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Abstract

Consider a linear elliptic PDE defined over a stochastic stochastic geometry a function of N 
random variables. In many application, quantify the uncertainty propagated to a Quantity of 

Interest (QoI) is an important problem. The random domain is split into large and small variations 

contributions. The large variations are approximated by applying a sparse grid stochastic 

collocation method. The small variations are approximated with a stochastic collocation-

perturbation method and added as a correction term to the large variation sparse grid component. 

Convergence rates for the variance of the QoI are derived and compared to those obtained in 

numerical experiments. Our approach significantly reduces the dimensionality of the stochastic 

problem making it suitable for large dimensional problems. The computational cost of the 

correction term increases at most quadratically with respect to the number of dimensions of the 

small variations. Moreover, for the case that the small and large variations are independent the cost 

increases linearly.
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1 Introduction

The problem of design under the uncertainty of the underlying domain can be encountered 

in many real life applications. For example, in semiconductor fabrication the underlying 

geometry becomes increasingly uncertain as the physical scales are reduced [33]. This 

uncertainty is propagated to an important Quantity of Interest (QoI), such as the capacitance 

of the semiconductor circuit. If the variance of the capacitance is high this could lead to low 

yields during the manufacturing process. Quantifying the uncertainty in a given QoI, such as 

the capacitance, is of important so as to be able to maximize yields. This will have a direct 

impact in reducing the costly and time-consuming design cycle. Other examples included 

graphene nano-sheet fabrication [21]. In this paper we focus on the problem of how to 

efficiently compute the statistics of the QoI given uncertainty in the underlying geometry.

Uncertainty Quantification (UQ) methods applied to Partial Differential Equations (PDEs) 

with random geometries can be mostly divided into collocation and perturbation approaches. 

For large deviations of the geometry the collocation method [6,8,14,32] is well suited. In 

addition, in [6,18] the authors derive error estimates of the solution with respect to the 

number of stochastic variables in the geometry description. However, this approach is only 

effective for medium size stochastic problems. In contrast, the perturbation approaches 

introduced in [20,33,17,9,13,11,12] are very efficient for high dimension, but with small 

perturbations of the domain. More recently, new approaches based on multi-level Monte 

Carlo have been developed [28] that is well suited for low regularity of the solution. 

Furthermore, the domain mapping approach has been extended to elliptic problems with 

random domains in [19].

We develop a hybrid collocation-perturbation method that is well suited for a combination of 

large and small variations. The main idea is to meld both approaches such that the accuracy 
versus dimension of the problem is significantly accelerated.

We represent the domain in terms of a series of random variables and then remap the 

corresponding PDE to a deterministic domain with random coefficients. The random 

geometry is split into small and large deviations. A collocation sparse grid method is used to 

approximate the contribution to the QoI from the first large deviations NL terms of the 

stochastic domain expansion. Conversely, the contribution of the small deviations (the tail) 

are cheaply computed with a collocation and perturbation method. This contribution is 

called the variance correction.

For the collocation method we apply an isotropic sparse grid. This is to simplify the 

presentation in this work. However, we are free to use any collocation method such as 

anisotropic sparse grids [26], quasi-optimal [25] or dimension adaptive [15,23,22] to 

increase the efficiency of the collocation computation. The results in this paper show that the 

variance correction significantly reduces the overall dimensionality of the stochastic problem 

while the computational cost of the correction term increases at most quadratically with 

respect to the number of dimensions of the small variations.

A rigorous convergence analysis of the statistics of the QoI in terms of the number of 

collocation knots and the perturbation approximation of the tail is derived. Analytic 
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estimates show that the error of the QoI for the hybrid collocation-perturbation method (or 

the hybrid perturbation method for short) decays quadratically with respect to the of sum of 

the coefficients of the expansion of the tail. This is in contrast to the linear decay of the error 

estimates derived in [6] for the pure stochastic collocation approach. Furthermore, numerical 

experiments show a faster convergence rate than the stochastic collocation approach. 

Moreover, the variance correction is computed at a fraction of the cost of the low 

dimensional large variations.

In Section 2 mathematical background material is introduced. In Section 3 the stochastic 

domain problem is introduced. We assume that there exist a bijective map such that the 

elliptic PDE with a stochastic domain is remapped to deterministic reference domain with a 

random diffusion matrix. The random boundary is assumed to be parameterized by N 
random variables. In section 4 the hybrid collocation-perturbation approach is derived. This 

approach reduces to computing mean and variance correction terms that quantifies the 

perturbation contribution from the tail of the random domain expansion. In Section 5 we 

show that analytic extension in ℂNL exists for the variance correction term. In Section 6 

mean and variance error estimates are derived in terms of the finite element, sparse grid and 

perturbation approximations. In section 7 complexity and tolerance analysis is derived. In 

section 8 we test our approach on numerical examples that are consistent with theoretically 

derived convergence rates.

2 Background

In this section we introduce the general notation and mathematical background that will be 

used in this paper. Let (Ω, ℱ, ℙ) be a complete probability space, where Ω is the set of 

outcomes, ℱ is a sigma algebra of events and ℙ is a probability measure. Define Lℙ
q (Ω), 

q ∈ ℕ, as the following Banach spaces:

Lℙ
q (Ω) ≔ {v ∣ ∫Ω

∣ v(ω) ∣q dℙ(ω) < ∞} and

Lℙ
∞(Ω) ≔ {v ∣ ℙ − ess sup

ω ∈ Ω
∣ v(ω) ∣ < ∞},

where v :Ω ℝ is a measurable random variable.

Consider the random variables Y1, … , YN measurable in (Ω, ℱ, ℙ). Form the N valued 

random vector Y := [Y1, … , YN], Y : Ω → Γ, and let Γ ≔ Γ1 × ⋯ × ΓN ⊂ ℝN. Without loss 

of generality denote Γn := [−1, 1] as the image of Yn for n = 1, … , N and let ℬ(Γ ) be the 

Borel σ− algebra.

For all A ∈ ℬ(Γ ) consider the induced measure μY ≔ ℙ(Y−1(A)). Suppose that μY is 

absolutely continuous with respect to the Lebesgue measure defined on Γ. From the Radon–

Nikodym theorem [4] we conclude that there exists a density function ρ(y) : Γ → [0, +∞) 

such that for any event A ∈ ℬ(Γ ) we have that ℙ(Y ∈ A) ≔ ℙ(Y−1(A)) = ∫Aρ(y) dy. For any 

measurable function Y ∈ [Lℙ
1 (Γ )]N define the expected value as E[Y] = ∫Γ yρ(y)dy. Finally, 
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the following Banach spaces will be useful for the stochastic collocation sparse grid error 

estimates. For q ∈ ℕ let

Lρq(Γ ) ≔ v ∣ ∫Ω
∣ v(y) ∣q ρ(y)dy < ∞ and

Lρ∞(Γ ) ≔ v ∣ ρ(y)dy − ρ − ess sup
y ∈ Γ

∣ v(y) ∣ < ∞ .

We discuss in the next section an approach of approximating a function with sufficient 

regularity by multivariate polynomials and sparse grid interpolation.

2.1 Sparse Grids

Our goal is to find a compact an accurate approximation of a multivariate function f :Γ V
with sufficient regularity. It is assumed that f ∈ C0(Γ ; V ) where

C0(Γ ; V ) ≔ {v :Γ V is continuous on Γ and maxy ∈ Γ‖ v(y)‖V < ∞ }

and V is a Banach space. Consider the univariate Lagrange interpolant along the nth 

dimension of Γ

ℐnm(i) :C0(Γn) Pm(i) − 1(Γn),

where i ⩾ 1 denotes the level of approximation and m(i) the number of collocation knots 

used to build the interpolation at level i such that m(0) = 0, m(1) = 1 and m(i) < m(i + 1) for i 

⩾ 1. Furthermore let ℐn
m(0) = 0. The space Pm(i) − 1(Γn) is the set of polynomials of degree at 

most m(i) − 1.

We can construct an interpolant by taking tensor products of ℐn
m(i) along each dimension for 

n = 1, … , N. However, the number of collocation knots explodes exponentially with respect 

to the number of dimensions, thus limiting feasibility to small dimensions. Alternately, 

consider the difference operator along the nth dimension

Δnm(i) ≔ ℐnm(i) − ℐnm(i − 1) .

The sparse grid approximation of f ∈ C0(Γ ) is defined as

Sw
m, g[f ] = ∑

i ∈ ℕ+N :g(i) ⩽ w
⊗

n = 1

N
Δn

m(in)(f ),
(1)

where w ⩾ 0, w ∈ ℕ+ (ℕ+ ≔ ℕ ∪ {0}), is the approximation level, i = (i1, …, iN) ∈ ℕ+
N, and 

g :ℕ+
N ℕ is strictly increasing in each argument. The sparse grid can also we re-written as
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Sw
m, g[f ] = ∑

i ∈ ℕ+N :g(i) ⩽ w
c(i) ⊗

n = 1

N
ℐn

m(in)(f ), with c(i) = ∑
j ∈ {0, 1}N :
g(i + j) ⩽ w

( − 1) ∣ j ∣ .
(2)

From the previous expression, we see that the sparse grid approximation is obtained as a 

linear combination of full tensor product interpolations. However, the constraint g(i) ⩽ w in 

(2) restricts the growth of tensor grids of high degree.

Consider the multi-indexed vector m(i) = (m(i1), … , m(iN)) and the associated polynomial 

polynomial set

Λm, g(w) = {p ∈ ℕN, g(m−1(p + 1)) ⩽ w} .

Let ℙΛm, g(w)(Γ ) be the multivariate polynomial space

ℙΛm, g(w)(Γ ) = span ∏
n = 1

N
yn

pn, with p ∈ Λm, g(w) .

It can shown that Sw
m, g[f ] ∈ ℙΛm, g(w)(Γ ) (see e.g. [2]). One of the most popular choices for 

m and g is given by the Smolyak (SM) formulas (see [29,3,2])

m(i) =
1, for i = 1

2i − 1 + 1, for i > 1
and g(i) = ∑

n = 1

N
(in − 1),

in conjunction with Clenshaw-Curtis (CC) abscissas interpolation points. This choice gives 

rise to sequence of nested one dimensional interpolation formulas. The number of 

interpolation knots of the Smolyak sparse grid grows significantly slower than Tensor 

Product (TP) (see [2]) and Total Degree (TD) grids. Other popular choices include 

Hyperbolic Cross (HC) sparse grids.

It can also be shown that the TD, SM and HC anisotropic sparse approximation formulas can 

be readily constructed with improved convergence rates (see [26]). Moreover, in [10], the 

authors show convergence of anisotropic sparse grid approximations with infinite 

dimensions (N → ∞). In [25] the authors show the construction of quasi-optimal grids have 

been shown to have exponential convergence.

