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Abstract

Pancreatic ductal adenocarcinoma (PDA) is characterized by an immune-suppressive tumor 

microenvironment that renders it largely refractory to immunotherapy. We implemented a 

multimodal analysis approach to elucidate the immune landscape in PDA. Using a combination of 

CyTOF, single-cell RNA sequencing, and multiplex immunohistochemistry on patient tumors, 

matched blood, and non-malignant samples, we uncovered a complex network of immune-

suppressive cellular interactions. These experiments revealed heterogeneous expression of immune 

checkpoint receptors in individual patient’s T cells and increased markers of CD8+ T cell 

dysfunction in advanced disease stage. Tumor-infiltrating CD8+ T cells had an increased 

proportion of cells expressing an exhausted expression profile that included upregulation of the 

immune checkpoint TIGIT, a finding that we validated at the protein level. Our findings point to a 

profound alteration of the immune landscape of tumors, and to patient-specific immune changes 

that should be taken into account as combination immunotherapy becomes available for pancreatic 

cancer.

Graphical Abstract
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Introduction

Pancreatic ductal adenocarcinoma (PDA), one of the deadliest human malignancies, is 

distinguished by an extensive and complex tumor microenvironment (TME) containing 

abundant infiltrating immune cells. Immunotherapy clinical trials using checkpoint 

inhibitors PD-1 and CTLA4 as single agents have been unsuccessful [1, 2], but recent 

clinical trials using combination of immune regulatory agents have shown positive initial 

results (NCT02588443), indicating the need to target multiple components of the stroma and 

better understand the immune landscape of human PDA. The prevalence of CD8+ T cells 

varies across patients [3]. Deconvolution of bulk RNA sequencing data from The Cancer 

Genome Atlas (TCGA) stratified tumors based on their cytolytic index, including a high 

cytolytic index group [4]. These data indicate that the CD8+ T cell landscape in pancreatic 

tumors might be more complex than previously believed, and the mechanisms of immune 

suppression may vary across patients. While pancreatic cancer is most often diagnosed when 

locally invasive or metastatic, most existing datasets are limited to surgical samples 

representing earlier stages of the disease.

The presence and distribution of cytotoxic T cells in PDA has important prognostic 

correlations; CD8+ T cells in proximity to PDA cells correlate with increased overall 

survival [5]. Further, analysis of rare long-term PDA survivors revealed persistence of T cell 

clones specific to tumor antigens [6]. Conversely, infiltration of myeloid cells, specifically 

tumor associated macrophages, negatively correlates with prognosis [7], consistent with an 

immune-suppressive role of these cells [8]. CD4+ T cells are abundant within tumors, with a 

prevalence of regulatory T cells [9]; their nature in human PDA is currently poorly 

understood. Similarly, our understanding of other immune cell types within tumors is 

limited.

Here, we used multiple, complementary approaches [mass cytometry (CyTOF), single-cell 

RNA sequencing (scRNA seq), and multiplex fluorescent immunohistochemistry (mfIHC)] 

to investigate the immune landscape of pancreatic tumors from a collection of samples that 

included both surgical and fine needle biopsy samples, as well as matched patient blood 

(graphical abstract). Our work adds an in-depth immune characterization to complement 

recent single cell characterization on pancreatic tumor cells [10, 11] and cancer associated 

fibroblasts [12, 13]. We observed that immune landscapes in each individual patient were 

heterogeneous, although some common features emerged. Cytotoxic T cells in patients 

displayed an exhausted gene expression signature, which was progressively more 

pronounced in advanced disease. The specific combinations of immune checkpoint genes 

expressed in each patient’s CD8+ T cells was unique. Tumor infiltrating CD8+ T cell had a 

higher proportion of cells expressing genes previously associated with T cell exhaustion, and 

these cells had enriched expression of the immune checkpoint T-cell immunoglobulin and 
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ITIM domains (TIGIT) [14]. Predicted interaction analysis [15, 16] revealed multiple 

potential cellular interactions upregulated in tumors compared with non-malignant tissue. 

Overall, our study provides a wealth of hypothesis-generating data to benefit the PDA 

community at large.

Results

CyTOF and multiplex immunohistochemistry mapping reveal heterogeneous immune 
infiltration in human pancreatic cancer.

To map the immune infiltration in pancreatic cancer, we performed CyTOF on 10 pancreatic 

tumor samples and 8 samples from non-malignant pancreas specimens [Whipple 

pancreaticoduodenectomy (n=2), distal pancreatectomy (n=4), partial pancreatectomy (n=1) 

or endoscopic fine needle biopsy (n=3)]. Clinical pathology review provided the diagnosis 

for samples (Extended Data Fig. 1A); histology of surgical specimens is shown in Extended 

Data Fig. 1B. Our validated antibody panel contained 30 immune markers (Supplemental 

Table 1) [17]. We used the Astrolabe Cytometry platform for batch correction to account for 

differences in the timing of sample acquisition, and selected live singlets for downstream 

analysis [18, 19].

Principal component analysis (PCA) showed a minor shift between adjacent or normal 

pancreas and tumor samples (Fig. 1A), indicating differences in immune cell composition. 

To visualize the distribution of cell populations within individual samples, we utilized 

unbiased hierarchical clustering algorithms [18], along with supervised annotation (Fig. 

1B,C and Extended Data Fig. 1C,D). While adjacent/normal samples contained mostly non-

immune cells, tumor samples had an abundance of immune cells (Fig. 1C). Multiple immune 

populations were elevated in tumor samples: myeloid cells, B cells, NK cells, CD4+ T cells, 

regulatory T cells and CD8+ T cells (Fig. 1D and Extended Data Fig. 1E). We observed an 

inverse correlation between the percentage of myeloid cells and CD8+ T cells (Fig. 1E), 

consistent with previous observation in mouse models and in agreement with the notion that 

myeloid cells are a key immunosuppressive component in pancreatic cancer [3, 9, 20–22].

To measure immune composition in undisturbed tissue and define the spatial relationships 

between immune cells in the microenvironment, we performed seven-color multiplex 

fluorescent immunohistochemistry (mfIHC) on a formalin fixed paraffin embedded tissue 

tumor microarray (TMA) comprised of 71 PDA and 34 chronic pancreatitis samples, as 

previously described [23] (Extended Data Fig. 1F). Representative images from individual 

samples are shown in Fig. 1F, Extended Data Fig. 1G–H. Chronic pancreatitis samples 

contained a higher epithelial cell component than the PDA samples. Conversely, immune 

cell infiltration was more abundant in PDA tissue (Fig. 1G). In agreement with our CyTOF 

analysis, mfIHC demonstrated an increase in Tregs (FOXP3+) and macrophages (CD163+). 

