Complex

79 88 85 86 90 91 75 87 93 84 87 90 82 87 90

Bicomponent Symmetric 68 67 55 81 82 73 76 85 82 77 79 77 87 89 85

Model-
based 
Simple

41 79 80 −100 −1 42 −28 49 83 63 80 92 17 50 74

Model-
based 
Complex

44 80 79 −22 38 66 16 62 89 68 83 93 45 68 85

Distance Symmetric 30 72 59 70 83 68 14 81 68 92 90 78 89 91 81

Model-
based 
Simple

38 80 70 67 92 88 18 84 76 93 93 84 83 97 91

Model-
based 
Complex

39 80 70 72 91 85 19 84 77 93 93 85 87 97 90

Transitivity Symmetric 75 70 72 −8 −31 −51 30 −101 −58 74 47 33 −140 −92 −45

Model-
based 
Simple

76 79 82 −42 −56 −64 5 −123 −55 79 61 48 −217 −159 −97

Model-
based 
Complex

39 50 67 22 3 −7 35 −52 −2 45 31 4 −112 −69 −27

Tau Symmetric 39 53 20 −27 −16 −12 57 49 63 86 68 46 72 82 64

Model-
based 
Simple

40 42 28 13 7 −3 79 72 74 71 60 48 88 82 66

Model-
based 
Complex

13 16 13 47 28 12 75 53 61 72 61 50 89 85 70

CONCOR Symmetric 44 42 46 50 49 52 54 42 38 39 36 40 47 43 44

Model-
based 
Simple

21 30 42 22 31 44 38 30 33 30 31 38 37 37 41

Model-
based 
Complex

21 29 42 36 41 51 39 32 37 29 31 37 44 43 46
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Table A10

Topology Bias Slope Regressions: Undirected Networks.

Variables

Model 1 
Component 
Size

Model 2 
Bicomponent 
Size

Model 3 
Distance

Model 4 
Transitivity

Model 5 
Tau RC

Model 6 
CONCOR

Intercept −2.752*** −2.78*** −3.262*** −0.538 −1.648 −3.82***

(0.44) (0.45) (0.42) (1.68) (0.84) (0.24)

Correlation with 
Centrality

0.685*** 0.619*** 0.742*** 0.53*** 0.132 0.56***

(0.07) (0.06) (0.13) (0.05) (0.08) (0.02)

In-degree Std. 
Dev.

−0.061 −0.08* −0.086** −0.236 −0.005 −0.034

(0.03) (0.03) (0.03) (0.13) (0.06) (0.02)

Log of Size 0.106 0.168 0.24** −0.184 −0.07 0.07

(0.09) (0.09) (0.08) (0.34) (0.17) (0.05)

Symmetric 
Imputation

−0.326 0.125 1.064* −2.167 2.207* −0.272

(0.46) (0.26) (0.52) (1.75) (1.1) (0.36)

Simple Model-
Based 
Imputation

−1.659 −0.327 0.914 −2.951 1.553 −0.128

(1.26) (1.67) (0.67) (2.08) (1.11) (0.31)

Complex 
Model-Based 
Imputation

−1.605*** −0.077 1.052 −1.784 2.683 −0.145

(0.42) (1.53) (1.15) (1.53) (1.38) (0.24)

Correlation with 
Centrality* 
Symmetric 
Imputation

0.481*** 0.231** 0.179 0.117 0.161 −0.341***

(0.1) (0.09) (0.18) (0.08) (0.12) (0.03)

Correlation with 
Centrality* 
Simple Model-
Based 
Imputation

−0.326** −0.896*** −0.332 0.02 0.322** −0.458***

(0.1) (0.09) (0.18) (0.08) (0.12) (0.03)

Correlation with 
Centrality* 
Complex 
Model-Based 
Imputation

−0.404*** −0.951*** −0.2 −0.051 0.378** −0.446***

(0.1) (0.09) (0.18) (0.08) (0.12) (0.03)