As pointed out in the introduction, we have the option of using any collocation method such 

as anisotropic [26], quasi-optimal [25] or dimension adaptive [15,23,22] sparse grids to 

increase the efficiency of the collocation computation. The important result in this paper is 

that the overall dimensionality of the stochastic problem is significantly reduced with the 

addition of the perturbation component.
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3 Problem setup and formulation

Let D(ω) ⊂ ℝd, d ∈ ℕ, be an open bounded domain with Lipschitz boundary ∂D(ω) that is 

shape dependent on the stochastic parameter ω ∈ Ω

Suppose there exist a reference domain U ⊂ ℝd, which is open and bounded with Lipschitz 

boundary ∂U. In addition assume that almost surely in Ω there exist a bijective map 

F (ω) :U D(ω). The map η ↦ x, U D(ω), is written as

η x = F (η, ω),

where η are the coordinates for the reference domain U and x are the coordinates for ℝd . 

See the cartoon example in Figure 1. Denote by J(ω) as the Jacobian of F(ω) and suppose 

that F satisfies the following assumption.

Assumption 1 Given a bijective map F (ω) :U D(ω) there exist constants Fmin and Fmax
such that

0 < Fmin ⩽ σmin(J(ω)) and σmax(J(ω)) ⩽ Fmax < ∞

almost everywhere in U and almost surely in Ω. We have denoted by σmin(J(ω)) (and 
σmax(J(ω))) the minimum (respectively maximum) singular value of the Jacobian J(ω). In 
Figure 1 a cartoon example of the deformation of the reference domain U is shown.

By applying the chain rule on Sobolev spaces [1] for any v ∈ H1(D(ω)) we have that ∇v = 

J-T∇(v ∘ F), where J-T := (J−1)T, i.e. the transpose of matrix J−1, and v ∘ F ∈ H1(U). 

Therefore we can prove the following result.

Lemma 1 Under Assumptions 1 it is immediate to prove the following results:

i. L2(D(ω)) and L2(U) are isomorphic almost surely.

ii. H1(D(ω)) and H1(U) are isomorphic almost surely.

Proof For i) and ii) see [6] or [18].

Let G ≔ ∪ω ∈ Ω D(ω) ⊂ ℝd, i.e. the region in ℝd defined by the union of all the perturbations 

of the stochastic domain. Consider the functions a :G ℝ, and f :G ℝ that are defined 

over the region of all the stochastic perturbations of the domain D(ω) in ℝd. Similarly, let 

U ≔ ∪ω ∈ Ω ∂D(ω) ⊂ ℝd be region formed by the union of all the stochastic perturbations of 

the boundary. For ω ∈ Ω a.s. let g ∈ H1 ∕ 2(D(ω)) be defined as the trace of a deterministic 

function ν ∈ H1(G).

Consider the following boundary value problem: Given f(x, ω), a(x, ω) :D(ω) ℝd and 

g(x, ω) : ∂D(ω) ℝd find u(x, ω) :D(ω) ℝd such that almost surely
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− ∇ ⋅ (a(x, ω)∇u(x, ω)) = f(x, ω), x ∈ D(ω)
u = g on ∂D(ω) . (3)

We now make the following assumption:

Assumption 2 Let amax ≔ ess supx ∈ D(ω), ω ∈ Ωa(x, ω) and

amin ≔ ess inf
x ∈ D(ω), ω ∈ Ω

a(x, ω) .

Assume that the constants amin and amax satisfy the following inequality: 0 < amin ⩽ amax < 

∞.

Recall that D(ω) is open and bounded with Lipschitz boundary ∂D(ω). By applying a change 

of variables the weak form of (3) can be formulated on the reference domain (see [6] for 

details) as:

Problem 1 Given that (f ∘ F)(η, ω) ∈ L2(U) find u(η, ω) ∈ H0
1(U) s.t.

B(ω; u, v) = l (ω; v), ∀v ∈ H0
1(U) (4)

almost surely, where l (ω; v) ≔ ∫U (f ∘ F )(η, ω) ∣ J(η, ω) ∣ v − L(ν(η, ω), v), g ≔ g ∘ F , ν ≔ ν ∘ F , 

for any w, s ∈ H0
1(U)

B(ω; s, w) ≔ ∫U
(a ∘ F )(η, ω)∇sTC−1(η, ω)∇w ∣ J(η, ω) ∣ ,

L(ν(η, ω), v) ≔ ∫U
(a ∘ F )(η, ω)(∇(ν(η, ω))TC−1(η, ω) ∣ J(η, ω) ∣ ∇v,

C(η, ω) := J(ω)TJ(ω), and ν(η, ω) ∣∂U = g(η, ω). This homogeneous boundary value 

problem can be remapped to D(ω) as u (x, ω) ≔ (u ∘ F−1)(x, ω), thus we can rewrite 

u(η, ω) = (u ∘ F )(η, ω). The solution u(x, ω) ∈ H1(D(ω)) for the Dirichlet boundary value 

problem is obtained as u(x, ω) = u (x, ω) + (ν ∘ F−1)(x, ω).

The solution of (4) is numerically computed with a semi-discrete approximation. Suppose 

that we have a set of regular triangulations Tℎ with maximum mesh spacing parameter h > 

0. Furthermore, let Hℎ(U) ⊂ H0
1(U) be the space of continuous piecewise polynomial defined 

on Tℎ with Nh cardinality. Let uℎ:Γ Hℎ(U) be the semi-discrete approximation of the 

solution of Problem (4) that satisfies the following problem: Find uℎ ∈ Hℎ(U) such that

∫
U

[∇uℎ( ⋅ , y)]TG(y)∇vℎ dη = ∫
U

(f ∘ F )( ⋅ , y)vℎ ∣ J(y) ∣ dη
− L(ν , vℎ)

(5)

Castrillón-Candás et al. Page 7

Adv Comput Math. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for all vh ∈ Hh(U) and for a.s. y ∈ Γ. Note that G(y) := (a ∘ F(y))∣J(y)∣J(y)−1J(y)−T and 

Qℎ(y) ≔ Q(uℎ ∘ F ) = Q(uℎ(y)).

3.1 Quantity of Interest

For many practical problems the QoI is not necessarily the solution of the elliptic PDE, but 

instead a bounded linear functional Q :L2(U) ℝ of the solution. For example, this could be 

the average of the solution on a specific region of the domain, i.e.

Q(u) ≔ ∫
Ū

q(η)u(η, ω) dη (6)

with q ∈ L2(U) over the region U ⊂ U. It is assumed that there exists δ > 0 such that 

dist(U, ∂U) > δ.

In the next section, the perturbation approximation is derived for Q(u) and not directly from 

the solution u. It is thus necessary to introduce the influence function φ :H0
1(U) ℝ, which 

can be easily computed by the following adjoint problem:

Problem 2 Find φ ∈ H0
1(U) such that for all v ∈ H0

1(U)

B(ω; v,φ) = Q(v) (7)

a.s. in Ω. After computing the influence function φ, the QoI can be computed as 

Q(u) = B(u,φ).

Remark 1 We can pick a particular operator T such that ν = T (g) and vanishes in the region 

defined by U. Thus we have that Q(ν) = 0 and Q(u + ν) = Q(u).

3.2 Domain parameterization

To simplify the analysis of the elliptic PDE with a random domain from equation (3) we 

remapped the solution onto a fix deterministic reference domain. This approach has also 

been applied in [6,14,18,17]. This approach is reminiscent of Karhunen-Loève (KL) 

expansions of random fields (see [18]).

Suppose that b1, … , bN are a collection of vector valued Sobolev functions where each of 

the entries of bn:U ℝd for n = 1, … , N belong in the space W1,∞(U). We further make the 

following assumptions.

Assumption 3 Assume that F(η, ω) has the finite noise model

F (η, ω) ≔ η + ∑
n = 1

N
μnbn(η)Yn(ω) .

Assumption 4
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1. ∥∥bn∥l∞∥L∞(U) = 1 for n =1, … N.

2. ∞ > μ1 ⩾ ⋯ ⩾ μN ⩾ 0.

The stochastic domain perturbation is now split as

F (η, ω) FL(η, ω) + FS(η, ω),

where we denote FL(η, ω) as the large deviations and FS(η, ω) as the small deviations 

modes with the following parameterization:

FL(η, ω) ≔ ∑
n = 1

NL
μL, nbL, n(η)Yn(ω) & FS(η, ω) ≔ ∑

n = 1

NS
μS, nbS, n(η)Yn + NL(ω),

where NL + NS = N. Furthermore, for n = 1, … , NL let μL,n := μn, bL,n(η) := bn(η), and for 

n = 1, … , NS let μS,n := μn+NL and bS,n(η) := bn+NL (η).

Denote yL := [y1, … ,yNL], ΓL ≔ ∏n = 1
NL Γn, and ρ(yL) :ΓL ℝ+ as the joint probability 

density of yL. Similarly denote yS := [yNL+1, … , yN], ΓS ≔ ∏n = NL + 1
N Γn, and 

ρ(yS) :ΓS ℝ+ as the joint probability density of yS. From the stochastic model the 

Jacobian J is written as

J(η, ω) = I + ∑
n = 1

N
μnBn(η)Y n(ω) (8)

where for n = 1, … N, Bn(η) is the Jacobian of bn(η).

4 Perturbation approach

In this section a perturbation method is presented to approximate Q(y) with respect to the 

domain perturbation. In Section 4.1, the perturbation approach is applied with respect to the 

tail field FS(η, ω). A stochastic collocation approach is then used to approximate the 

contribution with respect to FL(η, ω). We follow a similar approach as in [20] by using 

shape calculus. To this end we introduce the following definition.

Definition 1 Let ψ be a regular function of the parameters y ∈ W ⊂ ℝN, the Gâteaux 

derivative (shape derivative) evaluated at y on the space of perturbations W ⊂ ℝN is defined 

as

< Dyψ(y), δy > = lim
s 0+

ψ(y + sδy) − ψ(y)
s , ∀δy ∈ W .

Similarly, the second order derivative Dy
2 (shape Hessian) as a bilinear form on W is defined 

as
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Dy2ψ(y)(δy1, δy2) = lim
s 0+

<
Dyψ(y + sδy2) − Dyψ(y)

s , δy1 > , ∀δy2, δy1 ∈ W .

Suppose that Q is a regular function with respect to the parameters y, then for all y = y0 + δy 
∈ W the following expansion holds:

Q(y) = Q(y0) + < DyQ(y0), δy > + 1
2Dy

2Q(y + θδy)(δy, δy) (9)

for some θ ∈ (0, 1). Thus we have a procedure to approximate the QoI Q(y) with respect to 

the first order term and bound the error with the second order term. To explicitly formulate 

the first and second order terms we make the following assumption:

Assumption 5 For all v, w ∈ H0
1(U), let G(y; v, w) ≔ ∇vTG(y)∇w, where G(y) := (a ∘ F)(η, 

y)J−1(y)J−T(y)∣J(y)∣, we have that for all y ∈ W

i. ∇yG(y) ∈ [L1(U)]N

ii. For n = 1, … , N there exists a uniformly bounded constant CG(y) > 0 on W s.t.

∫U
∂ynG(y; v, w) ⩽ CG(y)‖v‖H0

1(U)‖w‖H0
1(U) .

iii. Furthermore, for all y ∈ W we assume that ∇y(f ∘ F)(y), ∇yν(y) ∈ [L1(U)]N.

Remark 2 Although we have that (i) and (ii) are assumptions for now, under Assumptions 1 - 

4, a(η, ω) ∈ W 1, ∞(ℝd), and Lemma 9 in Section 6 it can be shown that Assumption 5(i) and 

(ii) are true for all y ∈ Γ.

