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Abstract

In human-level NLP tasks, such as predicting mental health, personality, or demographics, the 

number of observations is often smaller than the standard 768+ hidden state sizes of each layer 

within modern transformer-based language models, limiting the ability to effectively leverage 

transformers. Here, we provide a systematic study on the role of dimension reduction methods 

(principal components analysis, factorization techniques, or multi-layer auto-encoders) as well as 

the dimensionality of embedding vectors and sample sizes as a function of predictive performance. 

We first find that fine-tuning large models with a limited amount of data pose a significant 

difficulty which can be overcome with a pre-trained dimension reduction regime. RoBERTa 

consistently achieves top performance in human-level tasks, with PCA giving benefit over other 

reduction methods in better handling users that write longer texts. Finally, we observe that a 

majority of the tasks achieve results comparable to the best performance with just 1
12  of the 

embedding dimensions.

1 Introduction

Transformer based language models (LMs) have quickly become the foundation for 

accurately approaching many tasks in natural language processing (Vaswani et al., 2017; 

Devlin et al., 2019). Owing to their success is their ability to capture both syntactic and 

semantic information (Tenney et al., 2019), modeled over large, deep attention-based 

networks (transformers) with hidden state sizes on the order of 1000 over 10s of layers (Liu 

et al., 2019; Gururangan et al., 2020). In total such models typically have from hundreds of 

millions (Devlin et al., 2019) to a few billion parameters (Raffel et al., 2020). However, the 

size of such models presents a challenge for tasks involving small numbers of observations, 

such as for the growing number of tasks focused on human-level NLP.

Human-level NLP tasks, rooted in computational social science, focus on making 

predictions about people from their language use patterns. Some of the more common tasks 

include age and gender prediction (Sap et al., 2014; Morgan-Lopez et al., 2017), personality 

(Park et al., 2015; Lynn et al., 2020), and mental health prediction (Coppersmith et al., 2014; 

Guntuku et al., 2017; Lynn et al., 2018). Such tasks present an interesting challenge for the 

NLP community to model the people behind the language rather than the language itself, 
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and the social scientific community has begun to see success of such approaches as an 

alternative or supplement to standard psychological assessment techniques like 

questionnaires (Kern et al., 2016; Eichstaedt et al., 2018). Generally, such work is helping to 

embed NLP in a greater social and human context (Hovy and Spruit, 2016; Lynn et al., 

2019).

Despite the simultaneous growth of both (1) the use of transformers and (2) human-level 

NLP, the effective merging of transformers for human-level tasks has received little 

attention. In a recent human-level shared task on mental health, most participants did not 

utilize transformers (Zirikly et al., 2019). A central challenge for their utilization in such 

scenarios is that the number of training examples (i.e. sample size) is often only hundreds 

while the parameters for such deep models are in the hundreds of millions. For example, 

recent human-level NLP shared tasks focused on mental health have had N = 947 (Milne et 

al., 2016), N = 9, 146 (Lynn et al., 2018) and N = 993 (Zirikly et al., 2019) training 

examples. Such sizes all but rules out the increasingly popular approach of fine-tuning 

transformers whereby all its millions of parameters are allowed to be updated toward the 

specific task one is trying to achieve (Devlin et al., 2019; Mayfield and Black, 2020). Recent 

research not only highlights the difficulty in fine-tuning with few samples (Jiang et al., 2020) 

but it also becomes unreliable even with thousands of training examples (Mosbach et al., 

2020).

On the other hand, some of the common transformer-based approaches of deriving 

contextual embeddings from the top layers of a pre-trained model (Devlin et al., 2019; Clark 

et al., 2019) still leaves one with approximately an equal number of embedding dimensions 

as training size. In fact, in one of the few successful cases of using transformers for a 

human-level task, further dimensionality reduction was used to avoid over-fit (Matero et al., 

2019), but an empirical understanding of the application of transformers for human-level 

tasks — which models are best and the relationship between embedding dimensions, sample 

size, and accuracy — has yet to be established.

In this work, we empirically explore strategies to effectively utilize transformer-based LMs 

for relatively small sample-size human-level tasks. We provide the first systematic 

comparison of the most widely used transformer models for demographic, personality, and 

mental health prediction tasks. Then, we consider the role of dimension reduction to address 

the challenge of applying such models on small sample sizes, yielding a suggested minimum 

number of dimensions necessary given a sample size for each of demographic, personality, 

and mental health tasks1. While it is suspected that transformer LMs contain more 

dimensions than necessary for document- or word-level NLP (Li and Eisner, 2019; Bao and 

Qiao, 2019), this represents the first study on transformer dimensionality for human-level 

tasks.