In-degree Std. 
Dev.* 
Symmetric 
Imputation

−0.078* −0.096*** 0.045 0.227 −0.001 0.02

(0.03) (0.02) (0.04) (0.13) (0.08) (0.03)

In-degree Std. 
Dev.* Simple 
Model-Based 
Imputation

−0.078 0.085 0.067 0.308* −0.126 0.021

(0.09) (0.13) (0.05) (0.16) (0.08) (0.02)
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Variables

Model 1 
Component 
Size

Model 2 
Bicomponent 
Size

Model 3 
Distance

Model 4 
Transitivity

Model 5 
Tau RC

Model 6 
CONCOR

In-degree Std. 
Dev.* Complex 
Model-Based 
Imputation

−0.026 0.07 0.062 0.1 −0.066 0.018

(0.03) (0.12) (0.09) (0.11) (0.1) (0.02)

Log of Size* 
Symmetric 
Imputation

−0.277** −0.132* −0.497*** 0.164 −0.465* 0.021

(0.09) (0.05) (0.11) (0.36) (0.22) (0.07)

Log of Size 
*Simple Model-
Based 
Imputation

−0.051 −0.193 −0.59*** 0.2 −0.233 0.012

(0.26) (0.34) (0.14) (0.42) (0.23) (0.06)

Log of Size* 
Complex 
Model-Based 
Imputation

−0.03 −0.265 −0.61** 0.257 −0.49 0.013

(0.09) (0.31) (0.23) (0.31) (0.28) (0.05)

N 180 180 180 180 180 180

Networks 5 5 5 5 5 5

Note: The regression uses the beta slopes from each line as the dependent variable. The direction of the bias is ignored 
when calculating the regressions. The betas represent the expected increase in bias for a 10 % increase in the amount of 
missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: 
-.75, -.25, .25, and .75.

Table A11

Percent Decrease in Total Bias under Different Imputation Strategies: Topology Measures 

for Directed Networks.

Measure Imputation Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

−.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75

Component Probabilistic 69 69 68 61 62 59 77 76 77 73 76 76 85 86 91 82 82 86 80 81 84

Symmetric 69 69 68 61 62 59 77 76 77 73 76 76 85 86 91 82 82 86 80 81 84

Asymmetric 69 69 68 61 62 59 77 76 77 73 76 76 85 86 91 82 82 86 80 81 84

Model-based 
Simple

83 89 93 89 92 91 97 98 98 85 91 93 84 87 92 94 95 97 90 92 94

Model-based 
Complex

79 86 91 84 88 87 90 89 92 81 88 91 78 81 89 86 88 92 85 88 91

Bicomponent Probabilistic 30 36 39 30 33 33 −101 −36 19 30 39 43 74 73 79 −10 11 38 −1 20 43

Symmetric 30 36 39 30 33 33 −101 −36 19 30 39 43 74 73 79 −10 11 38 −1 20 43

Asymmetric 30 36 39 30 33 33 −101 −36 19 30 39 43 74 73 79 −10 11 38 −1 20 43

Model-based 
Simple

86 88 89 74 84 87 47 69 84 93 95 95 66 77 84 85 90 94 90 94 96

Model-based 
Complex

83 86 87 80 87 87 59 78 89 92 93 93 81 88 91 92 95 96 93 96 96

Distance Probabilistic 36 33 27 24 38 33 27 40 36 35 38 33 8 16 19 64 57 52 68 59 51
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Measure Imputation Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

Correlation with 
Centrality

−.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75 −.75 0 .75

Symmetric −19 49 63 −35 41 51 −47 47 73 15 74 73 −2616 −2138 −1463 55 75 82 59 81 85

Asymmetric −22 −13 −8 −26 −15 −9 −42 −83 −40 −22 −11 −7 −3 −6 −3 −23 −16 −10 −23 −14 −9