Definition 2 For all v, w ∈ H0
1(U), and y ∈ W let

< DyB(y; v, w), δy > ≔ lim
s 0+

1
s [B(y + sδy; v, w) − B(y; v, w)] ∀δy ∈ Γ .

Remark 3 Under Assumption 5 for any v, w ∈ H0
1(U) we have that for all y ∈ W

< DyB(y; v, w), δy > = ∫U
∇yG(y; v, w) ⋅ δy = ∑

n = 1

N ∫U
(∇vT ∂ynG(y)∇w)δyn

where G(y) := (a ∘ F)(η, y)J−1(y)J−T(y)∣J(y)∣. Furthermore, under Assumption 5 we have 

that

< Dy(f ∘ F )( ⋅ , y), δy > = ∫U
∇y(f ∘ F )( ⋅ , y) ⋅ δy .
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We can introduce as well the derivative for any function (v ∘ F)(η, y) ∈ L2(U) with respect to 

y: For all y ∈ W we have that

Dy(v ∘ F )(η, y)(δy): = lim
s o+

1
s [(v ∘ F )(η, y + sδy) − (v ∘ F )(η, y)] .

Lemma 2 Suppose that Assumptions 1 to 5 are satisfied. Then for any y, δy ∈ W and for all 

v ∈ H0
1(U) we have that

B(y;Dy(u ∘ F )(η, y)(δy), v) = ∑
n = 1

N
δyn ∫U

− (∇(u ∘ F )( ⋅ , y))T ∂ynG(y)∇v

+ ∂yn(f ∘ F )( ⋅ , y) ∣ J(y) ∣ v + (f ∘ F )( ⋅ , y)∂yn ∣ J(y) ∣ v

−(∇ν)T ∂ynG(y)∇v − (∂yn ∇ν(y))TG(y)∇v .

Proof

B(y;Dy(u ∘ F )( ⋅ , y)(δy), v) = lim
s 0+

1
s∫U

(∇(u ∘ F )( ⋅ , y + sδy)T

− ∇(u ∘ F )( ⋅ , y)T )G(y)∇v
= lim

s 0+
1
s∫U

(u ∘ F )( ⋅ , y + sδy)TG(y)∇v

− ∇(u ∘ F )( ⋅ , y + sδy)TG(y + sδy)∇v
+ lim

s 0+
1
s∫U

∇(u ∘ F )( ⋅ , y + sδy)TG(y + sδy)∇v − ∇(u ∘ F )( ⋅ , y)TG(y)∇v

= − ∑
n = 1

N ∫U
(∇(u ∘ F )( ⋅ , y))T ∂ynG(y)δyn∇v

+ lim
s 0+

1
s l (y + sδy; v) − l (y; v)

then

B(y;Dy(u ∘ F )( ⋅ , y)(δy), v) = ∑
n = 1

N ∫U
− ∇(u ∘ F )( ⋅ , y)T ∂ynG(y)δyn∇v

+ ∫U
∂yn(f ∘ F )( ⋅ , y)δyn ∣ J(y) ∣ v + ∫U

(f ∘ F )( ⋅ , y)∂yn ∣ J(y) ∣ δynv

− lim
s 0+

1
s∫U

(∇ν(y + sδy))TG(y + sδy)∇v − (∇ν(y))TG(y)∇v)

The result follows. □

Lemma 3 Suppose that Assumptions 1 to 5 are satisfied. Then for any y, δy ∈ W and for all 

v ∈ H0
1(U) we have that

B(y; v,Dyφ(y)(δy)) = ∑
n = 1

N ∫U
− (∇v)T ∂ynG(y)δyn∇φ(y) .
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Proof We follow the same procedure as in Lemma 2. □

A consequence of Lemma 2 and Lemma 3 is that Dy(u ∘ F )( ⋅ , y)(δy) and Dyφ(y)(δy) belong 

in H0
1(U) for any y ∈ W and δy ∈ W.

Lemma 4 Under the same assumptions as Lemma 3 we have that

lim
s 0+

Q(y + sδy) − Q(y)
s = ∑

n = 1

N
δyn∫

U
−(∇(u ∘ F )( ⋅ , y))T ∂ynG(y)∇φ(y)

+ ∂yn(f ∘ F )( ⋅ , y) ∣ J(y) ∣ φ(y) − (∇ ∂ynν(y))TG(y)∇φ(y)
−(∇ν(y))T ∂ynG(y)∇φ(y) + (f ∘ F )( ⋅ , y)∂yn ∣ J(y) ∣ φ(y) .

(10)

where the influence function φ(y) satisfies equation (7).

Proof

lim
s 0+

Q(y + sδy) − Q(y)
s

= lim
s 0+∫U

1
s (∇(u ∘ F )( ⋅ , y + sδy))TG(y + sδy)∇φ(y + sδy)

− (∇(u ∘ F )( ⋅ , y))TG(y)∇φ(y))

= ∑
n = 1

N
δyn∫U

(∇(u ∘ F )( ⋅ , y))T ∂ynG(y)∇φ(y)

+ ∫U
(∇Dy(u ∘ F )( ⋅ , y))T (δy)G(y)∇φ(y)

+ (∇(u ∘ F )( ⋅ , y))TG(y)∇Dyφ(y)(δy) .

From Lemma 2 with v = φ(y) and Lemma 3 with v = (u ∘ F )( ⋅ , y) we obtain the result. □

Lemma 5 Suppose that Assumptions 1 to 5 are satisfied. Then for any y, δy ∈ W and for all 

v ∈ H0
1(U) we have that

Dy2Q(y)(δy, δy) = − ∑
n, m = 1

N
δynδym ∫U

(∇(u ∘ F )( ⋅ , y))T (∂ym ∂ynG(y))∇φ(y)

+ (∇ ∂ym ∂ynν(y))TG(y)∇φ(y) + (∇ ∂ynν(y))T ∂ymG(y)∇φ(y)

+ (∇ ∂ymν(y))T ∂ynG(y)∇φ(y) + (∇ν(y))T ∂ym ∂ynG(y)∇φ(y)
− ∂ym ∂yn(f ∘ F )( ⋅ , y) ∣ J(y) ∣ φ(y) − ∂yn(f ∘ F )( ⋅ , y)∂ym ∣ J(y) ∣ φ(y)
− ∂ym(f ∘ F )( ⋅ , y)∂yn ∣ J(y) ∣ φ(y) − (f ∘ F )( ⋅ , y)∂ym ∂yn ∣ J(y) ∣ φ(y)

− ∑
n = 1

N
δyn ∫U

(∇Dy(u ∘ F )( ⋅ , y))T (δy)(∂ynG(y))∇φ(y)

+ (∇(u ∘ F )( ⋅ , y))T (∂ynG(y))∇Dyφ(y)(δy) + (∇ ∂ynν(y))TG(y)∇Dyφ(y)(δy)

+ (∇ν(y))T ∂ynG(y)∇Dyφ(y)(δy) − ∂yn(f ∘ F )( ⋅ , y) ∣ J(y) ∣ Dyφ(y)(δy)
− (f ∘ F )( ⋅ , y)∂yn ∣ J(y) ∣ Dyφ(y)(δ(y) .
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Proof Let E(y, δy) ≔ lims 0+ Q(y + sδy) − Q(y)
s  (see Lemma 4). Taking the first variation of 

equation of E(y) we have that

lim
s 0+

E(y + sδy, δy) − E(y, δy)
s = ∑

n = 1

N
δyn lim

s 0+
1
s ∫U

−(∇u (y + sδy)T

∂ynG(y + sδy)∇φ(y + sδy) + ∂yn(f ∘ F )( ⋅ , y + sδy) ∣ J(y + sδy) ∣ φ(y + sδy)

− (∇ ∂ynν(y + sδy))TG(y + sδy)∇φ(y + sδy)

− (∇ν(y + sδy))T ∂ynG(y + sδy)∇φ(y + sδy)
+ (f ∘ F )( ⋅ , y + sδy)∂yn ∣ J(y + sδy) ∣ φ(y + sδy)

− ∫U
−(∇(u ∘ F )( ⋅ , y))T ∂ynG(y)∇φ(y) + ∂yn(f ∘ F )( ⋅ , y) ∣ J(y) ∣ φ(y)

− (∇ ∂ynν(y))TG(y)∇φ(y)

− (∇ν(y))T ∂ynG(y)∇φ(y) + (f ∘ F )( ⋅ , y)∂yn ∣ J(y) ∣ φ(y) .

Following the same approach as in Lemma 3) and 4) we obtain the result. □

4.1 Hybrid collocation-perturbation approach

We now consider a linear approximation of the QoI Q(y) with respect to y ∈ Γ. For any y = 

y0 + δy, y0 ∈ Γ, y ∈ Γ, the linear approximation has the form

Q(y0) + < DyQ(y0), δy >

where δy = y − y0 ∈ Γ. Recall that Γ = ΓL × ΓS and make the following definitions and 

assumptions

i. y := [yL, yS], δy := [δyL, δyS], and y0 ≔ [y0
L, y0

S].

ii. y0
L takes values on ΓL and δyL := 0 ∈ ΓL.

iii. y0
S ≔ 0 ∈ ΓS and δyS = yS takes values on ΓS.

We can now construct a linear approximation of the QoI with respect to the allowable 

perturbation set Γ. Consider the following linear approximation of Q(yL, yS)

Q(yL, yS) ≔ Q(yL, y0
S) + Q(yL, y0

S, δyS), (11)

and from Lemma 4 we have that

Q(yL, y0
S, δyS) ≔ < DyQ(yL, y0

S), δy0
S > = ∑

n = 1

NS
δynS∫U

αn(η, yL, y0
S) dη,

where
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αn(η, yL, y0
S) ≔ − (∇(u ∘ F )(η, yL, y0

S))T ∂ynSG(yL, y0
S)∇φ(yL)

+ ∂ynS(f ∘ F )(η, yL, y0
S) ∣ J(yL, y0

S) ∣ φ(yL, y0
S)

− (∇ ∂ynSν(yL, y0
S))TG(yL, y0

S)∇φ(yL, y0
S)

− (∇ν(yL, y0
S))T ∂ynSG(yL, y0

S)∇φ(yL, y0
S)

+ (f ∘ F )(η, yL, y0
S)∂ynS ∣ J(yL, y0

S) ∣ φ(yL, y0
S) .

This linear approximation only shows the explicit dependence on the variable yS without the 

decay of the coefficients μnS for n = 1, … , NS. However, to obtain directly capture the effect 

of the coefficients let yn ≔ μn
1 ∕ 2yn for n = 1, … , N and δyn = μn

1 ∕ 2δyn. It is not hard to see 

that < DyQ(yL, y0
S), δy0

S > can be reformulated with respect to the variables y ≔ [y1, …, yN]

and δy ≔ [δy1, …, δyN] by applying Lemma 4 as

< DyQ(yL, y0
S), δy0

S > = ∑
n = 1

NS
μS, nδynS∫

U
αn(η, yL, y0

S) dη (12)

where

αn(η, yL, y0
S) ≔ − (∇(u ∘ F )(η, yL, y0

S))T ∂ynSG(yL, y0
S)∇φ(yL, y0

S)

+ ∂ynS(f ∘ F )(η, yL, y0
S) ∣ J(yL, y0

S) ∣ φ(yL, y0
S)

− (∇ ∂ynSν(yL, y0
S))TG(yL, y0

S)∇φ(yL, y0
S)

− (∇ν(yL, y0
S))T ∂ynSG(yL . y0

S)∇φ(yL, y0
S)

+ (f ∘ F )(η, yL, y0
S)∂ynS ∣ J(yL, y0

S) ∣ φ(yL, y0
S)

This will allow an explicit dependence of the mean and variance error in terms of the 

coefficients μS,n, n = 1, … , NS, as show in in Section 6.