However, unlike in the CyTOF data, CD8+ T cells did not change (Fig. 1G), likely reflecting 

differences in the control tissues (chronic pancreatitis versus adjacent/normal pancreas). 

Individual patient tumors were variable in terms of CD8+ T cell infiltration. As in the 

CyTOF data, we observed a negative correlation between CD8+ T cells and myeloid cells in 

PDA samples (Fig. 1H and 1E) [7, 9], supporting a key immunosuppressive role of this cell 
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population [20, 24–29]. Overall, our data show a complex microenvironment and 

considerable variability across individual patients.

Single cell RNA sequencing reveals a complex immune landscape with heterogeneous 
expression of immune checkpoints and ligands in the pancreatic cancer 
microenvironment.

We performed single cell RNA sequencing (scRNA seq) on 16 PDA samples, including 

surgical (n=6) and fine needle biopsy specimens (n=10) (Extended Data Fig. 2A). All the 

patients were treatment-naïve at the time of sample acquisition. We also included three non-

malignant pancreas samples (1196, 1258, 19732) from patients undergoing surgery for 

duodenal adenoma, ampullary carcinoma, or adjacent to PDA, respectively, where an 

uninvolved portion of pancreas was included in the resection (as determined by pathologic 

evaluation). To capture a window into the systemic immune response in PDA patients, we 

also collected peripheral blood mononuclear cells (PBMCs) from these patients and healthy 

subjects (Extended Data Fig. 2A, right panel).

In total, we sequenced 8541 cells from adjacent/normal samples and 46,244 from PDA, 

while from the blood samples we sequenced 14,240 cells from 4 healthy subjects, and 

55,873 cells from 16 PDA patients. To define and visualize cell subpopulations, we batch 

corrected our tumor and blood sequencing samples (Extended Data Fig. 2B) and then used 

unbiased clustering and a dimensionality reduction through Uniform Manifold 

Approximation and Projection (UMAP) (Fig. 2A and Extended Data Fig 3A). We identified 

each subpopulation based on published lineage markers (Fig. 2B and Extended Data Fig. 

3B). We observed variability in the total immune cell composition of individual tumors, and 

in the relative abundance of individual immune cell components similar to CYTOF and 

mfIHC data (Extended Data Fig. 2C and 2D).

We identified abundant pro-inflammatory cells in the PDA microenvironment including 

CD8+ T cells and natural killer cells (NK) (Fig. 2A). To gather insight into the possible 

mechanisms preventing anti-tumor immune responses, we profiled average expression of 

immune checkpoint receptors and ligands by cell type, both in tumors and PBMCs of PDA 

patients (Fig. 2C and Extended Data Fig. 3C). We observed expression of multiple immune 

checkpoint receptors in T and NK cell subsets, while myeloid populations were enriched for 

their corresponding ligands (Fig. 2C). CD8+ T cells had elevated ICOS, TIGIT, PDCD1 and 

LAG3, among others, but relatively low expression of CTLA4. CTLA4, as well as all other 

checkpoints except for LAG3, was high in CD4+ T cells. NK cells also had elevated CD47, 
TIGIT, TNFRSF18 and LAG3, and modest expression of PDCD1. The expression of 

checkpoint ligands was heterogeneous, with epithelial cells mainly expressing PVR and 

LGALS9 (encoding for PVR and GALECTIN 9, ligands for TIGIT and HAVCR2(TIM3) 
respectively). Myeloid and dendritic cells expressed several genes encoding checkpoint 

ligands, including SIRPA, LGALS9, PVR, and ICOSLG (Fig. 2C). Similarly, in PBMC 

samples, CD4+ T cells, CD8+ T cells and NK cells had elevated expression of multiple 

immune checkpoint receptors (TIGIT was elevated in all three cellular compartments), and 

granulocytes, monocytes and B cells, plasma cells and dendritic cells expressed the ligands 

(Extended Data Fig. 3C). We also detected expression of immune checkpoint ligands in 
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other non-immune cell types, which included fibroblasts, endocrine, and endothelial cells 

(Fig. 2C). Our single cell data revealed a complex, patient-specific landscape of immune 

checkpoint ligand and receptor expression across multiple immune and non-immune cell 

types.

Tumor-infiltrating CD8+ T cells have a distinct gene expression profile, with progressive 
dysfunction in advanced disease.

Cytotoxic T cells are a fundamental component of anti-tumor immune responses and the 

target of immunotherapy (for review see [30]). To gather deeper insight into the functional 

status of tumor-infiltrating CD8+ T cells, we investigated their transcriptional profile. To 

investigate patient-specific variability, we mapped the average expression of immune 

checkpoint receptors in CD8+ T cells in each individual patient’s tumor and blood samples 

(Fig. 2D and Extended Data Fig. 3D). Infiltrating CD8+ T cells expressed markedly distinct 

immune checkpoint profiles in individual patient samples, both in tumors and blood (Fig. 2D 

and Extended Data Fig. 3D). In tumor samples, LAG3 was elevated in patients 1141, 1294, 

1261 and 1229. Patient 1229 (locally advanced) also had high expression of ICOS, CTLA4, 
TIGIT and CD47. Conversely, patient 1261 (also locally advanced), had elevated CD27, 
LAG3, PDCD1, HAVCR2, TNFRSF18, CSF1, TIGIT, CD40LG, CD47 and CD28, but not 

CTLA4. The immune checkpoint landscape did not cluster by disease stage, and while some 

metastatic patients had high expression of multiple immune checkpoints (3210) others 

expressed only a limited subset (1253). Analysis of circulating CD8+ T cells revealed a 

similarly complex landscape, but no clear overall correlation in the expression of individual 

checkpoints between patient tumor and blood T cells at a gene expression level (Extended 

Data Fig. 3D).

We then investigated tumor-infiltrating CD8+ T cells compared to CD8+ T cells in normal/

adjacent tissue. By functional annotation, we observed pathways relating to cell cytotoxicity, 

chemokine signaling, T cell receptor signaling, and antigen processing were significantly 

enriched in PDA samples, compared to adjacent/normal tissue CD8+ T cells, an indication 

that immune responses had been elicited in the tumors (Fig. 2E). We performed unbiased 

clustering of the CD8+ T cell gene expression signatures in patients. Circulating CD8+ T 

cells gene expression patterns did not clearly segregate by disease stage (Extended Data Fig. 