Model-based 
Simple

−35 46 71 −127 2 46 −54 42 78 −40 47 72 −1075 −662 −392 32 58 76 22 56 76

Model-based 
Complex

−10 59 74 −74 32 59 −27 59 76 −7 67 81 −663 −353 −202 60 80 93 50 78 92

Transitivity Probabilistic 16 35 45 12 4 8 −131 −135 −121 −53 −26 −8 48 51 64 −109 −141 −107 −94 −135 −101

Symmetric 8 26 34 4 −2 0 −196 −207 −197 −85 −68 −52 −222 −195 −82 −162 −204 −162 −125 −171 −134

Asymmetric 34 41 45 45 50 53 35 35 39 29 40 44 53 55 71 41 42 47 40 40 44

Model-based 
Simple

−82 −48 −20 −142 −112 −74 −379 −365 −301 −282 −235 −171 −190 −147 −46 −538 −583 −396 −490 −534 −355

Model-based 
Complex

8 31 41 16 24 32 −154 −149 −115 −49 −22 5 6 25 54 −128 −130 −55 −85 −79 −17

Tau Probabilistic 36 36 36 32 31 28 62 65 67 68 71 71 0 6 21 89 89 87 89 88 85

Symmetric −132 −69 −15 21 24 20 −4 3 6 −27 3 19 −16 −23 −36 6 18 32 9 22 31

Asymmetric 11 15 22 −7 6 12 43 45 45 55 65 70 1 7 22 78 80 81 76 79 80

Model-based 
Simple

15 20 24 8 10 6 −16 −15 −12 0 7 10 −19 −11 6 −10 −5 4 −15 −8 −3

Model-based 
Complex

22 27 37 42 42 38 12 14 16 35 39 40 −1 6 23 22 26 32 14 20 25

CONCOR Probabilistic 6 12 19 12 17 21 9 8 7 21 23 29 11 20 39 17 20 25 21 23 26

Reciprocated 7 12 19 10 16 21 8 7 6 22 24 29 4 14 32 17 20 25 22 24 27

Directed 5 11 18 13 17 21 6 5 4 20 22 28 11 20 39 17 20 25 21 23 26

Model-based 
Simple

−13 −3 8 −9 2 11 −7 −6 −3 −4 2 11 −15 −3 21 −5 −1 6 3 7 14

Model-based 
Complex

−10 0 11 −4 6 15 −7 −4 −2 −2 4 14 −14 −3 22 0 4 11 7 10 17

Table A12

Topology Bias Slope Regressions: Directed Networks.

Variables

Model 1 
Component 
Size

Model 2 
Bicomponent 
Size

Model 3 
Distance

Model 4 
Transitivity

Model 5 
Tau RC

Model 6 
CONCOR

Intercept −0.553 −0.979 −4.062*** −0.957* −2.251*** −3.754***

(3.77) (1.45) (0.37) (0.46) (0.11) (0.41)

Correlation with 
Centrality

0.537 0.383*** 0.521*** 0.348*** 0.081** 0.224***

(0.66) (0.04) (0.07) (0.03) (0.03) (0.01)

In-degree Std. 
Dev.

−0.089 −0.084 −0.333*** −0.303*** 0.014 0.045

(0.35) (0.13) (0.06) (0.08) (0.01) (0.04)

Log of Size −0.471 −0.262 0.496*** −0.274* 0.013 −0.046

(0.81) (0.31) (0.09) (0.11) (0.02) (0.09)
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Variables

Model 1 
Component 
Size

Model 2 
Bicomponent 
Size

Model 3 
Distance

Model 4 
Transitivity

Model 5 
Tau RC

Model 6 
CONCOR

Asymmetric 
Imputation

0.696 −0.141 0.71* −0.84** 1.884 −0.117

(7.31) (0.97) (0.35) (0.26) (1.37) (0.33)

Simple Model-
Based Imputation

−14.491 −0.026 1.411* −1.834*** −0.588 −0.392***

(41.66) (1.17) (0.68) (0.39) (0.62) (0.11)