1dimension reduction techniques can also be pre-trained leveraging larger sets of unlabeled data
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2 Related Work

Recently, NLP has taken to human-level predictive tasks using increasingly sophisticated 

techniques. The most common approaches use n-grams and LDA (Blei et al., 2003) to model 

a person’s language and behaviors (Resnik et al., 2013; Kern et al., 2016). Other approaches 

utilize word embeddings (Mikolov et al., 2013; Pennington et al., 2014) and more recently, 

contextual word representations (Ambalavanan et al., 2019).

Our work is inspired by one of the top performing systems at a recent mental health 

prediction shared task (Zirikly et al., 2019) that utilized transformer-based contextualized 

word embeddings fed through a non-negative matrix factorization to reduce dimensionality 

(Matero et al., 2019). While the approach seems reasonable for addressing the 

dimensionality challenge in using transformers, many critical questions remain unanswered: 

(a) Which type of transformer model is best? (b) Would fine-tuning have worked instead? 

and (c) Does such an approach generalize to other human-level tasks? Most of the time, one 

does not have a luxury of a shared task for their problem at hand to determine a best 

approach. Here, we look across many human-level tasks, some of which with the luxury of 

having relatively large sample sizes (in the thousands) from which to establish upper-

bounds, and ultimately to draw generalizable information on how to approach a human-level 

task given its domain (demographic, personality, mental health) and sample size.

Our work also falls in line with a rising trend in AI and NLP to quantify the number of 

dimensions necessary. While this has not been considered for human-level tasks, it has been 

explored in other domains. The post processing algorithm (Mu and Viswanath, 2018) of the 

static word embeddings motivated by the power law distribution of maximum explained 

variance and the domination of mean vector turned out to be very effective in making these 

embeddings more discriminative. The analysis of contextual embedding models (Ethayarajh, 

2019) suggest that the static embeddings contribute to less than 5% to the explained 

variance, the contribution of the mean vector starts dominating when contextual embedding 

models are used for human-level tasks. This is an effect of averaging the message 

embeddings to form user representations in human-level tasks. This further motivates the 

need to process these contextual embeddings into more discriminative features.

Lastly, our work weighs into the discussion on just which type of model is best in order to 

produce effective contextual embedding models. A majority of the models fall under two 

broad categories based on how they are pre-trained - auto-encoders (AE) and auto-regressive 

(AR) models. We compare the performance of AE and AR style LMs by comparing the 

performance of two widely used models from each category with comparable number of 

parameters. From the experiments involving BERT, RoBERTa (Liu et al., 2019), XLNet 

(Yang et al., 2019) and GPT-2 (Radford et al., 2019), we find that AE based models perform 

better than AR style models (with comparable model sizes), and RoBERTa is the best choice 

amongst these four widely used models.
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3 Data & Tasks

We evaluate approaches over 7 human-level tasks spanning Demographics, Mental Health, 

and personality prediction. The 3 datasets used for these tasks are described below.

FB-Demogs. (age, gen, ope, ext)

One of our goals was to leverage one of the largest human-level datasets in order to evaluate 

over subsamples of sizes. For this, we used the Facebook demographic and personality 

dataset of Kosinski et al. (2013). The data was collected from approximately 71k consenting 

participants who shared Facebook posts along with demographic and personality scores 

from Jan-2009 through Oct-2011. The users in this sample had written at least a 1000 words 

and had selected English as their primary language. Age (age) was self-reported and limited 

to those 65 years or younger (data beyond this age becomes very sparse) as in (Sap et al., 

2014). Gender (gen) was only provided as a limited single binary, male-female 

classification.

Personality was derived from the Big 5 personality traits questionnaires, including both 

extraversion (ext - one’s tendency to be energized by social interaction) and openess (ope, 

one’s tendency to be open to new ideas) (Schwartz et al., 2013). Disattenuated Pearson 

correlation2 (rdis) was used to measure the performance of these two personality prediction 

tasks.

CLPsych-2018. (bsag, gen2)

The CLPsych 2018 shared task (Lynn et al., 2018) consisted of sub-tasks aimed at early 

prediction of mental health scores (depression, anxiety and BSAG3 score) based on their 

language. The data for this shared task (Power and Elliott, 2005) comprised of English 

essays written by 11 year old students along with their gender (gen2) and income classes. 

There were 9217 students’ essays for training and 1000 for testing. The average word count 

in an essay was less than 200. Each essay was annotated with the student’s psychological 

health measure, BSAG (when 11 years old) and distress scores at ages 23, 33, 42 and 50. 

This task used a disattenuated pearson correlation as the metric (rdis).

CLPsych-2019. (sui)

This 2019 shared task (Zirikly et al., 2019) comprised of 3 sub-tasks for predicting the 

suicide risk level in reddit users. This included a history of user posts on r/SuicideWatch 

(SW), a subreddit dedicated to those wanting to seek outside help for processing their 

current state of emotions. Their posts on other subreddits (NonSuicideWatch) were also 

collected. The users were annotated with one of the 4 risk levels: none, low, moderate and 

severe risk based on their history of posts. In total this task spans 496 users in training and 

125 in testing. We focused on Task A, predicting suicide risk of a user by evaluating their 

(English) posts across SW, measured via macro-F1.