The mean of Q(yL, yS) can be obtained as

E[Q(yL, yS)] = E[Q(yL, y0
S)] + E[Q(yL, y0

S, δyS)] .

From Fubini’s theorem we have

E[Q(yL, y0
S)] = ∫ΓL

Q(yL, 0)ρL(yL) dyL . (13)

and from equation (12)

E[Q(yL, y0
S, δyS)] = ∑

n = 1

NS
μS, n∫ΓL

∫[ − 1, 1]
ynSγn(yL, 0)ρ(yL, ynS) dyLdynS, (14)
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where γn(yL, 0) ≔ ∫Uαn(η, yL, 0) dη, ρ(yL) is the marginal distribution of ρ(y) with respect to 

the variables yL and similarly for ρ(yL, ynS) (n = 1, …, NS). The term E[Q(yL, y0
S, δyS)] is 

referred as the mean correction. The variance of Q(yL, yS) can be computed as

var[Q(yL, yS)] = E[Q(yL, yS)2] − E[Q(yL, yS)2] = var[Q(yL, y0
S)]

+E[Q(yL, y0
S, δyS)2] + 2E[Q(yL, y0

S)Q(yL, y0
S, δyS)]

(I)
−E[Q(yL, y0

S, δyS)]2 − 2E[Q(yL, y0
S)]E[Q(yL, y0

S, δyS)]
(I)

.

The term (I) is referred as the variance correction of var[Q(yL, y0
S)]. From Fubini’s theorem 

and equation (12) we have that

E[Q(yL, y0
S, δyS)2] = ∑

k = 1

NS
∑

n = 1

NS ∫ΓL
∫[ − 1, 1]∫[ − 1, 1]

μS, k μS, nykSynS

γk(yL, y0
S)γn(yL, y0

S)ρ(yL, ykS, ynS) dyLdykSdynS,
(15)

and E[Q(yL, y0
S)Q(yL, y0

S, δyS)] is equal to

∑
k = 1

NS ∫ΓL
∫[ − 1, 1]

Q(yL, 0)γk(yL, 0)ykSρ(yL, ykS) dyLdykS . (16)

Note that the mean E[Q(yL, y0
S)] and variance var[Q(yL, y0

S)] depend only on the large 

variation variables yL. If the region of analyticity of the QoI with respect to the stochastic 

variables yL is sufficiently large, it is reasonable to approximate Q(yL, y0
S) with a Smolyak 

sparse grid Sw
m, g[Q(yL, y0

S)], with respect to the variable yL (see [6] for details). Thus in 

equations (13) - (16) Q(yL, y0
S) is replaced with the the sparse grid approximation 

Sw
m, g[Q(yL, y0

S)] and for n = 1, … , NS γn(yL, 0) is replaced with Sw
m, g[γn(yL, 0)].

Remark 4 For the special case that for n = 1, … , N and m = 1, … , N 
E[Yn(ω)Ym(ω)] = δ[n − m], ρ(y) = ρ(yL)ρ(yS), for all yL ∈ ΓL and yS ∈ ΓS (i.e. independence 

assumption of the joint probability distribution ρ(yL, yS)), the mean and variance corrections 

are simplified. Applying Fubini’s theorem and from equation 13 the mean of Q(yL, yS) now 

becomes

E[Q(yL, yS)] = E[Q(yL, y0
S)] + E[Q(yL, y0

S, δyS)]
= 0

= E[Q(yL, y0
S)]

= ∫ΓL
Q(yL, 0)ρL(yL) dyL,
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i.e. there is no contribution from the small variations. Applying a similar argument we have 

that

var[Q(yL, yS)] = E[Q(yL, yS)2] − E[Q(yL, yS)]2 = var[Q(yL, y0
S)]

+ E[Q(yL, y0
S, δyS)2] + 2E[Q(yL, y0

S)Q(yL, y0
S, δyS)]

= 0
−E[Q(yL, y0

S, δyS)]2

= 0
− 2E[Q(yL, y0

S)]E[Q(yL, y0
S, δyS)]

= 0

= var[Q(yL, y0
S)] + ∑

n = 1

NS
μnS∫U

αn(x, yL, y0
S) dx∫U

αn(y, yL, y0
S) dy

Variance correction

.

Notice that for this case the variance correction consists of NS terms, thus the computational 

cost will depend linearly with respect to NS.

5 Analytic correction

In this section we show that the mean and variance corrections are analytic in a well defined 

region in ℂNL with respect to the variables yL ∈ ΓL. The size of the region of analyticity will 

directly correlated with the convergence rate of a Smolyak sparse grid. To this end, let us 

establish the following definition: For any 0 < β < δ , for some constant δ > 0, define the 

following region in ℂNL,

Θβ, NL ≔ {z ∈ ℂNL; z = y + w, y ∈ [ − 1, 1]NL,

∑
l = 1

NL
sup

η ∈ U
‖Bl(η)‖2 μl ∣ wl ∣ ⩽ β} .

(17)

Observe that the size of the region Θβ,NL is mostly controlled by the decay of the 

coefficients μl and the size of ∥Bl(η)∥2. Thus the faster the coefficient μl decays the larger the 

region Θβ,NL will be.

Furthermore, rewrite J(η, yL) as J(yL) = I+R(yL), with R(yL) ≔ ∑n = 1
NL μnBn(η)yn. We now 

state the first analyticity theorem for the solution (u ∘ F )(yL) with respect to the random 

variables yL ∈ ΓL.

To simplify the analyticity proof the following assumptions are made.

Assumption 6

i. (a ∘ F)(η, ω) is only a function of η ∈ U and independent of ω ∈ Ω.

ii. (ν ∘ F )(η, ω) is only a function of η ∈ U and independent of ω ∈ Ω.

iii. f :G ℝ can be analytically extended in ℂd. Furthermore assume that the 

analytic extension Re(f ∘ F)(η, z), Im(f ∘ F)(η, z) ∈ L2(U).
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iv. There exists 0 < δ < 1 such that ∑n = 1
N ‖B(η)‖2 μn ⩽ 1 − δ , for all η ∈ U.

Remark 5 Note that Assumption 6 (i) is not necessarily hard and Theorem 1, 2 and the error 

analysis in Section 6 can be easily adapted for a less restrictive hypothesis (See Assumptions 

7 and Lemma 2 in [7]). None-the-less, this assumption is still practical for layered materials 

such as semi-conductor design. For such problems (ν ∘ F )(η, ω) can be non-constant along the 

non-stochastic directions.

Remark 6 Under Assumption 6 (iv) we have that Re det(J(z)) ⩾ δ dα for all z ∈ Θβ,NL, where 

α = 2 − exp dβ
δ − β > 0. This implies the real part of Redet(J(z)) for all z ∈ Θβ,NL will never 

have a sign change.

The following theorem, can be proven with a slight modification of Theorem 7 in [7] to take 

into account Assumption 6 (ii) and the mapping model of equation (8)

Theorem 1 Let 0 < δ < 1 then the solution (u ∘ F )(η, yL) :ΓL H0
1(U) of Problem 1 can be 

extended holomorphically on Θβ,NL if

β < min δ log (2 − γ)
d + log (2 − γ) , 1 + δ2 ∕ 2 − 1 ,

where γ ≔ 2δ2 + (2 − δ )d

δd + (2 − δ )d
.

Remark 7 By following a similar argument, the influence function φ(y) can be extended 

holomorphically in Θβ,NL if

β < min δ log (2 − γ)
d + log (2 − γ) , 1 + δ2 ∕ 2 − 1 .

Remark 8 To prove the following theorem will be using the following matrix calculus 

identity [5]: Suppose that the matrix A ∈ ℝn, n is a function of a the real variable α then

∂A−1
∂α = − A−1∂A

∂α A
−1 .

We are now ready to show that the linear approximation Q(yL, yS) can be analytically 

extended on Θβ,NL. Note that it is sufficient to show that ∫Uαn(η, yL, 0) can be analytically 

extended on Θβ,NL.

Theorem 2 Let 0 < δ < 1, if β < min{δ log (2 − γ)
d + log (2 − γ) , 1 + δ 2 ∕ 2 − 1} then there exists an 

extension of ∫Uαn(η, yL, 0), for n = 1, … , NS, which is holomorphic in Θβ,NL.

Proof Consider the extension of yL → zL, where zL ∈ ℂNL. First, we have that
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∫
U

(∇(u ∘ F )(yL, yS))T ∂ynSG(yL, yS)∇φ(yL, yS) (18)

for n = 1, … , NS can be extended on Θβ,NL. Note the for the sake of reducing notation 

clutter we dropped the dependence of the variable η ∈ U and it is understood from context 

unless clarification is needed.

We now show that each entry of the matrix ∂ynSG(zL, yS) is holomorphic on Θβ,NL for all y ∈ 

ΓS. First, we have that

∂ynSG(zL, yS) = (∂ynS(a ∘ F )(zL, yS))C−1(zL, yS) ∣ J(zL, yS) ∣

+ (a ∘ F )(zL, yS) C−1(zL, yS)∂ynS ∣ J(zL, yS) ∣

+ ∣ J(zL, yS) ∣ ∂ynSC
−1(zL, yS) .

From Assumption 6 (a ∘ F)(·, zL) and ∂ynS(a ∘ F )( ⋅ , zL, yS) = 0 are holomorphic on Θβ,NL for 

all yS ∈ ΓS. From Remark 8 we have that

∂ynSC
−1(zL, yS) = − C−1(zL, yS) ∂ynSC(zL, yS) C−1(zL, yS) .

Since β < δ  the series

J−1(zL, yS) = (I + R(zL, yS))−1 = I + ∑
k = 1

∞
R(zL, yS)k

is convergent for all zL ∈ Θβ and for all yS ∈ ΓS. It follows that each entry of ∂F(zL, y)−1 and 

therefore C(zL, y)−1 is holomorphic for all zL ∈ Θβ,NL and for all yS ∈ ΓS. We have that 

∣J(zL, yS)∣ and ∂y l
SC(zL, yS) are functions of a finite polynomial therefore they are 

holomorphic for all zL ∈ Θβ,NL and yS ∈ ΓS.

From Jacobi’s formula we have that for all zL ∈ Θβ,NL, yS ∈ ΓS and l = 1, … , NS

∂ynS ∣ J(zL, yS) ∣ = tr(Adj(J(zL, yS))∂ynSJ(zL, yS))

= ∣ J(zL, yS) ∣ tr(J(zL, yS)−1BnS(η)) .