3E). We then performed an unbiased differential expression analysis on the tissue-infiltrating 

CD8+ T cells in tumors versus adjacent/normal tissue. This analysis revealed distinct 

expression patterns in healthy versus tumor infiltrating total CD8+ T cells (Fig 2F). We 

noted that the CD8+ T cells in adjacent/normal samples clustered together, while tumor-

infiltrating CD8+ T cell signatures spanned a spectrum in individual samples. Some tumor 

signatures partially resembled non-malignant tissue and others were greatly diverging. 

Interestingly, upon clinical annotation, we discovered that the divergence from the normal 

signature was more pronounced in samples from advanced disease stage. When we 

considered which genes were differentially expressed across the groups, we observed an 

increase in T cell activation and trafficking markers (GZMB, GZMA, KLF2) [3, 4, 31] in 

tumor CD8+ T cells, compared to adjacent/normal tissues. Further, T cell exhaustion 

markers such as EOMES and GZMK were low in healthy CD8+ T cells, and elevated in the 

majority of tumor CD8+ T cell samples [32, 33]. The only immune checkpoint receptor 
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identified as differentially overexpressed in tumor-infiltrating CD8+ T cells, compared to 

CD8+ T cells in adjacent/normal tissue, was TIGIT, a gene encoding a receptor belonging to 

the Ig superfamily [14]. Overall, comparison of the transcriptional profile of tumor and 

adjacent/normal infiltrating CD8+ T cells revealed unique profiles of expression of immune 

checkpoint genes in individual patients. However, some common features emerged, such as 

expression of activation markers, as well as an exhausted gene expression signature which 

progressively increased with advanced disease stage.

Tumor infiltrating CD8+ T cells include an expanded exhausted population characterized 
by TIGIT expression.

Distinct populations of tumor infiltrating CD8+ T cells have been described [34]. Given the 

progressive dysfunction of tumor-infiltrating CD8+ T cells, we hypothesized that the 

transcriptional profile shift might be caused by changes in CD8+ populations. By unbiased 

clustering, we distinguished 6 populations of CD8A-expressing T cells in both adjacent/

normal and PDA samples (Fig. 3A). To identify sub-populations, we plotted the top 

expressed genes per cluster (Fig. 3B), and compared them with published signatures of 

CD8+ T cells subtypes [32]. We identified two populations of effector CD8+ T cells (Teff), 

expressing PRF1 and GZMB; a population of likely memory (mem)/ precursor effector (pec) 

CD8+ T cells (Tmem/pec) expressing CCR6 [35]; and two populations of exhausted CD8+ T 

cells (Tex) expressing EOMES, GZMK, and TIGIT (Fig. 3C, Extended Data Fig. 4A and 

average expression heatmap in Extended Data Fig. 4C). Interestingly, comparison of tumor 

infiltrating versus adjacent/normal CD8+ T cells revealed a relative increase in exhausted T 

cells and memory T cells, with converse reduction of effector T cell levels (Fig. 3D and 

Extended Data Fig. 4B). We then examined expression of immune checkpoints and immune 

activation markers across CD8+ T cell subsets, and observed uniform expression of PDCD1, 

HAVCR2 and LAG3 (Fig. 3C), while TIGIT was enriched in exhausted and memory CD8+ 

T cells. We found that 13.3% of effector CD8+ T cells, compared to 44.2% of exhausted 

CD8+ T cells expressed TIGIT. To compare gene expression changes within distinct clusters 

of CD8+ T cells, we performed two separate differential expression analyses. We first 

compared PDA effector CD8+ T cells to adjacent/normal effector CD8+ T cells, and we 

found that GZMA and GZMB were higher in tumor infiltrating effector CD8+ T cells, 

suggesting T cell activation (Fig. 3E). RORA expression, a marker associated with effector T 

cells, was also upregulated [32] (Fig. 3E), consistent with an ongoing immune response. We 

then compared PDA exhausted CD8+ T cells to adjacent/normal exhausted CD8+ T cells and 

tumor infiltrating exhausted CD8+ T cells had higher expression of EOMES and KLF2, 

markers of exhaustion [32] (Fig. 3F).

Our data suggest that exhausted CD8+ T cells are abundant in pancreatic tumors, and that 

their exhausted phenotype is more profound than the equivalent population in adjacent/

normal tissue. Further, TIGIT was the sole immune checkpoint receptor that specifically 

defined exhausted CD8+ T cells.

A complex landscape of NK and CD4+ T cells cell subsets in pancreatic cancer.

Similar to effector CD8+ T cells, NK cells display cytotoxic activity and express immune 

checkpoint receptor (Fig. 2C), however these cells are not well defined in human PDA [36]. 
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Unsupervised sub-clustering of NK cells revealed three populations (Fig. 4A and 4B). Along 

with the three NK cell subsets, we found two additional populations that we labeled cluster 1 

and 2, which expressed NKG7, CD3E, and CD8A. While these cells did not cluster with the 

CD8 T cells based on their transcriptional profile, they could potentially be highly cytolytic 

CD8 T cells expressing some NK markers [37, 38]. A “NK” cell population expressing 

CD8A was identified in a recent PDA scRNA-seq paper [12]. Highly variable gene 

expression analysis highlighted differences among subpopulations (Fig. 4B). In NK subsets 

we detected expression of markers of antigen presentation (HLA-DRA), cytolytic activity 

(PRF1, GZMB), and chemokines/chemokine receptors (CCL3, IL7R), in agreement with a 

recently published characterization of human NK cells by single cell RNA sequencing [39]. 

NK cluster 1 was enriched for immune checkpoint HAVCR2, while NK cluster 3 expressed 

high levels of immune checkpoint TNFRSF4 (Fig. 4B and 4C). We then performed 

differential gene expression analysis and unbiased clustering of individual patient samples to 

compare tumor infiltrating NK cells with NK cells in non-tumor tissue. The signatures of 

tumor-infiltrating and non-tumor NK cells were not as divergent as was the case for CD8+ T 

cells, and, with one exception (1324), resectable tumor samples clustered closely with the 

non-tumor samples (Fig. 4D). However, advanced disease samples had a different expression 

signature than healthy counterparts, with increased expression of activation markers such as 

GZMA and elevated expression of two immune checkpoint genes, TIGIT and HAVCR2. The 

role of NK cells in PDA is not well understood; our findings set the stage for future 

functional studies on the role of NK cells in this disease.