Complex Model-
Based Imputation

−3.342 1.705*** 2.204** −1.509** −0.981* −0.506***

(7.28) (0.44) (0.69) (0.48) (0.49) (0.14)

Probabilistic 
Imputation

0.696 −0.141 0.925 −1.934*** 4.558*** −0.212

(4.26) (1.01) (0.72) (0.48) (1.1) (0.3)

Symmetric 
Imputation

0.696 −0.141 4.024*** −1.784*** −0.78 −0.262

(6.8) (0.98) (0.59) (0.49) (1.15) (0.31)

Correlation with 
Centrality* 
Asymmetric 
Imputation

0.056 −0.194** −0.142 −0.112* −0.007 −0.172***

(0.93) (0.06) (0.11) (0.05) (0.04) (0.02)

Correlation with 
Centrality* 
Simple Model-
Based Imputation

2.348* −0.443*** −1.288*** −0.28*** −0.024 −0.209***

(0.93) (0.06) (0.11) (0.05) (0.04) (0.02)

Correlation with 
Centrality* 
Complex Model-
Based Imputation

1.109 −0.346*** −1.31*** −0.301*** −0.005 −0.211***

(0.93) (0.06) (0.11) (0.05) (0.04) (0.02)

Correlation with 
Centrality* 
Probabilistic 
Imputation

0.056 −0.194** 0.176 −0.149** −0.005 −0.169***

(0.93) (0.06) (0.11) (0.05) (0.04) (0.02)

Correlation with 
Centrality* 
Symmetric 
Imputation

0.056 −0.194** −0.82*** −0.106* 0.168*** −0.176***

(0.93) (0.06) (0.11) (0.05) (0.04) (0.02)

In-degree Std. 
Dev.* 
Asymmetric 
Imputation

−0.107 −0.119 0.131* 0.05 0.346** −0.018

(0.68) (0.09) (0.06) (0.04) (0.13) (0.03)

In-degree Std. 
Dev.*Simple 
Model-Based 
Imputation

−2.292 0.319** −0.145 0.175** 0.053 −0.016

(3.86) (0.11) (0.11) (0.06) (0.06) (0.01)

In-degree Std. 
Dev.*Complex 

−0.261 0.236*** −0.056 0.361*** 0.117* −0.002
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Variables

Model 1 
Component 
Size

Model 2 
Bicomponent 
Size

Model 3 
Distance

Model 4 
Transitivity

Model 5 
Tau RC

Model 6 
CONCOR

Model-Based 
Imputation

(0.67) (0.04) (0.11) (0.08) (0.05) (0.01)

In-degree Std. 
Dev.* 
Probabilistic 
Imputation

−0.107 −0.119 −0.083 0.29*** 0.423*** −0.019

(0.39) (0.09) (0.12) (0.08) (0.1) (0.03)

In-degree Std. 
Dev.* Symmetric 
Imputation

−0.107 −0.119 0.098 0.323*** 0.218* −0.009

(0.63) (0.09) (0.1) (0.08) (0.11) (0.03)

Log of Size* 
Asymmetric 
Imputation

−0.377 0.038 −0.185* −0.002 −0.811** 0.013

(1.56) (0.21) (0.09) (0.06) (0.29) (0.07)

Log of Size 
*Simple Model-
Based Imputation

2.96 −0.774** −0.364* 0.452*** 0.05 0.091***

(8.9) (0.25) (0.16) (0.09) (0.13) (0.02)

Log of Size* 
Complex Model-
Based Imputation

0.209 −1.084*** −0.629*** 0.098 0.013 0.098***

(1.56) (0.09) (0.17) (0.12) (0.1) (0.03)

Log of Size * 
Probabilistic 
Imputation

−0.377 0.038 −0.229 0.262* −1.461*** 0.028

(0.91) (0.21) (0.17) (0.11) (0.23) (0.06)

Log of Size* 
Symmetric 
Imputation

−0.377 0.038 −1.14*** 0.254* −0.137 0.024

(1.45) (0.21) (0.14) (0.12) (0.25) (0.07)

N 378 378 324 324 378 378

Networks 7 7 7 7 7 7

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop 
in correlation (between the empirical and the observed) for a 10 % increase in the amount of missing data. Larger numbers 
mean larger bias with more missing data. The correlation with centrality takes four values: − .75, − .25, .25, and .75.