It follows that for all zL ∈ Θβ,NL and yS ∈ ΓS we have that ∂ynSG(zL, yS) are holomorphic for 

n = 1, … NL.

We shall now prove the main result. First, extend yL along the nth dimension as yn → zn, 

zn ∈ ℂ and let zn = [z1, …, zn − 1, zn + 1, …, zNL]. From Theorem 1 we have that (u ∘ F )(zL, yS)

and φ(zL, yS) are holomorphic for zL ∈ Θβ,NL and yS ∈ ΓS if
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β < min{δ log (2 − γ)
d + log (2 − γ) , 1 + δ2 ∕ 2 − 1} .

Thus from Theorem 1.9.1 in [16] the series

(u ∘ F )(zL, yS) = ∑
l = 0

∞
ul(zn, yS)znl andφ(zL, yS) = ∑

l = 0

∞
φ̄l(zn, yS)znl ,

are absolutely convergent in H0
1(U) for all z ∈ ℂ, where u l(zn, yS), φl(zn, yS) ∈ H0

1(U) for l = 

0, … , ∞. Furthermore,

‖∇(u ∘ F )(zL, yS)‖L2(U) ⩽ ∑
l = 0

∞
‖∇ul(zn, yS)‖L2(U) ∣ zn ∣l

⩽ ∑
l = 0

∞
‖ul(zn, yS)‖H0

1(U) ∣ zn ∣l

i.e. ∇(u ∘ F )(zL, yS) is holomorphic on Θβ,NL along the nth dimension. A similar argument is 

made for ∇φ(zL, yS).

Since the matrix ∂ynSG(zL, yS) is holomorphic for all zL ∈ Θβ,NL and yS ∈ ΓS then we can 

rewrite the (i, j) entry as ∑k = 0
∞ gk

i, j(zn, yS)znk where gk
i, j(zn, yS) ∈ L∞(U). For each i, j = 1, 

… , d consider the map

Ti, j ≔ ∫U
∂ynSG(zL, yS)(i, j)∂xiu (zL, yS)∂xjφ(zL, yS)

= ∑
k, l, p = 0

∞
znk + l + p∫U

gk
i, j(zn, yS)∂xiul(zn, yS)∂xjφp(zn, yS) .

For i, j = 1, … , d, for all zL ∈ Θβ,NL and yS ∈ ΓS

∣ Ti, j ∣ ⩽ ∑
k, l, p = 0

∞
∣ zn ∣k + l + p ∫U

∣ gk
i, j(zL, yS)∂xiul(zn, yS)∂xjφp(zn, yS) ∣

(From Cauchy Schwartz it follows that)

⩽ ∑
k, l, p = 0

∞
∣ zn ∣k + l + p ‖gk

i, j(zn, yS)‖L∞(U)‖∂xiul(zn, yS)‖L2(U)

‖∂xjφp(zn, yS)‖L2(U)

⩽ ∑
k, l, p = 0

∞
∣ zn ∣k + l + p ‖gk

i, j(zn, yS)‖L∞(U)‖ul(zn, yS)‖H0
1(U)

‖φp(zn, yS)‖H0
1(U) < ∞ .

Thus equation (18) can be analytically extended on Θβ,NL along the nth dimensions for all yS 

∈ ΓS. Equation (18) can now be analytically extended on the entire domain Θβ,NL. Repeat 

the analytic extension of (18) for n = 1, … , NL. Hartog’s Theorem implies that (18) is 
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continuous in Θβ,NL. Osgood’s Lemma them implies that (18) is holomorphic on Θβ,NL. 

Following a similar argument as for (18) we can analytically extended the rest of the terms 

of αn(yL, yS) on Θβ,NL for n = 1, … , NS. □

6 Error analysis

In this section we analyze the perturbation error between the exact QoI Q(yL, yS) and the 

sparse grid hybrid perturbation approximation Sw
m, g[Qℎ(yL, yS)]. With a slight abuse of 

notation by Sw
m, g[Qℎ(yL, yS)] we mean the two sparse grids approximations:

Sw
m, g[Qℎ(yL, yS)] ≔ Sw

m, g[Qℎ(yL, 0)] + ∑
n = 1

NS
μS, nynSSw

m, g[∫U
αn, ℎ(η, yL, 0)],

where αn,h(·, yL, 0), for n = 1, … , NS, and Qh(yL, yS) are the finite element approximations 

of αn(·, yL, 0) and Q(yL, yS) respectively. It is easy to show that 

var(Q(yL, yS)) − var(Sw
m, g[Qℎ(yL, yS)]) is equal to

E[Q2(yL, yS) − Sw
m, g[Qℎ(yL, yS)]2]

(I)
− (E[Q(yL, yS)]2 − E[Sw

m, g[Qℎ(yL, yS)]2])
(II)

.

(I) Applying Jensen’s inequality we have that

∣ E[Q2(y) − Sw
m, g[Qℎ(y)]2] ∣ ⩽ ‖Q(y) + Sw

m, g[Qℎ(y)]‖Lρ∞(Γ )(‖Q(y) − Q(y)‖Lρ2(Γ )
+ ‖Q(y) − Qℎ(y)‖Lρ1(Γ ) + ‖Qℎ(y) − Sw

m, g[Qℎ(y)]]‖Lρ2(Γ ))
.

(19)

(II) Similarly, we have that

∣ E[Q(yL, yS)]2 − E[Sw
m, g[Qℎ(yL, yS)]]2 ∣ ⩽ ‖Q(y) + Sw

m, gQℎ(y)‖Lρ1(Γ )
‖Q(y) − Sw

m, gQℎ(yL)‖Lρ1(Γ )
⩽ ‖Q(y) + Sw

m, gQℎ(y)‖Lρ1(Γ )(‖Q(y) − Q(y)‖Lρ1(Γ ) + ‖Q(y) − Qℎ(y)‖Lρ1(Γ )
+ ‖Qℎ(y) − Sw

m, gQℎ(y)‖Lρ1(Γ ))

Applying Jensen inequality

∣ E[Q(yL, yS)]2 − E[Sw
m, g[Qℎ(yL, yS)]]2 ∣ ⩽ ‖Q(y) + Sw

m, gQℎ(y)‖Lρ2(Γ )
(‖Q(y) − Q(y)‖Lρ2(Γ ) + ‖Q(y) − Qℎ(y)‖Lρ1(Γ ) + ‖Qℎ(y) − Sw

m, gQℎ(y)‖Lρ2(Γ )) .
(20)

Combining equations (19) and (20) we have that
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∣ var(Q(y)) − var(Sw
m, g[Qℎ(y)]) ∣ ⩽ CP‖Q(y) − Q(y)‖Lρ2(Γ )

Perturbation
+ CPFE‖Q(y) − Qℎ(y)‖Lρ1(Γ )

Finite Element

+ CPSG‖Qℎ(y) − Sw
m, g[Qℎ(y)]‖Lρ2(Γ )

Sparse Grid

.

Similarly we have that the mean error satisfies the following bound:

∣ E[Q(yL, yS) − Sw
m, g[Qℎ(yL, yS)] ∣ ⩽ ‖Q(y) − Q(y)‖Lρ2(Γ )

Perturbation (I)
+ ‖Q(y) − Qℎ(y)‖Lρ1(Γ )

Finite Element (II)

+ ‖Qℎ(y) − Sw
m, g[Qℎ(y)]‖Lρ2(Γ )

Sparse Grid (III)

.

Remark 9 For the case that probability distributions ρ(yL) and ρ(yS) are independent then the 

mean correction is exactly zero, thus the mean error would be bounded by the following 

terms

∣ E [Q(yL, yS)] − E [Sw
m, g[Qℎ(yL)]] ∣ ⩽ CT‖Q(yL, yS) − Q(yL)‖Lρ2(Γ )

Truncation
+ CFE‖Q(yL) − Qℎ(yL)‖Lρ1(ΓL)

Finite Element

+ CSG‖Qℎ(yL) − Sw
m, g[Qℎ(yL)]‖Lρ2(ΓL)

Sparse Grid

for some positive constants CT, CFE and CSG. We refer the reader to Section 5 in [6] for the 

definition of the constants and the bounds of these errors.

6.1 Perturbation error

In this section we analyze perturbation approximation error

‖Q(yL, yS) − Q(yL, yS)‖Lρ2(Γ ) = ‖ℛ(yL, δyS)‖Lρ2(Γ ) (21)

where the remainder is equal to

ℛ(yL, δyS) ≔ 1
2DyS

2 Q(yL + θδyS)(δyS, δyS)

for some θ ∈ (0, 1). Since the perturbation approach involves two derivatives, to obtain a 

bounded error estimate the following assumptions are made:

Assumption 7 Assume that f ∈ H2(G). Furthermore, assume that F :U D(ω) is also 2-
smooth almost surely.

From this assumption the following lemma can be proven.

Lemma 6

Castrillón-Candás et al. Page 21

Adv Comput Math. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H2(D(ω)) and H2(U) are isomorphic almost surely.

Proof See Theorem 3.35 in [1]. □

Remark 10 Note that the previous Sobolev norm equivalence will depend on the parameter 

ω ∈ Ω. The constant depends on the transformation F and the determinant of the Jacobian 

∣J∣. See the proof of Theorem 3.35 in [1] for more details.

To estimate the perturbation error the next step is to bound bound the remainder. To this end 

the following series of lemmas are useful.

Lemma 7 For all n = 1, … , NS and for all y ∈ Γ

sup
x ∈ U

σmax ∂ynSJ−1(y) ⩽ sup
x ∈ U

‖BS, n(η)‖2Fmin−2 .

Proof From Remark 8 we have that

∂ynSJ−1(y) = − ∂F−1(y) ∂ynSJ(y) J−1(y)

and thus

σmax ∂ynS ∂F (y) ⩽ σmax(BS, n(η))Fmin−2 .

From Assumption 1 the result follows. □

Lemma 8 For all y ∈ Γ

sup
x ∈ U

∣ ∂ynS ∣ J(y)‖ ⩽ sup
x ∈ U

Fmaxd Fmin−1 ‖BS, n(η)‖2d

Proof Using Jacobi’s formula we have that for all y ∈ Γ

∂ynS ∣ J(y) ∣ = tr(Adj(J(y))∂ynSJ(y))

= ∣ J(y) ∑
i = 1

d
λi(J(y)−1BS, n(η)))

□

Lemma 9 For all n, m = 1, … , NS and for all y ∈ Γ

sup
x ∈ U

σmax ∂ynS ∂ymSJ−1(y) ⩽ sup
x ∈ U

2Fmin−3 ‖BS, n(η)‖2‖BS, m(η)‖2 .

Proof From Remark 8 we have that
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∂ynS ∂ymSJ−1(y) = J−1(y) ∂ymSJ(y) J−1(y) ∂ynSJ(y)

− ∂ynS ∂ymSJ(y) + ∂ynS ∂F (y) J−1(y) ∂ymSJ(y)

J−1(y)

Taking the triangular and multiplicative inequality, and following the same approach as 

Lemma 7 we obtain the desired result. □

Lemma 10 For n, m = 1, … , NS for all y ∈ Γ

sup
x ∈ U

∣ ∂ymS ∂ynS ∣ J(y)‖ ⩽ sup
x ∈ U

d(d + 1)Fmaxd Fmin−2 ‖BS, n(η)‖2‖BS, m(η)‖2 .