2Disattenuated Pearson correlation helps account for the error of the measurement instrument (Kosinski et al., 2013; Murphy and 
Davidshofer, 1988). Following (Lynn et al., 2020), we use reliabilities: rxx = 0.70 and ryy = 0.77.
3Bristol Social Adjustment Guide (Ghodsian, 1977) scores contains twelve sub-scales that measures different aspects of childhood 
behavior.
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4 Methods

Here we discuss how we utilized representations from transformers, our approaches to 

dimensionality reduction, and our technique for robust evaluation using bootstrapped 

sampling.

4.1 Transformer Representations

The second to last layer representation of all the messages was averaged to produce a 768 

dimensional feature for each user4. These user representations are reduced to lower 

dimensions as described in the following paragraphs. The message representation from a 

layer was attained by averaging the token embeddings of that layer. To consider a variety of 

transformer LM architectures, we explored two popular auto-encoder (BERT and RoBERTa) 

and two auto-regressive (XLNet and GPT-2) transformer-based models.

For fine-tuning evaluations, we used the transformer based model that performs best across 

the majority of our task suite. Transformers are typically trained on single messages or pairs 

of messages, at a time. Since we are tuning towards a human-level task, we label each user’s 

message with their human-level attribute and treat it as a standard document-level task 

(Morales et al., 2019). Since we are interested in relative differences in performance, we 

limit each user to at most 20 messages - approximately the median number of messages, 

randomly sampled, to save compute time for the fine tuning experiments.

4The second to last layer was chosen owing to its consistent performance in capturing semantic and syntactic structures (Jawahar et 
al., 2019).
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4.2 Dimension Reduction

We explore singular value decomposition-based methods such as Principal components 

analysis (PCA) (Halko et al., 2011), Non-negative matrix factorization (NMF) (Févotte and 

Idier, 2011) and Factor analysis (FA) as well as a deep learning approach: multi-layer non 

linear auto encoders (NLAE) (Hinton and Salakhutdinov, 2006). We also considered the post 

processing algorithm (PPA) of word embeddings5 (Mu and Viswanath, 2018) that has shown 

effectiveness with PCA on word level (Raunak et al., 2019). Importantly, besides 

transformer LMs being pre-trained, so too can dimension reduction. Therefore, we 

distinguish: (1) learning the transformation from higher dimension to lower dimensions 

(preferably on a large data sample from the same domain) and (2) applying the learned 

transformation (on the task’s train/test set). For the first step, we used a separate set of 56k 

unlabeled user data in the case of FB-demog6. For CLPsych-2018 and -2019 (where 

separate data from the exact domains was not readily available), we used the task training 

data to train the dimension reduction. Since variance explained in factor analysis typically 

follows a power law, these methods transformed the 768 original embedding dimensions 

down to k, in powers of 2: 16, 32, 64, 128, 256 or 512.

5The ‘D’ value was set to 
number of dimensions

100 .

6these pre-trained dimension reduction models are made available.
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4.3 Bootstrapped Sampling & Training

We systematically evaluate the role of training sample (Nta) versus embedding dimensions 

(k) for human-level prediction tasks. The approach is described in algorithm 1. Varying Nta, 

the task-specific train data (after dimension reduction) is sampled randomly (with 

replacement) to get ten training samples with Nta users each. Small Nta values simulate a 

low-data regime and were used to understand its relationship with the least number of 

dimensions required to perform the best (Nta vs k). Bootstrapped sampling was done to 

arrive at a conservative estimate of performance. Each of the bootstrapped samples was used 

to train either an L2 penalized (ridge) regression model or logistic regression for the 

regression and classification tasks respectively. The performance on the test set using models 

from each bootstrapped training sample was recorded in order to derive a mean and standard 

error for each Nta and k for each task.

To summarize results over the many tasks and possible k and Nta values in a useful fashion, 

we propose a ‘first k to peak (fkp)’ metric. For each Nta, this is the first observed k value for 

which the mean score is within the 95% confidence interval of the peak performance. This 

quantifies the minimum number of dimensions required for peak performance.

5 Results

5.1 Best LM for Human-Level Tasks

We start by comparing transformer LMs, replicating the setup of one of the state-of-the-art 

systems for the CLPsych-2019 task in which embeddings were reduced from BERT-base to 

approximately 100 dimensions using NMF (Matero et al., 2019). Specifically, we used 128 

dimensions (to stick with powers of 2 that we use throughout this work) as we explore the 

other LMs over multiple tasks (we will explore other dimensions next) and otherwise use the 

bootstrapped evaluation described in the method.