We then investigated CD4+ T cells, a complex population that includes regulatory T cells, 

and plays a fundamental role in regulating pancreatic carcinogenesis [40–42]. Unlike the 

CD8+ T and NK cells, we could not perform differential expression on CD4+ T cells as we 

did not capture enough cells from adjacent/normal tissue samples; instead we focused on 

studying the tumor-infiltrating component. We identified 13 transcriptionally distinct 

populations of CD4+ T cells, although many of the different clusters tended to merge 

together (Fig. 4E). A highly enriched gene analysis of CD4+ subsets revealed expression of 

naïve T cell markers CCR7 and SELL [43] in cluster 0 and expression of regulatory T cell 

marker FOXP3 in cluster 3 (Fig. 4F). As expected, based on previous studies, CTLA4 was 

highly expressed within Tregs [44] (Fig. 4G). Specific immune checkpoint genes were 

highly expressed in individual clusters, such as TNFRSF18 and PDCD1. TIGIT appeared as 

a top expressed gene in Tregs (Fig. 4F), although it was also expressed in other clusters more 

sparsely (Fig. 4G). The other clusters did not correspond to known subsets of CD4+ T cells, 

and were relatively similar to one another, a possible reflection of low transcriptional activity 

of non-Treg CD4+ T cells. Taken together, these analyses suggest multiple immune 

checkpoint receptors are expressed in CD4+ and NK cell subsets. In particular, the immune 

checkpoint TIGIT was differentially overexpressed on tumor-infiltrating PDA CD8+ T cells, 

regulatory T cells and NK cells.

Myeloid and dendritic cells are an important source of immune checkpoint ligands in 
human PDA.

We next analyzed myeloid cells, which are an important source of immune checkpoint 

ligands in PDA. By unbiased clustering, we identified 6 transcriptionally distinct populations 
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of myeloid cells. (Fig. 5A). We observed an abundant granulocyte population expressing 

CXCR1 and CXCR2, FCGR3B and S100A8 (Fig. 5B). Consistent with previous studies [12, 

25], we detected resident macrophages and alternatively activated macrophages (MARCO+), 

and classical monocytes (Fig. 5A and B). We also observed an additional myeloid 

population, denoted as alternatively activated macrophages 2, that resembled alternatively 

activated macrophages and was uniquely defined by abundant expression of CHIT1 and 

multiple immune checkpoint ligands (Fig. 5A, 5B and Extended Data Fig. 5A). We next 

mapped immune checkpoint ligand expression within specific myeloid compartments and 

observed heterogeneous expression of immune checkpoints in specific clusters (Fig. 5C). 

Differential expression analysis between adjacent/normal and tumor-infiltrating myeloid 

sub-clusters revealed multiple upregulated checkpoint ligands. LGALS9, the ligand for 

HAVCR2 (encoding for TIM3), was significantly increased within alternatively activated 

macrophages, while SIRPA, the ligand for CD47, was higher in PDA granulocytes compared 

to granulocytes in adjacent/normal tissue (Fig. 5D). PVR, the ligand for TIGIT was enriched 

in total macrophages (Fig. 5D). Average expression heatmaps of macrophages (Extended 

Data Fig. 5B) and granulocytes (Extended Data Fig. 5C) demonstrated that the expression of 

immune checkpoint ligands was highly variable in individual patients.

Dendritic cells (DCs) cells are professional antigen presenting myeloid cells, and support 

anti-tumor activity by stimulating T cells; their relative rarity in PDA is one of the potential 

causes for ineffective immune responses in this disease [45]. Clustering analysis revealed 

multiple populations of tumor-infiltrating DCs (Fig. 5E). We found two populations of 

plasmacytoid DCs (IRF8, GZMB) and two populations of Langerhans-like DCs (CD207, 

CD1A) as previously described [12] (Fig. 5F and 6A). Langerhans-like DC2 had robust 

expression of IL22RA2, also known as IL22BP, and the IL-22-IL22BP axis is known to be a 

crucial mediator of tumorigenesis in the colon [46] and pancreas [47]. We also detected a 

population of conventional DC1s (CLEC9A, IRF8) [12, 48], and two additional populations 

of potential conventional DC2s that expressed immune checkpoint ligand SIRPA (Fig. 5F 

and 6A). We also detected two unique populations of activated DCs (LAMP3, CCL22) [12] 

(Fig. 5F and 6A). We then plotted the average expression of known immune checkpoint 

ligands in the different DC subsets. We discovered that activated DC1 had elevated 

expression of nearly all the immune checkpoint ligands, including PVR (Fig. 6B), 

suggesting that in pancreatic tumors some subsets of DCs may be immunosuppressive [49].

Mapping predicted interactions and tissue heterogeneity in pancreatic cancer samples by 
single cell sequencing.

To explore potential cross-talk between T/NK and myeloid populations, we applied a 

predicted interaction algorithm [15] based on known ligand-receptor (LR) pairs interacting 

with high affinity [50]. We curated the list to specifically add immune checkpoints and limit 

the receptor-ligand pairs to cytokines, chemokines and specific signaling pathways [for a 

comprehensive list, see Supplemental Table 5]. We first plotted all the receptor-ligand 

interactions that were statistically higher in tumor versus non-malignant samples, based on 

the level of ligand expression, and observed a complex landscape of potential interactions 

involving multiple cell types (Extended Data Fig. 5D). We then visualized upregulated 

ligands in macrophages (Fig. 6C), granulocytes (Fig. 6D), dendritic cells (Fig. 6E), 
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endothelial cells (Fig. 6F) and epithelial cells (Fig. 6G) and mapped the predicted binding 

partners in CD4, CD8, and NK cells. Among interactions upregulated in cancer compared to 

adjacent/normal, we detected known putative immune suppressive interactions, such as those 

mediated by the chemokine receptors CXCR2 in granulocytes and CCR2 in macrophages 

[25, 26]. Predicted interactions mediated by IL1A and IL1B with their receptor encoding 

genes IL1R1 and IL1R2 were also upregulated, consistent with their known roles in 

pancreatic cancer [12, 51, 52]. Multiple putative interactions linked T and NK cells to 

myeloid immune checkpoint ligands, which is consistent with a key role for myeloid cells in 

establishing immune suppression in pancreatic cancer (for review see [8]). Predicted 

immune checkpoint-mediated interactions such as ICOS/ICOSLG and SIRPA/CD47 were 

among those upregulated in pancreatic cancer compared to healthy/adjacent tissue. 

TIGIT/PVR interactions were elevated between macrophages and CD4+ T cells, CD8+ T 

cells and NK cells (Fig. 6C). Interestingly, the putative TIGIT/PVR interaction was also 

elevated between tumor endothelial and epithelial cells, T cell and NK cell subsets (Fig. 6F, 

G). We then endeavored to investigate the expression of other genes involved in the TIGIT 

pathway. We investigated the expression of TIGIT’s costimulatory counter receptor, 

DNAM1 (CD226), which competes for PVR and PVRL2 and promotes T cell activation 

[53]. We found that while TIGIT was significantly increased on PDA CD8+ T cells (P= 

4.8E-32), CD226 expression was not altered in CD8+ T cells between adjacent/normal and 

PDA cells (Fig. 6H). CD96 and PVRIG act similarly to TIGIT, inhibiting T cell activation. 