Proof Using Jacobi’s formula we have

∂ymS ∂ynS ∣ J(y) ∣ = ∂ymS ( ∣ J(y) ∣ tr(J(y)−1BS, n(η)))

= ∂ymS ∣ J(y) ∣ tr(J(y)−1BS, n(η))

+ ∣ J(y) ∣ tr(∂ymSJ(y)−1BS, n(η))

= ∣ J(y) ∣ tr(J(y)−1BS, m(η))tr(J(y−1BS, n(η))
− ∣ J(y) ∣ tr(J(y)−1BS, m(η)J(y)−1BS, n(η)) .

The result follows. □

Lemma 11 For all v, w ∈ H0
1(U) and y ∈ Γ we have that

∣ ∫U
(a ∘ F )( ⋅ , yL, 0)(∇v)T ∂ynSG(y)∇w ∣ ⩽ ‖v‖H0

1(U)‖w‖H0
1(U)amax

ℬ(d, Fmin, Fmax,BS, n) .

where G(y) = J(y)−1J(y)T ∣ ∂F (y) ∣ for all y ∈ Γ and

ℬ(d, Fmin, Fmax,BS, n) ≔ sup
x ∈ U

(d + 2)Fmaxd Fmin−3 ‖BS, n(η)‖2 .

Proof First we expand the partial derivative of G(y) with respect to yn
S:

∂ynSG(y) = ∂ynSJ−T (y)J−1(y) ∣ ∂F (y) ∣ + J−T (y)∂ynS ∂F−1(y) ∣ J(y) ∣

+ J−T (y)J−1(y)∂ynS ∣ J(y) ∣ ,

From Lemmas 7, 8 and the triangular inequality we have that

sup
x ∈ U, y ∈ Γ

σmax ∂ynSG(y) ⩽ (d + 2)Fmaxd Fmin−3 ‖BS, n(η)‖2 .
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□

Lemma 12 For all v, w ∈ H0
1(U) and y ∈ Γ we have that

∫U
(a ∘ F )( ⋅ , yL)(∇w)T ∂ynS ∂ymSG(y)∇v

is less or equal to

‖v‖H0
1(U)‖w‖H0

1(U)amax2(d + 3)Fmax−4 Fmind ‖BS, n(η)‖2‖BS, m(η)‖2 .

Proof From Remark 8 we have that

∂ymS ∂ynSG(y) = ∂ymS ∂ynSJ−T (y)J−1(y) ∣ ∂F (y) ∣

+ ∂ynSJ−T (y)∂ymS ∂F−1(y) ∣ J(y) ∣

+ ∂ynSJ−T (y)J−1(y)∂ymS ∣ J(y) ∣

+ ∂ymSJ−T (y)∂ynS ∂F−1(y) ∣ J(y) ∣

+ J−T (y)∂ymS ∂ynSJ−1(y) ∣ ∂F (y) ∣

+ J−T (y)∂ynSJ−1(y)∂ymS ∣ J(y) ∣

+ ∂ymSJ−T (y)∂F−1(y)∂ynS ∣ J(y) ∣

+ J−1(y)∂ymSJ−1(y)∂ynS ∣ ∂F (y) ∣

+ J−T (y)J−1(y)∂ymS ∂ynS ∣ J(y) ∣ .

From Lemmas 7 - 10, and the triangular inequality we have that for all y ∈ Γ

‖∂ymS ∂ynSG(y)‖2 ⩽ sup
x ∈ U

(7 + 3d + 2Fmin−1 Fmax−d )Fmin−4 Fmaxd ‖BS, n(η)‖2‖BS, m(η)‖2

□

The next step is to bound ‖∇DyS(u ∘ F )(η, yL, 0)(δyS)‖L2(U) and ‖∇DySφ(yL, 0)(δyS)‖L2(U).

Lemma 13 For all yL ∈ ΓL and δyS ∈ Γ we have that:

(a)

‖∇DyS(u ∘ F )( ⋅ , yL, 0)(δyS)‖L2(U) ⩽
∑n = 1

NS μS, n
aminFmind Fmax−2

sup
x ∈ U

(‖(u ∘ F )( ⋅ , yL, 0)‖H0
1(U) + ‖ν‖H1(U))amax(d + 2)Fmaxd Fmin−3 ‖BS, n(η)‖2

+ Cd
1
2Fmaxd CP (U)‖f‖H1(G) + dCP (U)Fmaxd Fmin

−(d + 1)‖f‖L2(G)‖BS, n(η)‖2) .

where C is a uniformly bounded constant.
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(b)

‖∇DySφ(yL, 0)(δyS)‖L2(U)

⩽
supη ∈ U ∑n = 1

NS μS, n‖φ(yL, 0)‖H0
1(U)amax(d + 2)‖BS, n‖2

aminFmin
(d + 3)Fmax−(d + 2) .

Proof (a) For any v ∈ H0
1(U) and for all yL ∈ ΓL. and δyS ∈ Γ from Lemma 2

aminFmind Fmax−2 ‖∇Dyu ( ⋅ , yL, 0)(δyS)‖L2(U)‖∇v‖L2(U)

⩽ ∑
n = 1

NS
δynS ∫U

− ∇(u ∘ F )( ⋅ , yL, 0)T ∂ynSG(yL, 0)∇v

+ (∂ynS(f ∘ F )( ⋅ , yL, 0)) ∣ J(yL, 0) ∣ v + (f ∘ F )( ⋅ , yL, 0)∂ynS ∣ J(yL, 0) ∣ v

− (∇ν)T ∂ynSG(yL, 0)∇v .

With the choice of v = DyS(u ∘ F )( ⋅ , yL, 0)(δyS) and from Lemma 11

‖∇DyS(u ∘ F )( ⋅ , yL, 0)(δyS)‖L2(U) ⩽ 1
aminFmind Fmax−2 ‖∇v‖L2(U)

∑
n = 1

NS
δynS ∫U

− (∇(u ∘ F )( ⋅ , yL, 0))T ∂ynSG(yL, 0)∇v

+ ∂ynS(f ∘ F )( ⋅ , yL, 0) ∣ J(yL, 0) ∣ v + (f ∘ F )( ⋅ , yL, 0)∂ynS ∣ J(yL, 0) ∣ v

− (∇ν)T ∂ynSG(yL, 0)∇v .

Now,

∫U
∂ynS(f ∘ F )( ⋅ , yL, 0) ∣ J(yL, 0) ∣ v ⩽ Fmaxd ∫U

∣ ∂ynS(f ∘ F )( ⋅ , yL, 0)v ∣

⩽ Fmaxd CP (U)‖∇v‖L2(U)‖ ∑
k = 1

d
∂Fkf ∂ȳnFk‖L2(U)

⩽ Fmaxd CP (U)‖∇v‖L2(U)‖bn(η)‖[L∞(U)]d‖∇f ⋅ 1‖L2(U)
(Applying Lemma 1 ii), where C > 0 is a constant . )

⩽ d
1
2CFmaxd CP (U)‖∇v‖L2(U)‖f‖H1(G) .

Finally, from Lemma 8 the result follows.

(b) Apply Lemma 3 with v = DySφ(yL, 0)(δyS) and Lemma 11. □

Lemma 14 For all y ∈ Γ and n, m = 1, … , N we have that

‖∂ynS(f ∘ F )( ⋅ , y)‖L2(U) ⩽ d
1
2Fmin−1 ‖f‖H1(G) .
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‖∂ynS ∂ymS(f ∘ F )( ⋅ , y)‖L2(U) ⩽ Fmin−d ‖f‖H2(G) .

Proof (a) Follow the proof in Lemma 13. (b) By applying the chain rule for

Sobolev spaces and Lemma 6 we obtain that for all y ∈ Γ

‖∂ynS ∂ymS(f ∘ F )( ⋅ , y)‖L2(U) = ‖ ∑
i = 1

d
∑
j = 1

d
∂Fi ∂Fjf ∂ymSFi∂ynSFj‖L2(U)

⩽ d2 ∑
i = 1

d
∑
j = 1

d
∂Fi ∂Fjf

L2(U)
⩽ Cd2 ∑

i = 1

d
∑
j = 1

d
∂Fi ∂Fjf

D(ω)
⩽ Cd2‖f‖H2(G) .

for some constant C > 0. This completes the proof. □

From Lemmas 4 - 5 and 7 - 14 we have that for all yL ∈ ΓL and for all δyS ∈ ΓS

∣ DyS
2 Q(y)(δyS, δyS) ∣ ⩽ ∑

n, m = 1

NS
∣ δynS ∣ ∣ δymS ∣ sup

y ∈ Γ , x ∈ U
Gn, m,

where

Gn, m(C, CP (U), amax, amin, Fmax, Fmin, d, ‖v‖[L∞(U)]d, ‖ν‖H1(U), ‖f‖H2(G),
‖(u ∘ F )(yL, 0)‖H1(U), ‖φ(yL, 0)‖H1(U), ‖BS, n‖2, ‖BS, m‖2, μS, 1, …, μS, NS)

is a bounded constant that depends on the indicated parameters. We have now proven the 

following result.

Theorem 3 Let (u ∘ F )(yL, 0) be the solution to the bilinear Problem 1 that satisfies 

Assumptions 1-7 then for all yL ∈ ΓL and yS ∈ ΓS

‖Q(yL, yS) − Q(yL, yS)‖Lρ2(Γ ) ⩽ 1
2 ∑

n, m = 1

NS
μS, n μS, mGn, m ⩽ G( ∑

k = 1

NS
μS, k)2,

where G ≔ 1
2 maxn, m supy ∈ Γ , η ∈ U Gn, m.

6.2 Finite element error

The finite element convergence rate for the solution (u ∘ F ) and influence function φ are 

directly dependent on the regularity of these functions, the polynomial order Hℎ(U) ⊂ H0
1(U)

of the finite element space and the mesh size h). By applying the triangular inequality
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‖Q(yL, yS) − Qℎ(yL, yS)‖Lρ1(Γ ) ⩽ ‖Q(yL, 0) − Qℎ(yL, 0)‖Lρ1(ΓL)

+ ∑
n = 1

NS
μS, n‖∫U

αn(x, yL, 0) − αi, ℎ(x, yL, 0)‖Lρ2(ΓL) .

Following a duality argument we obtain

‖Q(yL, 0) − Qℎ(yL, 0)‖Lρ1(ΓL) ⩽ amaxFmaxd Fmin−2 CΓL(r)DΓL(r)ℎ2r .

for some constant r ∈ ℕ, CΓL (r) := ʃΓL C(r, u(yL, 0))ρ(yL)dy and DΓL (r) := ʃΓL C(r, φ(yL, 

0)) ρ(yL)dy.

The constant r is function of i) the regularity properties of the influence function and the 

solution (u ∘ F)(·, yL, 0) ii) the polynomial degree of the finite element basis.