Table 2 shows the comparison of the four transformer LMs when varying the sample size 

(Nta) between two low data regimes: 100 and 5007. RoBERTa and BERT were the best 

performing models in almost all the tasks, suggesting auto-encoders based LMs are better 

than auto-regressive models for these human-level tasks. Further, RoBERTa performed 

better than BERT in the majority of cases. Since the number of model parameters are 

comparable, this may be attributable to RoBERTa’s increased pre-training corpus, which is 

inclusive of more human discourse and larger vocabularies in comparison to BERT.

5.2 Fine-Tuning Best LM

We next evaluate fine-tuning in these low data situations8. Utilizing RoBERTa, the best 

performing transformer from the previous experiments, we perform fine-tuning across the 

age and gender tasks. Following (Sun et al., 2019; Mosbach et al., 2020), we freeze layers 0–

9 and fine-tune layers 10 and 11. Even these top 2 layers alone of RoBERTa still result in a 

7The performance of all transformer embeddings without any dimension reduction along with smaller sized models can be found in 
the appendix section D.3.
8As we are focused on readily available models, we consider substantial changes to the architecture or training as outside the scope of 
this systematic evaluation of existing techniques.
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model that is updating tens of millions of parameters while being tuned to a dataset of 

hundreds of users and at most 10,000 messages.

In table 3, results for age and gender are shown for both sample sizes of 100 and 500. For 

Age, the average prediction across all of a user’s messages was used as the user’s prediction 

and for gender the mode was used. Overall, we find that fine-tuning offers lower 

performance with increased overhead for both train time and modeling complexity 

(hyperparameter tuning, layer selection, etc).

We did robustness checks for hyper-parameters to offer more confidence that this result was 

not simply due to the fastidious nature of fine-tuning. The process is described in Appendix 

B, including an extensive exploration of hyper-parameters, which never resulted in 

improvements over the pre-trained setup. We are left to conclude that fine-tuning over such 

small user samples, at least with current typical techniques, is not able to produce results on 

par with using transformers to produce pre-trained embeddings.

5.3 Best Reduction technique for Human-Level Tasks

We evaluated the reduction techniques in low data regime by comparing their performance 

on the downstream tasks across 100 and 500 training samples (Nta). As described in the 

methods, techniques including PCA, NMF and FA along with NLAE, were applied to reduce 

the 768 dimensional RoBERTa embeddings to 128 features. The results in table 4 show that 

PCA and NLAE perform most consistently, with PCA having the best scores in the majority 

tasks. NLAE’s performance appears dependent on the amount of data available during the 

pre-training. This is evident from the results in Table 4 where the Npt was set to a uniform 

value and tested for all the tasks with Nta set to 100 and 500. Thus, PCA appears a more 

reliable, showing more generalization for low samples.

5.4 Performance by Sample Size and Dimensions

Now that we have found (1) RoBERTa generally performed best, (2) pre-trainining worked 

better than fine-tuning, and (3) PCA was most consistently best for dimension reduction 

(often doing better than the full dimensions), we can systematically evaluate model 

performance as a function of training sample size (Nta) and number of dimensions (k) over 

tasks spanning demographics, personality, and mental health. We exponentially increase k 
from 16 to 512, recognizing that variance explained decreases exponentially with dimension 

(Mu and Viswanath, 2018). The performance is also compared with that of using the 

RoBERTa embeddings without any reduction.

Figure 1 compares the scores at reduced dimensions for age, ext, ope and bsag. These charts 

depict the experiments on typical low data regime (Nta ≤ 1000). Lower dimensional 

representations performed comparable to the peak performance with just 1
3  the features 

while covering the most number of tasks and just 1
12  features for the majority of tasks. 

Charts exploring other ranges of Nta values and remaining tasks can be found in the 

appendix D.1.
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5.5 Least Number of Dimensions Required

Lastly, we devise an experiment motivated by answering the question of how many 

dimensions are necessary to achieve top results, given a limited sample size. Specifically, we 

define ‘first k to peak’ (fkp) as the least valued k that produces an accuracy equivalent to the 

peak performance. A 95% confidence interval was computed for the best score (peak) for 

each task and each Nta based on bootstrapped resamples, and fkp was the least number of 

dimensions where this threshold was passed.

Our goal is that such results can provide a systematic guide for making such modeling 

decisions in future human-level NLP tasks, where such an experiment (which relies on 

resampling over larger amounts of training data) is typically not feasible. Table 5 shows the 

fkp over all of the training sample sizes (Nta). The exponential median (med) in the table is 

calculated as follows: med = 2Median(log(x))

The fkp results suggest that more training samples available yield ability to leverage more 

dimensions, but the degree to which depends on the task. In fact, utilizing all the embedding 

dimensions was only effective for demographic prediction tasks. The other two tasks 

benefited from reduction, often with only 1
12  to 1

6  6 of the original second to last transformer 

layer dimensions.

