Skip to main content
. Author manuscript; available in PMC: 2023 Jan 1.
Published in final edited form as: Soc Networks. 2021 Jun 18;68:148–178. doi: 10.1016/j.socnet.2021.05.002

Table A2.

Centrality Bias Slope Regressions: Undirected Networks.

Variables Model 1 Degree Model 2 Bon. Power Model 3 Closeness Model 4 Betweeness
Intercept −1.925*** −2.572 −2.834** −1.802
(0.46) (1.7) (0.94) (1.33)
Correlation with Centrality 0.92*** 1.199*** 0.626*** 0.517***
(0.15) (0.11) (0.05) (0.07)
In-degree Std. Dev. −0.166*** −0.174 −0.075 −0.041
(0.03) (0.13) (0.07) (0.1)
Log of Size −0.166 0.016 0.035 −0.206
(0.09) (0.35) (0.19) (0.27)
Symmetric Imputation −40.255*** −3.407** −2.313** −0.397
(0.6) (1.06) (0.89) (0.63)
Simple Model-Based Imputation −39.492*** −3.772*** −2.771* −1.214
(1.22) (1.1) (1.21) (0.87)
Complex Model-Based Imputation −39.492*** −3.31** −2.712* −0.703
(1.59) (1.09) (1.1) (0.58)
Correlation with Centrality* Symmetric Imputation −0.871*** 0.292 0.261*** 0.68***
(0.21) (0.16) (0.08) (0.1)
Correlation with Centrality* Simple Model-Based Imputation −0.718*** 0.225 0.267*** 0.234*
(0.21) (0.16) (0.08) (0.1)
Correlation with Centrality* Complex Model-Based Imputation −0.718*** 0.232 0.291*** 0.34***
(0.21) (0.16) (0.08) (0.1)
In-degree Std. Dev.* Symmetric Imputation 0.146** −0.03 −0.064 0.085
(0.04) (0.08) (0.07) (0.05)
In-degree Std. Dev.* Simple Model-Based Imputation 0.198* −0.071 −0.054 0.116
(0.09) (0.08) (0.09) (0.07)
In-degree Std. Dev.* Complex Model-Based Imputation 0.198 −0.111 −0.045 0.113*
(0.12) (0.08) (0.08) (0.04)
Log of Size* Symmetric Imputation 0.211 0.224 0.337 −0.257*
(0.12) (0.22) (0.18) (0.13)
Log of Size *Simple Model-Based Imputation 0.029 0.294 0.345 −0.15
(0.25) (0.23) (0.25) (0.18)
Log of Size* Complex Model-Based Imputation 0.029 0.241 0.333 −0.242*
(0.33) (0.22) (0.23) (0.12)
N 180 180 180 180
Networks 5 5 5 5

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop in correlation (between the empirical and the observed) for a 10 % increase in the amount of missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: − .75, − .25, .25, and .75.