It follows that

‖Q(yL, 0) − Qℎ(yL, 0)‖Lρ2(Γ ) ⩽ S0ℎ2r + ℎr ∑
n = 1

NS
Sn μS, n (22)

where S0 ≔ amax, Fmax
d Fmin

−2 CΓL(r)DΓL(r) and

Sn(amax, Fmax, Fmin, d, ‖v‖[L∞(U)]d, CΓL(r),DΓL(r), ‖f‖L2(G)
‖ν(yL, 0)‖H1(U), ‖BS, n‖2)

are bounded constants for n = 1, … , NS.

6.3 Sparse grid error

For the sake of simplicity only convergence rates for the isotropic Smolyak sparse grid are 

shown. This analysis can be extended to the anisotropic case without much difficulty.

‖Qℎ(yL, yS) − Sw
m, gQℎ(yL, yS)‖Lρ2(Γ ) ⩽ amaxFmaxd Fmin−2 ‖e0‖Lρ2(ΓL; H0

1(U))

+ ∑
n = 1

NS
μS, n‖en‖Lρ2(ΓL),

where e0 ≔ uℎ( ⋅ , yL, 0) − Sw
m, guℎ( ⋅ , yL, 0)] and

en ≔ ∫U
αn, ℎ( ⋅ , yL, 0) − Sw

m, g[∫U
αn, ℎ( ⋅ , yL, 0)]

for n = 1, … , NS, and
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Lρq(ΓL; V ) ≔ {v :ΓL × U V is strongly measurable,∫Γ
‖v‖V

q ρ(y) dy < ∞} .

for any Banach space V defined on U.

It can be shown that ‖e0‖Lρ2(ΓL; H0
1(U)) (and ‖en‖Lρ2(ΓL) for n = 1, … , NS) have a algebraic or 

sub-exponential convergence rate as a function of the number of collocation knots η (see 

[26,27]). necessary condition is that the semi-discrete solution u0, ℎ(z) ≔ uℎ( ⋅ , yL, 0) and 

un, ℎ(z) ≔ ∫Uαk, n( ⋅ , yL, 0), n = 1, … , NS admit an analytic extension in the same region 

Θβ,NL. This is a reasonable assumption to make.

Consider the polyellipse in ℰσ1, …, σNL ≔ Πn = 1
NL ℰn, σn ⊂ ℂNL where

ℰn, σn ≔ z ∈ ℂ; σn > 0; σn ⩾ κn ⩾ 0; Re(z) = eκn + e−κn
2 cos(θ) ,

Im(z) = eκn − e−κn
2 sin(θ), θ ∈ [0, 2π) ,

and let

Σn ≔ zn ∈ ℂ; yn = y + wn, y ∈ [ − 1, 1], ∣ wn ∣ ⩽ τn ≔ β
1 − δ

for n = 1, … , NL. For the sparse grid error estimates to be valid the solution uℎ( ⋅ , yL, 0) and 

∫Uαn, ℎ( ⋅ , yL, 0), n = 1, … , NS, have to admit an extension on the polyellipse ℰσ1, …, σNL. 

The coefficients σn, for n = 1, … , N control the overall decay σ of the sparse grid error 

estimate. Since we restrict our attention to isotropic sparse grids the decay will be dictated 

by the smallest σn i.e. σ ≡ minn = 1, …, NLσn.

The next step is to find a suitable embedding of ℰσ1, …, σNL in Θβ,NL. Thus we need to pick 

the largest σn n = 1, … , NL such that ℰσ1, …, σNL ⊂ Θβ, NL. This is achieved by forming the 

set Σ := Σ1 × ⋯ × ΣNL and letting σ1 = σ2 = ⋯ = σNL = σ = log( τNL
2 + 1 + τNL) > 0 as 

shown in Figure 2.

We now have almost everything we need to state the sparse grid error estimates. However, in 

[27] to simplify the estimate it is assumed that if v ∈ C0(Γ ; H0
1(U)) then the term M(v) (see 

page 2322) is equal to one. We reintroduce the term M(v) and note that it can be bounded by 

maxz∈Θβ,NL
 ‖v(z)‖H0

1(U) and update the sparse grids error estimate. To this end let 

M ≔ max{maxn = 1
NL maxz ∈ ΘNL, β‖un, ℎ(z)‖H0

1(U), maxz ∈ ΘNL, β ∣ un, ℎ(z) ∣ }.
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Remark 11 In [6] Corollary 8 a bound for ‖(u ∘ F )( ⋅ , z)‖H0
1(U), z ∈ Θβ,NL, can be obtained by 

applying the Poincaré inequality. Following a similar argument a bound for ‖φ( ⋅ , z)‖H0
1(U)

for all z ∈ Θβ,NL. Thus bounds for ‖un, ℎ(z)‖H0
1(U) for n = 0, … , NL and for all z ∈ Θβ,NL 

can be obtained.

Modifying Theorem 3.11 in [27] it can be shown that given a sufficiently large η (w > 

NL/log 2) a Smolyak sparse grid with a nested Clenshaw Curtis abscissas we obtain the 

following estimate

‖e0‖Lρ2(ΓL; H0
1(U)) ⩽ Q(σ, δ∗(σ), NL,M)ημ3(σ, δ∗, NL) exp − NLσ

21 ∕ NL
ημ2(NL)

(23)

and

‖en‖Lρ2(ΓL) ⩽ Q(σ, δ∗(σ), NL,M)ημ3(σ, δ∗, NL) exp − NLσ
21 ∕ NL

ημ2(NL)
(24)

for n = 1, … , NS, where σ = σ ∕ 2, δ∗(σ) ≔ (e log (2) − 1) ∕ C2(σ),

Q(σ, δ∗(σ), NL,M) ≔
C1(σ, δ∗(σ),M)

exp(σδ∗(σ)C2(σ))
max{1, C1(σ, δ∗(σ),M)}NL

∣ 1 − C1(σ, δ∗(σ),M) ∣
,

μ2(NL) = log(2)
NL(1 + log(2NL))  and μ3(σ, δ∗(σ), Ns) =

σδ∗(σ)C2(σ)
1 + log (2NL) . Furthermore, C(σ) = 4

e2σ − 1
,

C2(σ) = 1 + 1
log 2

π
2σ , δ∗(σ) = e log (2) − 1

C2(σ)
,

C1(σ, δ,M) = 4MC(σ)a(δ, σ)
eδσ ,

and

a(δ, σ) ≔ exp δσ 1
σ log2 (2)

+ 1
log (2) 2σ + 2 1 + 1

log (2)
π
2σ .

7 Complexity analysis

We now perform an accuracy vs the total work analysis. The objective is to derived total 

work W as a function of a tolerance TOL > 0, such that 

∣ var[Q(yL, yS)] − var[Sw
m, g[Qℎ(yL, yS)]] ∣ ⩽ TOL and 

∣ E[Q(yL, yS)] − E[Sw
m, g[Qℎ(yL, yS)]] ∣ ⩽ TOL. We restrict our attention to the isotropic sparse 

grid with Clenshaw-Curtis abscissas. For each realization of the semi-discrete approximation 

uh, it is assumed that it requires O(Nℎ
q) work to compute, where Nh is the cardinality of the 
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finite element space Hℎ(U) ⊂ H0
1(U), and the constant q is a function of the regularity of uh 

and the efficiency of the solver. The cost for solving the approximation of the influence 

function φh ∈ Hh(U) is also assumed to be O(Nℎ
q). Thus for any yL ∈ ΓL, the cost for 

computing Qh(yL, 0) := B(yL, 0; uh(yL, 0),φh(yL, 0)) is bounded by O(Nℎd2 + Nℎ
q). Similarly, 

for any yL ∈ ΓL the cost for evaluating ∫Uαn, ℎ( ⋅ , yL, 0) is O(Nℎd2 + Nℎ
q).

Remark 12 To compute the expectation integrals for the mean and variance correction a 

Gauss quadrature scheme can be used coupled with an auxiliary probability distribution ρ(y)
such that

ρ(y) = Πn = 1
N ρn(yn) and ρ ∕ ρ < C < ∞ .

for some C > 0 (See [6] for details). However, for the sake of simplifying the analysis it is 

assumed that quadrature is exact and of cost O(1).

Let η0(NL, m, g, w, Θβ,NL) be the number of the sparse grid knots for constructing 

Sw
m, g[αn, ℎ( ⋅ , yL, 0)] and ηn(NL, m, g, w, Θβ,NL) for constructing Sw

m, g[αn, ℎ( ⋅ , yL, 0)], for n = 

1, … , NS. The cost for computing E[Sw
m, g [Qℎ(yL, 0)]] is O((Nℎd2 + Nℎ

q)η0) and the cost for 

computing ∑n = 1
NS μS, nE[ynSSw

m, g[∫Uαn( ⋅ , yL, 0)]] is bounded by O((Nℎd2 + Nℎ
q)NSη), where

η ≔ max
n = 0, …, NS

ηn .

The total cost for computing the mean correction is bounded by

W Total
mean(TOL) = O((Nℎ(TOL)d2 + Nℎ

q(TOL))NS(TOL)η(TOL)) . (25)

Following a similar argument the cost for computing the variance correction is bounded by

W Total
var (TOL) = O((Nℎ(TOL)d2 + Nℎ

q(TOL))NS
2 (TOL)η(TOL)) . (26)

We now obtain the estimates for Nh(TOL), NS(TOL) and η(TOL) for the Perturbation, Finite 

Element and Sparse Grids respectively:

a. Perturbation: From the perturbation estimate derived in Section 6.1 we seek 

‖Q(yL, yS) − Q(yL, yS)‖Lρ2(Γ ) ⩽ TOL
3CP

 with respect to the decay of the coefficients 

μS, n, n = 1, … NS. First, make the assumption that BT ≔ ∑n = 1
NS μS, n ⩽ CDNL

−l

for some uniformly bounded CD > 0 and l > 0. It follows that 

‖Q(yL, yS) − Q(yL, yS)‖Lρ2(Γ ) ⩽ TOL
3CP

 if
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BT
2G ⩽ CD

2 NL
−2lG ⩽ TOL

3CP
.

Finally, we have that

NS(TOL) ⩾ TOL
3CPCD

2 G

−1 ∕ (2l)
.

b. Finite Element: From Section 6.2 if

S0ℎ2r + BTT0ℎr ⩽ TOL
3CPFE

,

T0 ≔ maxn = 1
NS Sn, then ‖Q(yL, 0) − Qℎ(yL, 0)‖Lρ2(Γ ; H0

1(U)) ⩽ TOL
3CPFE

. Solving the 

quadratic inequality we obtain that

ℎ(TOL) ⩽ −
BTT0
2S0

+
BTT0
4S0

2
+ 4TOL

12S0CPFE

1 ∕ 2 1 ∕ r

Assuming that Nh grows as O(ℎ−d) then

Nℎ(TOL) ⩾ D3 −
BTT0
2S0

+
BTT0
4S0

2
+ 4TOL

12S0CFE

1 ∕ 2 −d ∕ r

for some constant D3 > 0.

c. Sparse Grid: We seek ‖Qℎ(yL, 0) − Sw
m, gQℎ(yL, 0)‖Lρ2(Γ ) ⩽ TOL

3CPSG
. This is 

satisfied if ‖e0‖Lρ2(ΓL; H0
1(U)) ⩽ TOL

6amaxFmaxd Fmin−2 CPSG
 and

‖en‖Lρ2(ΓL) ⩽ TOL
6BTCPSG

for n = 1, … , NS. Now, following a similar approach as in [27] let 

δ∗ = (e log (2) − 1) ∕ C2(σ). Thus ‖Qℎ(y) − Sw
m, gQℎ(y)‖Lρ2(Γ ) ⩽ TOL

3CPSG
 if

η0(TOL) ⩾
6amaxFmaxd Fmin−2 CPSGCSFNL exp(σ(β))

TOL

1 + log(2NL)
σ
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for a sufficiently large NL, where CF ≔
C1(σ, δ∗,M)

∣ 1 − C1(σ, δ∗,M) ∣
, and 

F ≔ max{1, C1(σ, δ∗,M)}. Similarly, for a sufficiently large NL we have that

ηn(TOL) ⩾ C
6BTCPSGCFFNL exp(σ(β))

TOL

1 + log(2NL)
σ

for n = 1, … , NS.