6 Error Analysis

Here, we seek to better understand why using pre-trained models worked better than fine-

tuning, and differences between using PCA and NMF components in the low sample setting 

(Nta = 500).

Pre-trained vs Fine-tuned.

We looked at categories of language from LIWC (Tausczik and Pennebaker, 2010), 

correlated with the difference in the absolute error of the pre-trained and fine-tuned model in 

age prediction. Table 6 suggests that pre-trained model is better at handling users with 

language conforming to the formal rules, and fine-tuning helps in learning better 

representation of the affect words and captures informal language well. Furthermore, these 

LIWC variables are also known to be associated with age (Schwartz et al., 2013). Additional 

analysis comparing these two models is available in appendix E.1.

PCA vs NMF.

Figure 2 suggests that PCA is better at handling longer text sequences than NMF (> 55 one 

grams on avg) when trained with less data. This choice wouldn’t make much difference 

when used for Tweet-like short texts, but the errors diverge rapidly for longer samples. We 

also see that PCA is better at capturing information from these texts that have higher 

predictive power in downstream tasks. This is discussed in appendix E.2 along with other 

interesting findings involving the comparison of PCA and the pre-trained model in E.3.
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7 Discussion

Ethical Consideration.

We used existing datasets that were either collected with participant consent (FB and 

CLPsych 2018) or public data with identifiers removed and collected in a non-intrusive 

manner (CLPsych 2019). All procedures were reviewed and approved by both our 

institutional review board as well as the IRB of the creators of the data set.

Our work can be seen as part of the growing body of interdisciplinary research intended to 

understanding human attributes associated with language, aiming towards applications that 

can improve human life, such as producing better mental health assessments that could 

ultimately save lives. However, at this stage, our models are not intended to be used in 

practice for mental health care nor labeling of individuals publicly with mental health, 

personality, or demographic scores. Even when the point comes where such models are 

ready for testing in clinical settings, this should only be done with oversight from 

professionals in mental health care to establish the failure modes and their rates (e.g. false-

positives leading to incorrect treatment or false-negatives leading to missed care; increased 

inaccuracies due to evolving language; disparities in failure modes by demographics). 

Malicious use possibilities for which this work is not intended include targeting advertising 

to individuals using language-based psychology scores, which could present harmful content 

to those suffering from mental health conditions.

We intend that the results of our empirical study are used to inform fellow researchers in 

computational linguistics and psychology on how to better utilize contextual embeddings 

towards the goal of improving psychological and mental health assessments. Mental health 

conditions, such as depression, are widespread and many suffering from such conditions are 

under-served with only 13 – 49% receiving minimally adequate treatment (Kessler et al., 

2003; Wang et al., 2005). Marginalized populations, such as those with low income or 

minorities, are especially under-served (Saraceno et al., 2007). Such populations are well 

represented in social media (Center, 2021) and with this technology developed largely over 

social media and predominantly using self-reported labels from users (i.e., rather than 

annotator-perceived labels that sometimes introduce bias (Sap et al., 2019; Flekova et al., 

2016)), we do not expect that marginalized populations are more likely to hit failure modes. 

Still, tests for error disparities (Shah et al., 2020) should be carried out in conjunction with 

clinical researchers before this technology is deployed. We believe this technology offers the 

potential to broaden the coverage of mental health care to such populations where resources 

are currently limited.

Future assessments built on the learnings of this work, and in conjunction with clinical 

mental health researchers, could help the under-served by both better classifying one’s 

condition as well as identifying an ideal treatment. Any applications to human subjects 

should consider the ethical implications, undergo human subjects review, and the predictions 

made by the model should not be shared with the individuals without consulting the experts.
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Limitations.

Each dataset brings its own unique selection biases across groups of people, which is one 

reason we tested across many datasets covering a variety of human demographics. Most 

notably, the FB dataset is skewed young and is geographically focused on residents within 

the United States. The CLPsych 2018 dataset is a representative sample of citizens of the 

United Kingdom, all born on the same week, and the CLPsych-2019 dataset was further 

limited primarily to those posting in a suicide-related forum (Zirikly et al., 2019). Further, 

tokenization techniques can also impact language model performance (Bostrom and Durrett, 

2020). To avoid oversimplification of complex human attributes, in line with psychological 

research (Haslam et al., 2012), all outcomes were kept in their most dimensional form – e.g. 

personality scores were kept as real values rather than divided into bins and the 

CLPsych-2019 risk levels were kept at 4 levels to yield gradation in assessments as justified 

by Zirikly et al., 2019.

8 Conclusion

We provide the first empirical evaluation of the effectiveness of contextual embeddings as a 

function of dimensionality and sample size for human-level prediction tasks. Multiple 

human-level tasks along with many of the most popular language model techniques, were 

systematically evaluated in conjunction with dimension reduction techniques to derive 

optimal setups for low sample regimes characteristic of many human-level tasks.