Expression analysis showed that mRNA levels of these receptors were not altered between 

adjacent/normal and PDA CD8+ T cells (Fig. 6H). PVRL2 encodes a second ligand for 

TIGIT, although it binds with a lower affinity compared to PVR [54]. We detected 

expression of PVRL2 in epithelial, myeloid, and endothelial cells (Fig. 6I). TIGIT, CD96, 

PVRIG, and CD226 were mainly expressed by T and NK cells in PDA tissue (Fig. 6I). We 

then investigated the Adenosine pathway, because of its immune suppressive role [55]. We 

profiled this pathway in tumor samples and found expression of the adenosine receptor 

ADORA1 in epithelial and mast cells, ADORA2B in epithelial, mast cells, and dendritic 

cells, ADORA3 in dendritic, mast, and myeloid cells (Extended Data Fig. 5E).

The expression of multiple immune checkpoints has been previously described in pancreatic 

cancer [4]. Since a deconvolution approach was used, the specific immune cell types 

expressing receptors and ligands could not be assessed. In contrast, our analysis provides a 

comprehensive view of the multiple, redundant potential immune suppressive interactions 

within the pancreatic cancer microenvironment.

TIGIT protein expression is increased on T and NK cells in pancreatic cancer, and its 
expression in the tumors correlates with matched blood.

To determine whether mRNA expression of immune checkpoints was reflected by protein 

levels, we performed mass cytometry on tumor and normal/adjacent uninvolved tissue 

samples (Fig. 7A). TIGIT expression was elevated in tumor-infiltrating CD8+ T cells in the 

majority of samples, albeit not all, while PD1 and LAG3 were not significantly altered (Fig. 

7A). Interestingly, we detected an increase in expression in PD-1 ligand, PD-L1, in CD68+ 

macrophages from PDA patients (Extended Data Fig. 7B). CTLA4 expression was 

significantly increased in CD4+ T cells in most PDA samples versus adjacent/normal tissues 
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(Fig. 7B). TIGIT+ CD4+;CD25+ T cells were more frequent in PDA samples, compared to 

controls (Fig. 7B). Similarly, TIGIT+ NK cells (CD56+) were more frequent in PDA, 

although this finding is limited by the small number of samples analyzed (Fig. 7C). In one 

patient, where matched tumor and uninvolved adjacent tissue were analyzed, we observed a 

higher frequency of TIGIT expression on both CD8+ and CD4+ T cells in the tumor (Fig. 

7D). We then performed immunostaining for both TIGIT and PVR on patient tissue in situ 
(Fig. 7E) and observed TIGIT in CD8+ T cells, and PVR (red) in epithelial and stromal cells 

(Fig. 7E and single channels shown in Extended Data Fig. 7A).

Lastly, as we observed that TIGIT was commonly upregulated in tumors, we investigated 

whether protein expression of TIGIT in blood correlated with the individual patient’s tumor, 

an attractive possibility given the relatively easy accessibility of blood samples. We 

performed CyTOF on the peripheral white blood cell (PBMC) component in 36 pancreatic 

cancer patients, 18 healthy volunteers, and 8 patients with chronic pancreatitis (Extended 

Data Fig. 6A). Cellular subtyping and frequency of circulating immune cells present are 

shown in Extended Data Fig. 6B–E. Principal component analysis failed to show any major 

distinction between our three patient populations (Extended Data Fig. 6G). Blood from both 

PDA and chronic pancreatitis patients had fewer circulating CD8+ T cells, but higher 

expression of TIGIT CD8+ T cells (Fig. 7F, 7G and Extended Data Fig. 6F). PD1 and 

CTLA4 protein expression was elevated in PDA circulating CD8+ and CD4+ T cells, 

respectively, compared to healthy subjects (Fig. 7G). We then analyzed the subset of patients 

for whom we had matched mass cytometry of tumor and PBMCs and found a positive 

correlation of TIGIT expression, but not PD1 expression, in CD8+ T cells (Fig. 7H and I). 

Thus, different immune checkpoint molecules are prevalent in individual patients, and 

further validation of potential targets, including TIGIT, is warranted.

Discussion

Recent reports examining gene expression in pancreatic tumors by scRNAseq or high 

content in situ hybridization have largely focused on the complexity of the fibroblast 

populations, [12, 13, 56] however the heterogeneity of the immune reaction in PDA at a 

single cell level remained unclear. We have used a multi-modal approach combining CyTOF 

[17, 19], multiplex immunohistochemistry, and scRNA seq to map the immune infiltration, 

as well as the systemic immune response through patient blood, in human PDA [57].

Multiparameter mapping of the TME demonstrated a highly heterogeneous immune 

infiltration in individual patients, consistent with previous reports [3], suggesting that 

immune-modulatory therapies should potentially be targeted to specific individuals based on 

their checkpoint expression profile within tumors. Both CyTOF and mfIHC also revealed an 

inverse correlation between infiltration of myeloid and CD8+ T cells. scRNA seq analysis 

suggests that CD8+ T cells express markers of exhaustion at levels that increase in advanced 

stages of disease, consistent with a recent study of peripheral T cells in pancreatic cancer 

patients showing diminished fitness [58]. Importantly, we included fine needle biopsy 

samples for both single cell sequencing and CyTOF, which allowed us to study the immune 

infiltration in patients with unresectable advanced stages of disease. These tumors included 
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CD8+ T cells with a more pronounced exhaustion signature compared with early stage 

patients, a possible indication of progressive immune dysfunction.