Combining (a), (b) and (c) into equations (25) and (26) we obtain the total work 

W Total
mean(TOL) and W Total

var (TOL) as a function of a given user error tolerance TOL.

8 Numerical results

In this section the hybrid collocation-perturbation method is tested on an elliptic PDE with a 

stochastic deformation of the unit square domain i.e. U = (0, 1) × (0, 1). The deformation 

map F :U D(ω) is given by

F (η1, η2, ω) = (η1, (η2 − 0.5)(e(η1, ω)) + 0.5) if η2 > 0.5
F (η1, η2, ω) = (η1, η2) if 0 ⩽ η2 ⩽ 0.5 .

According to this map only the upper half of the square is deformed but the lower half is left 

unchanged. The cartoon example of the deformation on the unit square U is shown in Figure 

3.

The Dirichlet boundary conditions are set according to the following rule:

u(η1, η2, ω) ∣∂D(ω) =
ϑ(η1) upper border
0 otherwise

where ϑ(η1) ≔ exp( −1
1 − 4(η1 − 0.5)2

). Note that the boundary condition on the upper border does 

not change even after the stochastic perturbation.

For the stochastic model e(η1, w) we use a variant of the Karhunen Loève expansion of an 

exponential oscillating kernel that are encountered in optical problems [24]. This model is 

given by

eL(ω, η1) ≔ 1 + cY1(ω) πL
2

1 ∕ 2
+ c∑n = 2

NL μnφn(η1)Yn(ω);

eS(ω, η1) ≔ c∑n = 1
NS μn + NLφn(η1)Yn(ω)

with decay μn ≔ ( πL)1 ∕ 2

nk
, n ∈ ℕ, k ∈ ℝ+ and
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φn(η1) ≔
sin

nπη1
2Lp

− cos
nπη1
2Lp

+ cosℎ(η1) + sinℎ(η1)

n .

It is assumed that {Yn}n = 1
N  are independent uniform distributed in (− 3, 3), thus E[Yn] = 0, 

E[YnYm] = δ[n − m] for n, m = 1 … N where δ[·] is the Kronecker delta function.

It can be shown that for n > 1 we have that

Bn =
0 0

c(η2 − 0.5)∂η1φn(η1) 0 .

Thus for all l ∈ ℕ we have that supx∈U σmax(Bl(η1)) < C for some constant C. Thus for k = 1 

we obtain linear decay on the gradient of the deformation. In Figure 4 (a) a mesh example of 

the reference domain is shown with Dirichlet boundary conditions. In Figure 4 (b) and (c) 

two realizations D(ω) of the reference domain U from the deformation model F(η1, η2, ω) 

are shown also. These realizations correspond to the 15 dimensional example (N = 15) with 

k = 3, c = 1/15 and L = 1/2.

The QoI is defined on the bottom half of the reference domain (U), which is not deformed, 

as

Q(u) ≔ ∫(0, 1)∫(0, 1 ∕ 2)ϑ(η1)ϑ(2η2)u(η1, η2, ω) dη1dη2 .

In addition, we have the following:

i. a(x) = 1 for all x ∈ U, L = 1/2, LP = 1, N = 15.

ii. The domain is discretized with a 2049 × 2049 triangular or 4097 × 4097 mesh.

iii. E[Qℎ], E[Qℎ
2], and ∑n = 1

NS μS, n E[∫Uαn, ℎ]2 are computed with the Clenshaw-Curtis 

isotropic sparse grid from the Sparse Grids Matlab Kit [31,2].

iv. The reference solutions var[Qh(uref)] and E[Qℎ(uref)] for N =15 dimensions are 

computed with a dimension adaptive sparse grid from the Sparse Grid Toolbox 
V5.1 [15,23,22]). The choice of abscissas is set to Chebyshev-Gauss-Lobatto.

v. The QoI is normalized by dividing by Q(U) i.e. the QoI of solution u on the 

reference domain U

vi. The reference computed mean value is 1.054 and variance is 0.1122 (0.3349 std) 

for c = 1/15 and cubic decay (k = 3). This shows a significant aleatory 

deformation of the solution with respect to the random domain D(ω).

Remark 13 The correction variance term is computed on the fixed reference domain U as 

described by Problem 1 instead of the perturbed domain. The pure collocation approach 

(without the variance correction) and reference solution are also computed on U. Numerical 

Castrillón-Candás et al. Page 33

Adv Comput Math. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments confirm that computing the pure collocation approach on U, as described by 

Problem 1, or the perturbed domain D(ω) lead to the same answer up to the finite element 

error. This is consistent with the theory.

For the first numerical example we assume that we have cubic decay of the deformation i.e. 

the gradient terms μn supx ∈ U‖Bn(x)‖ decay as n−3. The domain is formed from a 2049 × 

2049 triangular mesh. The reference domain is computed with 30,000 knots (dimension 

adaptive sparse grid). In Figure 5(a) we show the results for the hybrid collocation-

perturbation method for c = 1/15, k = 3 (cubic decay), NL = 2, 3, 4 dimensions and compare 

them to the reference solution. For the collocation method the level of accuracy is set up to 

w = 5. For the variance correction we increase the level until w = 3 is reached since the there 

is no benefit to increasing w further as the sparse grid error is smaller than the perturbation 

error. The observed computational cost for computing the variance correction is about 10% 

of the collocation method.

In Figure 5(b) we compare the results between the pure collocation [6] and hybrid 

collocation-perturbation method. Notice the hybrid collocation-perturbation shows a marked 

improvement in accuracy over the pure collocation approach.

In Figure 6 the variance error decay plots for k = 3 (cubic decay) with (a) c = 1/15 and (b) c 
= 1/120 are shown for the collocation (dashed line) and hybrid methods (solid line). The 

reference solutions are computed with a dimension adaptive sparse grid with 20,000 knots 

for (a) and (b). The mesh size is set to 4097 × 4097 for (a) and 2049 × 2049 for (b). The 

collocation and hybrid estimates are computed with an isotropic sparse grid with Clenshaw-

Curtis abscissas.

It is observed that the error for the hybrid collocation-perturbation method decays faster 

compared to the pure collocation method. Moreover, as the dimensions are increased the 

accuracy gain of the perturbation method accelerates significantly (c.f. Figure 6(a). The 

accuracy improves from around 1
NL

8  to about 1
NL

16 . Note that the computational cost for both 

the hybrid and collocation methods are relatively equal. This method shows a significant 

reduction in computational cost for the same accuracy, making it suitable for large 

dimensional problems.

In Figure 6 (b) the perturbation of geometry is significantly reduced (c = 1/120). Due to the 

small perturbation, the perturbation approximation is significantly higher and the error of the 

variance decreases substantially for Ns = 2. This is expected since perturbation methods 

work well under small variations of the geometry. Notice that for NS = 2, 3, … accuracy of 

the hybrid method appears not to improve, however the limiting factor at this point is due to 

the finite element error.

9 Conclusions

In this paper we propose a new hybrid collocation perturbation scheme to computing the 

statistics of the QoI with respect to random domain deformations that are split into large and 

small deviations. The large deviations are approximated with a stochastic collocation 
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scheme. In contrast, the small deviations components of the QoI are approximated with a 

perturbation approach. A rigorous convergence analysis of the hybrid approach is developed.

It is shown that for a linear elliptic partial differential equation with a random domain the 

variance correction term can be analytically extended to a well defined region Θβ,NL 

embedded in ℂNL with respect to the random variables. This analysis leads to a provable sub 

exponential convergence rate of the QoI computed with an isotropic Clenshaw-Curtis sparse 

grid. The size of the region Θβ,NL and therefore the rate of convergence of an isotropic 

sparse grid is a function of the gradient decay of the random deformation.

Error estimates and numerical experiments show that the error decays the square of the 

polynomial order with respect to the number of dimensions. This shows a marked reduction 

in effective dimensionality of the problem. Moreover, in practice, the variance correction 

term can be computed at a fraction of the cost of the low dimensional large variation 

component.

The hybrid approach is essentially a dimensionality reduction technique. We demonstrate 

both theoretically and numerically that the variance error with respect to the collocation 

dimensions NL decays quadratically faster than the pure stochastic collocation approach. 

Thus, the hybrid method is compatible with other stochastic collocations approaches such as 

anisotropic sparse grids [26]. This makes this method well suited for a large number of 

stochastic variables.
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Fig. 1. 
Example of reference domain deformation through the bijective map F(ω) for some 

realization ω ∈ Ω. The image is created Tikz code [30].
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Fig. 2. 
Embedding of ℰn, σn in Σn ⊂ Θβ,NL.
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Fig. 3. 
Stochastic deformation of unit square U according to the rule given by F :U D(ω). The 

region U is not deformed and given by (0, 1) × (0, 0.5).
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Fig. 4. 
Random deformation of a reference square domain U. (a) U reference domain with Dirichlet 

boundary conditions. (b) Realization of the deformed reference square U. (c) Second 

realization of the deformed reference square U.
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Fig. 5. 
Hybrid Collocation-Perturbation results with k = 3 (cubic decay) and c = 1/15. (a) Variance 

error for the hybrid collocation-perturbation method as a function of the number of 

collocation samples with a isotropic sparse grid and Clenshaw Curtis abscissas. The 

maximum level is set to w = 3. (b) Comparison between the pure collocation (Col) and the 

hybrid collocation-perturbation (Pert) approaches. As we observe the error decays 

significantly with the addition of the variance correction. However, the graphs saturate once 

the perturbation/truncation error is reached. Note that the number of knots of the sparse grid 

are computed up to w = 5 for the pure collocation method. For the variance correction the 

sparse grid level is set to w = 3 since at this point the error is smaller than the perturbation 

error and there is no benefit to increasing w. The sparse grid knots needed for the variance 

correction are almost negligible compared to the pure collocation.
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Fig. 6. 
Variance error comparison of truncation and hybrid collocation-perturbation method as a 

function of the number of dimensions and different decay rates. (a) Variance error for the 

pure collocation (dashed line) and hybrid collocation-perturbation (solid line) methods for c 
= 1/15 and k = 3. (b) Variance error ratio between the collocation and hybrid methods for c = 

1/120 (i.e. small perturbation) and k = 3. Note that the finite element error is reached at NS = 

2, saturates the overall accuracy.
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