Table A13

Maximum percent missing to retain target correlation of .9 with true score.

Network Imputation 
Type In-Degree Out-Degree Total 

Degree
Bonacich 
Power Closeness Betweenness

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

No Yes No Yes No Yes No Yes No Yes No Yes

Undirected 
Networks

a Listwise 
Deletion

55.8 NA
b

55.8 NA 55.8 NA 47.6 NA 5 NA 30.2 NA

Symmetric 70c 46.8 70 46.8 70 46.8 70 52.6 56.8 39.2 65.6 44.8
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Network Imputation 
Type In-Degree Out-Degree Total 

Degree
Bonacich 
Power Closeness Betweenness

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

Non-
respondents 
in 
Correlation

No Yes No Yes No Yes No Yes No Yes No Yes

Model-
Based 
Simple

70 56.4 70 56.4 70 56.4 70 58.2 64.8 28.8 69.4 45.2

Model-
Based 
Complex

70 58.4 70 58.4 70 58.4 70 59.4 64.4 24.4 67.8 48.2

Directed 
Networks

a Listwise 
Deletion

39 NA 25.6 NA 33.7 NA 26.3 NA 21.6 NA 15.4 NA

Probabilistic 40.9 39 70 9.6 58.6 24.4 51.1 23.9 42.3 9 20.4 11.1

Symmetric 30.9 30.6 70 12.4 50.1 29.1 51.1 23.9 43.3 12.3 9.7 5.4

Asymmetric 39 38.4 70 6.7 59.4 20.7 51.1 23.9 26.3 3.9 19.3 7.7

Model-
Based 
Simple

27.7 28.4 70 13.3 45.7 25.3 42 24 49.9 11.4 9.1 4.7

Model-
Based 
Complex

30 31.3 70 12.6 48.7 27.3 44 24.9 50.4 10.7 11.4 6.9

The maximum percent missing was calculated based on a quadratic fit to the data.
a
Values represent the means (for the maximum percent missing to retain target correlation) taken over all directed or 

undirected networks.
b
Listwise deletion has no value for the case of non-respondents being kept in the correlation calculation.

c
Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means.
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Fig. 1. 
Networks Used for Sampling Simulations.
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Fig. 2. 
Demonstrating Imputation Strategies on Toy Network.
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Fig. 3. 
Predicted Bias for Centrality Measures for a Large, Undirected, Moderately Centralized 

Network.
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Fig. 4. 
Predicted Bias for Centrality Measures for a Large, Directed, Moderately Centralized 

Network.
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Fig. 5. 
Predicted Bias for Centrality Measures for Four Network Types.
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Fig. 6. 
Predicted Bias for Centralization Measures for a Large, Undirected, Moderately Centralized 

Network.
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Fig. 7. 
Predicted Bias for Centralization Measures for a Large, Directed, Moderately Centralized 

Network.
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Fig. 8. 
Predicted Bias for Centralization Measures for Four Network Types.
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Fig. 9. 
Predicted Bias for Topology Measures for a Large, Undirected, Moderately Centralized 

Network.
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Fig. 10. 
Predicted Bias for Topology Measures for a Large, Directed, Moderately Centralized 

Network.
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Fig. 11. 
Predicted Bias for Topology Measures for Four Network Types.
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Fig. 12. 
Summary Figure of Best Imputation Approach by Network Type, Measure, and Missing 

Data Condition.
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