We found differential expression of TIGIT, both at the gene and at the protein level, in 

patient CD8+ T cells. We chose to focus on TIGIT in particular as one example of an 

immune checkpoint ligand/receptor pair given our ability to evaluate this relatively 

understudied checkpoint across multiple modalities. TIGIT expression was enriched 

specifically within EOMEShigh CD8+ T cells, or exhausted T cells, similar to recent findings 

in human prostate, bladder, and kidney cancer [34]. TIGIT was also elevated in NK cells 

within the tumor, where its role is less understood, although there is at least some evidence 

TIGIT inhibition in NK cells might be beneficial [59]. Elevated TIGIT expression is a 

feature of Tregs, and again its role in this cell population is not well understood. However, it 

has been proposed that inhibition of TIGIT on Tregs may suppress the secretion of the 

immunosuppressive cytokine IL-10 [14]. The expression of TIGIT, and other immune 

checkpoint receptors in multiple cellular compartments, as well as the observation that 

expression of immune checkpoints is highly heterogeneous across patients, will have to be 

further investigated as new combination immunotherapy approaches are devised for 

preclinical testing. Further, it is interesting to note that multiple cellular compartments 

express a variety of immune checkpoint ligands in a similar heterogeneous manner. At the 

protein level, we validated that PVR, the ligand for TIGIT, was expressed in tumor, 

endocrine, and endothelial cells (while low in non-malignant acinar cells). PVR and other 

immune checkpoint ligands were also upregulated in myeloid subsets, supporting the notion 

of myeloid cells as key mediators of immune suppression in PDA. Intriguingly, TIGIT 

protein expression in the blood correlated with TIGIT expression in the tumors of individual 

patients, although a similar correlation was not observed for other immune checkpoints such 

as PD-1. Of note, while functional studies on the role of TIGIT in different patients and 

different cellular compartments within each tumor are still needed, TIGIT blocking agents 

are available and are currently being evaluated in clinical trials [60].

In summary, our study provides a multimodal characterization of the immune landscape in 

PDA, highlights the complexity of this disease in human patients, and provides a resource 

for future functional studies.

Methods

Study Approval and Patient Consent

Patient Selection/Sample procurement: Medical chart review was used to screen for potential 

study patients with pancreatic disease at the University of Michigan. Fine needle biopsies: 

Patients over the age of 18 referred for diagnostic endoscopic ultrasound of a pancreas mass 

lesion suspected of PDA were consented according to IRB HUM00041280 or 

HUM00025339. Up to 2 extra passes using at 22 Gauge SharkCore™ needle were taken for 

research after biopsy obtained for clinical use. Surgical specimens: Surgical specimens of 

either tumor tissue or adjacent normal pancreas were obtained from patients referred for 

Whipple procedure or distal pancreatectomy according to IRB HUM00025339. Blood 

collection: Up to 40 cc of whole blood were collected pre-procedurally or intra-operatively 

for all patients consented. For patients not undergoing interventional procedures (i.e. 
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chemotherapy visit), only whole blood was collected. Supplemental Table 2 contains 

extended clinical data associated with clinical samples.

Multiplex fluorescent immunohistochemistry (mfIHC) imaging, cell segmentation, and 
basic phenotyping

Images were taken using the Mantra™ Quantitative Pathology Work Station (Akoya 

Biosciences) as described in the Online Methods.

Cytometry Time-of-Flight (CyTOF) Immune Phenotyping and Data Analysis

For CyTOF, we collected 8 samples from non-malignant pancreas specimens, including non-

involved pancreas tissue adjacent to a duodenal adenoma (1196, (patient ID)), ampullary 

carcinoma (1258), insulinoma (19–700), and non-involved pancreas tissue adjacent to PDA 

(1172, 19–262, 19–561, 19–732, 1252), all obtained surgically (Fig. S1A). PDA samples 

were collected from either surgical (n=7) or fine needle biopsy (FNB) (n=3) procedures, and 

clinical annotation is shown in Fig. S1A. Human patient tissues from FNB or surgery were 

immediately placed into DMEM media supplemented with Y27632 (Rho-Kinase inhibitor) 

for transport to the laboratory. Sample Preparation, Analysis and Data analysis are described 

in detail in the Online Methods.

Immunofluorescent staining

Patient tissue slides were rehydrated in xylene, 100% ethanol, 95% ethanol, then running 

deionized water sequentially. Antigen retrieval was performed with sodium citrate, pH 6.0. 

Tissue was blocked in 10% donkey serum overnight at 4°C. Primary antibodies (PVR/

CD155 (1:100, Cell Signaling Technology), VE-Cadherin/CD144 (1:250, R&D), FOXP3 

(1:100, Cell Signaling), Vimentin (1:100, Cell Signaling), CD163 (1:100, Novus 

Biologicals), or Pan Cytokeratin-488 (1:250, Thermo Fisher Scientific) were diluted in 5% 

donkey serum in PBST (DS/PBST) and incubated overnight at 4°C. For tissue co-stained for 

TIGIT-FOXP3 and PVR-Vimentin: the tyramide signal amplification kit with Alexa Fluor 

488 (Thermo Fisher Scientific) was used following the manufacturer’s recommendation to 

enhance signaling for PVR and FOXP3. Samples underwent a second citrate antigen 

retrieval and were then multiplexed with TIGIT and Vimentin following the aforementioned 

standard IFC protocol. A 1% BSA block was used throughout the TSA protocol and 

subsequent multiplex staining. Tissue was mounted with DAPI ProLong™ Gold Antifade 

Mountant (Thermo Fisher Scientific) and subsequently imaged by confocal microscopy on a 

Leica SP5. Supplementary Table 4 lists the antibodies used.

Statistical Analysis and Reproducibility

Significance was evaluated by the following statistical analyses: two-tailed, parametric, 

unpaired Student’s t-test, Student’s t-test with Welch’s correction, Wilcoxon rank-sum test, 

or a Mann–Whitney U-test in GraphPad Prism (version 7) or JMP Pro software (version 14). 

The data were presented as means ± standard error (SEM) or means ± standard deviation 

(STDV). A p value of p<0.05 was considered statistically significant. Pearson correlation 

coefficients were used to measure R and R2. Intergroup comparisons (differential 

expression) of scRNA seq was performed using Wilcoxon ranked test and p-values were 
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adjusted for multiple comparisons with the Bonferroni correction method. For the 

interactome analysis, differences of the ligand and receptors between groups were 

determined using Wilcoxon ranked test, and p-values were adjusted for multiple 

comparisons with the Bonferroni correction method. Ligand/Receptor pairs were considered 

significantly different if the p < 1.0×10−4. Ligand/Receptor pairs were then sorted by the 

adjusted ligand expression p-value. No statistical method was used to predetermine sample 

sizes, experiments were not randomized and mass cytometric analysis of samples was not 

blinded. No data were excluded from the analyses. Each patient is considered an 

independent biological sample in the analyses. For comparison of differential abundance 

analysis of mass cytometry data, the edegR package (version 3.11) was used.

Additional Experimental procedures are included in the Online Methods.