We first show the fine-tuning transformer LMs in low-data scenarios yields worse 

performance than pre-trained models. We then show that reducing dimensions of contextual 

embeddings can improve performance and while past work used non-negative matrix 

factorization (Matero et al., 2019), we note that PCA gives the most reliable improvement. 

Auto-encoder based transformer language models gave better performance, on average, than 

their auto-regressive contemporaries of comparable sizes. We find optimized versions of 

BERT, specifically RoBERTa, to yield the best results.

Finally, we find that many human-level tasks can be achieved with a fraction, often 1
6

tℎ
 or 

1
12

tℎ
, the total transformer hidden-state size without sacrificing significant accuracy. 

Generally, using fewer dimensions also reduces variance in model performance, in line with 

traditional bias-variance tradeoffs and, thus, increases the chance of generalizing to new 

populations. Further it can aid in explainability especially when considering that these 

dimension reduction models can be pre-trained and standardized, and thus compared across 

problem sets and studies.

Appendices

A Experimental Setup

Implementation.

All the experiments were implemented using Python, DLATK (Schwartz et al., 2017), 

HuggingFace Transformers (Wolf et al., 2019), and PyTorch (Paszke et al., 2019). The 
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environments were instantiated with a seed value of 42, except for fine-tuning which used 

1337. Code to reproduce all results is available in our github page: github.com/adithya8/

ContextualEmbeddingDR/

Infrastructure.

The deep learning models such as stacked-transformers and NLAE were run on single GPU 

with batch size given by:

batcℎsize = GPU memory − model size
(floating precision/8) * (δ)

δ =
trainableparams; for fine tuning
layers * ℎidden_size * max tokens ; for embedding retrieval

where GPU memory and model sizes (space occupied by the model) are in bytes, 

trainableparams corresponds to number of trainable parameters during fine tuning and layers 
corresponds to the number of layers of embeddings required, the hidden_size is the number 

of dimensions in the hidden state and max_tokens is the maximum number of tokens (after 

tokenization) in any batch. We carried out the experiments with 1 NVIDIA Titan Xp GPU 

which has around 12 GB of memory. All the other methods were implemented on CPU.
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Figure A1: Depiction of Dimension Reduction method -
Transformer embeddings of domain data (Npt users’ embeddings9) is used to pre-train a 

dimension reduction model that transforms the embeddings down to k dimensions. This step 

is followed by applying this learned reduction model on task’s train and test data 

embeddings. These reduced train features (Nmax users) are then bootstrap sampled to 

produce 10 sets of Nta users each for training task specific models. All these 10 task specific 

models are evaluated on the reduced test features consisting of Nte users during task 

evaluation. The mean and standard deviation of the task specific metric are collected.

B Model Details

NLAE architecture.

The model architecture for the Non-linear auto-encoders in Table 4 was a twin network 

taking inputs of 768 dimensions and reducing it to 128 dimensions through 2 layers and 

9Generation of user embeddings explained in detail under methods.
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reconstructs the original 768 dimensional representation with 2 layers. This architecture was 

chosen balancing the constraints of enabling the non-linear associations while keeping total 

parameters low given the low sample size context. The formal definition of the model is:

xcomp = f W 2
T f W 1

Tx + b1 + b2
xdecomp = W 1

Tf W 2
Txcomp + b2 + b1

x, xdecomp ∈ R768, xcomp ∈ R128

W 1 ∈ R768 * 448, W 2 ∈ R448 * 128

b1, b2 ∈ R448, b2 ∈ R128, b1 ∈ R768

W 1 ∈ R448 * 768, W 2 ∈ R128 * 448
f a = max a, 0 ; ∀a ∈ R

NLAE Training.

The data for domain pre-training of dimension reduction was split into 2 sets for NLAE 

alone: training and validation sets. 90% of the domain data was randomly sampled for 

training the NLAE and the remaining 10% of pre-training data was used to validate hyper-

parameters after every epoch. This model was trained with an objective to minimise the 

reconstruction mean squared loss over multiple epochs. It was trained until the validation 

loss increased over 3 consecutive epochs. AdamW was the optimizer used with the learning 

rate set to 0.001. This took around 30–40 epochs depending upon the dataset.

Fine-tuning.

In our fine-tuning configuration we freeze all but the top 2 layers of the best LM, to prevent 

over fitting and vanishing gradients at the lower layers (Sun et al., 2019; Mosbach et al., 

2020). We also apply early stopping (varied the patience between 3 and 6 depending upon 

the task). Other hyperparameters for this experiment include L2-regularization (in the form 

of weight-decay on AdamW optimizer, set to 1), dropout set to 0.3, batch size set to 10, 

learning rate initialized to 5e-5, and the number of epochs was set to max of 15, which was 

limited by early stopping between 5–10 depending on the task and early stopping patience.