Data Availability

All raw data are publicly available without restrictions. All mass cytometry data used for this 

publication have been deposited in the FlowRepository. All fcs files of tissue (tumor and 

adjacent normal) have been uploaded to FlowRepository Experiment FR-FCM-Z2S4 and 

PBMC files have been uploaded to FlowRepository Experiment FR-FCM-Z2S3. The 

corresponding file key for the FCS files is in supplementary table 6 and refers to Figures 1 

and 7, and Extended Data 6 and 7. Single cell RNA sequencing data with clinical metadata 

are available at NIH dbGAP database under the accession phs002071.v1.p1. Deidentified 

single cell RNA sequencing data are available at NIH GEO database under the accession 

GSE155698. Source data are available for this study. All other data supporting the findings 

of this study are available from the corresponding author on reasonable request.

Code Availability

Code is publicly available on GitHub.com (https://github.com/PascaDiMagliano-Lab/

MultimodalMappingPDA-scRNASeq).

Online Methods

Multiplex fluorescent immunohistochemistry (mfIHC) imaging, cell segmentation, and 
basic phenotyping

Images were taken using the Mantra™ Quantitative Pathology Work Station (Akoya 

Biosciences) as described in the Online Methods. One image was taken of each patient core. 

All cube filters were used for each image capture (DAPI, CY3, CY5, CY7, Texas Red, Qdot) 

and the saturation protection feature was utilized. After all images were acquired, images 

were analyzed using inForm® Cell Analysis™ software versions 2.3.0 and 2.4.2 (Akoya 

Biosciences). Using this software, chronic pancreatitis specimens and PDA specimens were 

batch analyzed by their separate diagnoses. Cell segmentation was completed using DAPI as 

a basis of cell location and size and all cells segmented into the following subsets (nucleus, 

cytoplasm, and membrane). Using the automated training software, basic phenotypes (T 

cells, tumor epithelial cells, other cells, CD163+ cells) were created. Software output 

consisting of mean fluorescent intensity (mfi) of each antibody-fluorophore pair, basic 

phenotypes, and x and y coordinates were acquired for further processing. A total of 34 
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chronic pancreatitis patients and 71 PDA patients were included in this study. Supplemental 

Table 3 details the antibodies used for mfIHC.

Cytometry Time-of-Flight (CyTOF) Immune Phenotyping

Tissues were mechanically minced and enzymatically digested with collagenase P (1mg/mL 

DMEM) at 37 degrees Celsius with gentle shaking and subsequently filtered through a 40μm 

mesh to obtain single cells. Whole blood was collected pre-operatively into two 10mL 

EDTA tubes. EDTA tubes were inverted 10 times before centrifugation at room temperature 

(RT), 1700 × g for 20 minutes. Serum was removed and using a P1000 tip, the white layer of 

PBMCs at the interface between serum and RBCs was removed and placed into 15mL 

falcon tube. PBMCs were washed in 3X volume PBS centrifuged at RT, 300 × g for 15 

minutes. Following centrifugation, the supernatant was removed, and 10ml ACK lysis buffer 

was added to lyse RBCs for 10 minutes at RT. Following this, PBMCs were centrifuged at 

300 × g for 5 minutes. PBMC and tissue samples were washed twice with MaxPar® PBS 

(Fluidigm) prior to Cell-ID™ Cisplatin (Live/Dead staining). Cell-ID™ Cisplatin reagent 

(1.67μM) was incubated with tissue and PBMCs single cell suspensions for 5 minutes at RT. 

To quench this reaction, 4mL of Cell Staining Buffer (Fluidigm) was added to each sample 

and samples were centrifuged at 300 g for 5 minutes. The supernatant was removed, and 

cells were washed with 2 mL of MaxPar® Cell Staining Buffer. Cell fixation was achieved 

by removing the supernatant, and re-suspending the cell pellet in residual volume, prior to 

the addition of freshly prepared cell fixation buffer (1.6% Methanol-free Formaldehyde; 

Thermo Fisher 28906 in MaxPar® PBS) for 10 minutes at RT. After fixation, samples were 

washed twice with 2mL of MaxPar® Cell Staining Buffer and centrifuged at 300 g for 5 

minutes. Samples were re-suspended in 1mL MaxPar® Cell Staining Buffer and stored at 4 

degrees Celsius for up to one week prior to staining. Up to 3 million cells per sample were 

stained with cell surface antibody cocktail (All antibodies were purchased from Fluidigm 

and used at the following dilutions: (CD3 (1:200); CD19 (1:300); CD15 (1:400); CD163 

(1:100); CD64 (1:100); CD16 (1:400); LAMP1 (1:100); CD66b (1:200); CCR2 (1:200); 

TIGIT (1:100); PD-1 (1:100); PD-L1 (1:100); CD8a (1:200); CD33 (1:200); CD45RO 

(1:200); CD34 (1:100); CD45RA (1:100); CD206 (1:100); CD25 (1:100); CTLA-4 (1:100); 

CD68 (1:100); PD-L2 (1:100); HLA-DR (1:400); CD14 (1:100); CD4 (1:100); CD11b 

(1:200); CD45 (1:200); LAG3 (1:100); CD23 (1:100); CD56 (1:100)). (see Supplemental 

Table 1 for additional antibody information) in 100μl volume of MaxPar® Cell Staining 

Buffer for 30 minutes at room temperature. After being washed once in 1mL MaxPar® Cell 

Staining Buffer cells were re-suspended in 2mL cell intercalation solution (125 nM Cell-ID 

Intercalator-Ir in MaxPar® Fix and Perm Buffer) and shipped to either the Flow Cytometry 

core at the University of Rochester Medical Center or the Indiana University Simon Cancer 

Center Flow Cytometry where CyTOF2 Mass Cytometer cell acquisition was performed.

CyTOF Data Preprocessing

Normalized FCS files were analyzed using the Premium CytoBank Software V7.3.0 

(cytobank.org). Data were checked for quality of staining and normalized by the use of 

internal bead standards. Live singlet cells were identified using the combination of Ir191 

DNA Intercalator, Event Length, and Pt195 Cisplatin staining intensity channels. Filtered 

live single cells were exported as new FCS files for downstream analysis.
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CyTOF Analysis

Unbiased identification of cellular subpopulations was performed in parallel using multiple 

approaches – visualization through FlowSOM-viSNE in R, where an initial FlowSOM 

clustered cells into 100 initial nodes, followed by the ConsensusClusterPlus package which, 

along with manual annotation helped to further consolidate the clusters based on cell surface 

marker expression [18], or Astrolabe Cytometry Platform (Astrolabe Diagnostics, Inc.), 

where single-cell data was clustered using the FlowSOM R package [61] and labeled using 

the Ek’Balam algorithm [19]. The hierarchical clustering for all heatmaps uses the Pearson’s 

correlation as a distance metric. Differential abundance analysis was performed using the 

edgeR V3.11 R package [62, 63]. We used a combination of manual gating validation and 

unbiased approaches to analyze our datasets and included samples with >3000 live singlets 

in clustering algorithms.