We arrived at these hyperparameter values after an extensive search. The weight decay 

param was searched in [100, 0.01], dropout within [0.1, 0.5], and learning rate between 

[5e-4, 5e-5].

C Data

Due to human subjects privacy constraints, most data are not able to be publicly distributed 

but they are available from the original data owners via requests for research purposes (e.g. 

CLPsych-2018 and CLPsych-2019 shared tasks).

Ganesan et al. Page 14

Proc Conf. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D Additional Results

D.1 Results on higher Nta

We can see that reduction still helps in majority of tasks in higher Nta from Figure A2. As 

expected, the performance starts to plateau at higher Nta values and it is visibly consistent 

across most tasks. With the exception of age and gender prediction using facebook data, all 

the other tasks benefit from reduction.

D.2 Results on classification tasks

Figure A3 compares the performance of reduced dimensions at low samples size scenario 

(Nta ≤ 1000) in classification tasks. Except for a few Nta values in gender prediction using 

the facebook data, all the other tasks benefits from reduction in achieving the best 

performance.

D.3 LM comparison for no reduction & Smaller models.

Table A1 compares the performance of the language models without applying any 

dimension reduction of the embeddings and the performance of the best transformer models 

is also compared with smaller models (and distil version) after reducing second to last lasyer 

representation to 128 dimensions in table A2.

D.4 Least dimensions required: Higher Nta

The ‘fkp’ plateaus as the the number of training samples grow as seen in table A3.

E Additional Analysis

E.1 Pre-trained vs Fine-Tuned models

We also find that fine-tuned model doesn’t perform better than the pre-trained model for 

users with typical message lengths, but is better at handling longer sequences upon training 

it on the tasks’ data. This is evident from the graphs in figure A4.

E.2 PCA vs NMF.

From figure A5, we can see that LIWC variables like ARTICLE, INSIGHT, PERCEPT 

(perceptual process), COGPROC (cognitive process) negatively correlates to the difference 

in absolute error of PCA and NMF. These variables also happen to have higher correlation 

with the openness scores (Schwartz et al., 2013). We also see that characteristics typical of 

an open person like interest in arts, music, and writing (Kern et al., 2014) appear in the word 

clouds.
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Table A1:

Comparison of various auto-encoders(AE) and auto-regressor(AR) language models trained 

on 100 and 500 samples (Nta) for each task using all the dimensions of transformer 

embeddings. RoBERTa and BERT show consistent performance.

LM demographics personality mental health

Nta type name age (r) gen (f1) gen2 (f1) ext (rdis) ope (rdis) bsag (rdis) sui (f1)

100

AE BERT 0.615 0.754 0.758 0.176 0.225 0.457 0.400

AE RoBERTa 0.649 0.753 0.788 0.167 0.213 0.443 0.381

AR XLNet 0.625 0.698 0.755 0.144 0.152 0.457 0.357

AR GPT-2 0.579 0.708 0.681 0.090 0.110 0.361 0.335

500

AE BERT 0.721 0.831 0.849 0.332 0.395 0.507 0.489

AE RoBERTa 0.737 0.830 0.859 0.331 0.382 0.519 0.447

AR XLNet 0.715 0.810 0.828 0.314 0.364 0.506 0.424

AR GPT-2 0.693 0.794 0.790 0.242 0.307 0.508 0.371

Table A2:

Comparison of the best performing auto-encoder models with a smaller LMs (like ALBERT 

(Lan et al., 2019) and DistilRoBERTa (Sanh et al., 2019) after reduction to 128 dimensions. 

These results suggest that the reduction of the larger counterparts produce better results than 

reducing these smaller LMs’ representations.

demographics personality mental health

Nta M age (r) gen (F1) gen2 (F1) ext (rdis) ope (rdis) bsag (rdis) sui (F1)

100

BERT 0.533 0.703 0.761 0.163 0.184 0.424 0.360

RoBERTa 0.589 0.712 0.761 0.123 0.203 0.455 0.363

DistilRoBERTa 0.568 0.640 0.731 0.130 0.207 0.446 0.355

ALBERT 0.525 0.689 0.710 0.111 0.218 0.413 0.355

500

BERT 0.686 0.810 0.837 0.278 0.354 0.484 0.466

RoBERTa 0.700 0.802 0.852 0.283 0.361 0.490 0.432

DistilRoBERTa 0.687 0.796 0.826 0.246 0.346 0.503 0.410

ALBERT 0.668 0.792 0.799 0.237 0.337 0.453 0.385

The divergence of the absolute errors in NMF and PCA is seen in bsag and ope tasks as well. 

From graphs in figure A6 we can see that the sequence length at which we see this behavior 

is close to the previously observed value in age and ext tasks.

E.3 PCA vs Pre-trained.

PCA models overall perform better than pre-trained model in low sample regime and from 

figure A7, we can see that PCA captures slang, affect and standard social media 

abbreviations better than the pre-trained models. The task specific linear layer is better able 

to capture social media language with fewer dimensions (reduced by PCA) than from the 

original 768 features produced by the pre-trained models.
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Figure A2: 
Performance recorded for reduced dimensions for all tasks at higher Nta values (≥1000). 

Reduction continues to help in performing the best in personality and mental-health tasks. 

The ‘fkp’ is observed to be shifting to a higher value, due to the rise in performance of no 

reduction and the reduction of standard error.
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Figure A3: 
Comparison of performance in gen, gen2 and sui tasks for varying Nta between 50 and 1000.
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Figure A4: 
The absolute error in age prediction for the fine-tuned model is higher than pre-trained 

models for users with short messages. Fine-tuned models have smaller errors for users with 

longer messages.

Figure A5: 
The word cloud of the LIWC variables (left) and the 1 grams (right) having negative 

correlation with the difference in the absolute error of PCA and NMF in Openness 

prediction. Benjamini-Hochberg FDR. p < .05. We can see that LIWC variables and 1 grams 
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more correlative of a person exhibiting more openness are better captured by the PCA model 

than the NMF.

Figure A6: 
Comparison of the absolute error of NMF and PCA with the average number of 1 grams per 

message. We see that the absolute error of NMF models starts diverging at longer text 

sequences for the bsag and the ope tasks as well.

Figure A7: 
Terms having negative (left) and positive (right) correlations with the difference in the 

absolute error of the PCA and pre-trained model in age prediction. Benjamini-Hochberg 

FDR. p < .05. The error in the PCA model is lesser than pre-trained models when messages 

contain more slang, affect words and social media abbreviations.
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Table A3:

First k to peak for each set of tasks: the least value of k that performed statistically 

equivalent (p > .05) to the best performing setup (peak). Integer shown is the exponential 

median of the set of tasks.

Nta demographics personality mental health

2000 768 90 64

5000 768 181 64

10000 768 181 64
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Figure 1: 
Comparison of performance for all regression tasks: age, ext, ope and bsag over varying Nta 

and k. Results vary by task, but predominantly, performance at k=64 is better than the 

performance without any reduction. It is conclusive that the reduced features almost always 

performs better or as good as the original embeddings.
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Figure 2: 
Comparison of the absolute error of NMF and PCA with the average number of 1 grams per 

message. While both the models appear to perform very similar when the texts are small or 

average sized, PCA is better at handling longer texts. The errors diverge when the length of 

the texts increases.
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Table 1:
Summary of the datasets.

Npt is the number of users available for pre-training the dimension reduction model; Nmax is the maximum 

number of users available for task training. For CLPsych 2018 and CLPsych 2019, this would be the same 

sample as pre-training data. For Facebook, a disjoint set of 10k users was available for task training; Nte is the 

number of test users. This is always a disjoint set of users from the pre-training and task training samples.

FB-Demogs CLPsych 2018 CLPsych 2019

Sap et al. Lynn et al. Zirikly et al.

Npt 56,764 9,217 496

Nmax 10,000 9,217 496

Nte 5,000 1,000 125
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Table 3:

Comparison of task specific fine tuning of RoBERTa (top 2 layers) and pre-trained RoBERTa embeddings 

(second to last layer) for age and gender prediction tasks. Results are averaged across 5 trials randomly 

sampling users equal to Nta from the Facebook data and reducing messages to maximum of 20 per user.

Nta Method Age Gen

100
Fine-tuned 0.54 0.54

Pre-trained 0.56 0.63

500
Fine-tuned 0.64 0.60

Pre-trained 0.66 0.74
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Table 5:

First k to peak (fkp) for each set of tasks: the least value of k that performed statistically equivalent (p > .05) to 

the best performing setup (peak). Integer shown is the exponential median of the set of tasks. This table 

summarizes comprehensive testing and we suggest its results, fkp, can be used as a recommendation for the 

number of dimensions to use given a task domain and training set size.

Nta demographics (3 tasks) personality (2 tasks) mental health (2 tasks)

50 16 16 16

100 128 16 22

200 512 32 45

500 768 64 64

1000 768 90 64
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Table 6:

Top LIWC variables having negative and positive correlations with the difference in the absolute error of the 

pre-trained model and the fine-tuned model for age prediction. Benjamini-Hochberg FDR p < .05. This 

suggests that the fine-tuned models have lesser error than pre-trained model when the language is informal and 

consists of more affect words.

Association LIWC variables

Positive Informal, Netspeak, Negemo Swear, Anger

Negative Affiliation, Social, We, They, Family, Function, Drives, Prep, Focuspast, Quant
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