Treatment of Batch Effects

In order to avoid batch effects within the data analysis, the Astrolabe Cytometry Platform 

did not compare numerical intensities between samples [19]. Each sample was analyzed 

separately, and then comparisons were done using either cell frequencies (such as comparing 

T Cell counts) or qualitative values (“CD3 high” versus “CD3 low”). The underlying 

assumption was that a given subset was the same regardless of if underlying marker intensity 

has shifted; in other words, a T Cell was defined as a T Cell whether the CD3+ peak was 

centered around a transformed intensity of 4, or a transformed intensity of 6. This mirrors 

the approach utilized in manual gating analysis.

t-SNE Visualization

For the t-SNE maps, each sample was uniformly downsampled into at most 10,000 cells. 

Samples were then concatenated, and the complete data set was uniformly downsampled 

into at most 500,000 cells. t-SNE algorithm was run using the Rt-SNE package: https://

github.com/jkrijthe/Rt-SN.

Single-cell RNA sequencing

Tissues were mechanically minced and enzymatically digested with collagenase P (1mg/mL 

DMEM) and subsequently filtered through a 40μm mesh to obtain single cells. Dead cells 

were removed using MACS® Dead Cell Removal Kit (Miltenyi Biotec Inc.). Single-cell 

cDNA libraries were prepared and sequenced at the University of Michigan Sequencing 

Core using the 10x Genomics Platform. Samples were run using paired end 50 cycle reads 

on HiSeq 4000 or the NovaSeq 6000 (Illumina) to a depth of 100,000 reads. The raw data 

were processed and aligned by the University of Michigan DNA Sequencing Core. 

Cellranger count version 3.0.0 with default settings was used, with an initial expected cell 

count of 10,000. In all cases the hg19 reference supplied with the cellranger software was 

used for alignment. R Studio V3.5.1 and R package Seurat version 3.0 was used for single 

cell RNA-seq data analysis similarly as previous described. Data were initially filtered to 

only include all cells with at least 200 genes and all genes in greater than 3 cells. Data were 

initially normalized using the NormalizeData function with a scale factor of 10,000 and the 

LogNormalize normalization method. Variable genes were identified using the 
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FindVariableFeatures function. Data were assigned a cell cycle score using the 

CellCycleScoring function and a cell cycle difference was calculated by subtracting the S 

phase score from the G2M score. Data were scaled and centered using linear regression on 

the counts and the cell cycle score difference. PCA was run with the RunPCA function using 

the previously defined variable genes. Violin plots were then used to filter data according to 

user-defined criteria. All tissue samples were batch corrected through the R package 

Harmony V1.0 (https://github.com/immunogenomics/harmony). Harmony is a flexible 

multi-dataset integration algorithm for scRNA-seq by correcting the low-dimensional 

embedding of cells from principal component analysis (PCA). It first uses soft clustering to 

find potential clusters, and then uses a soft k-means clustering algorithm to find clusters that 

favors the cells from multiple datasets and penalizes for any specified unwanted technical or 

biological factors. It then learns a simple linear adjustment function by computing cluster-

specific linear correction factors, such as individual cell-types and cell state, from the 

cluster-specific centroids from each dataset. Each cell is weighted and corrected by its cell-

specific linear factor. It then iterates the clustering and correction until the cell cluster 

assignments are stable. We used Harmony V1.0 to integrate our scRNA-seq patient data, 

correcting for individual scRNA-seq Run IDs (as each individual patient was each their own 

Run ID). Cell clusters were identified via the FindNeighbors and FindClusters function 

using a resolution of 1.2–2 for all samples and Uniform Manifold Approximation and 

Projection (UMAP) clustering algorithms were performed. FindAllMarkers table was 

created and clusters were defined by user-defined criteria. Code is publicly available on 

GitHub.com (https://github.com/PascaDiMagliano-Lab/MultimodalMappingPDA-

scRNASeq).

Interactome

Ligand and receptor pairs were defined based off of a curated literature supported list in 

Ramilowski et al [50]. The average of expression of ligands and receptors (LR) in all the 

population for each group were calculated. LR pairs in each group (adjacent/normal and 

PDA) were determined to be expressed by setting the median average expression for all 

groups as a threshold. LR’s above the threshold were considered as expressed in the group. 

LR pairs were then filtered out if the ligand and receptor in the LR pairs were not expressed 

in both groups. Differences of the LR’s between groups were determined using Wilcoxon 

ranked test, and p-values were adjusted for multiple comparisons with the Bonferroni 

correction method. LR’s were considered significantly different if the p < 1.0×10−4. LR 

pairs were then sorted by the adjusted ligand expression p-value. The interactomes were 

visualized using the Circos software V0.69-9 and the heatmap values within the circos plots 

displays the average expression of each ligand/receptor within the PDA tissues [64].
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Extended Data

Extended Data Figure 1. CyTOF and multiplex fluorescent immunohistochemistry (mfIHC) 
mapping can be readily performed on patient tumor samples and show a heterogeneous immune 
infiltration in human pancreatic cancer.
(A) Patient breakdown and tumor characteristics of CyTOF performed on 8 adj/norm 

pancreas and 10 PDA tumor samples (surgical (7) vs. fine needle biopsy (FNB) (3)). (B) 
Representative H&E stains of samples DS20191258 (Adj/Norm), DS20191299 (PDA tumor 

from surgical resection), and DS20191324 (PDA tumor from fine needle biopsy). (C) The 

ConsensusClusterPlus and FlowSOM R packages were used to define the initial 22 clusters 
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identified in the tissue CyTOF samples. (D) Final heatmap demonstrating marker expression 

used to define cell populations. (E) Manual gating of CD3-CD8A-CD45+CD56+ NK cells 

in adjacent/normal and PDA tissue samples, n=5 adjacent/normal tissue samples and n=4 

PDA tissue samples. Two-sided Student’s t-test was performed to compare between groups 

and asterisk indicates a p value of less than 0.05 was considered significant. For manual 

gating of NK cells n=5 for adj/norm and n=4 for PDA patient samples. (F) mfIHC 

composite image of PDA (left). Phenotype map with the following basic phenotypes at their 

x and y coordinates: T cell (green), epithelial cells (pink), APCs (orange), other cells (grey) 

(right). 71 individual PDA and 34 individual chronic pancreatitis subjects were examined in 

this analysis. (G) Relative cellular composition by quantitation of mfIHC of representative 

surgical PDA tissue of additional patients DS20181166 (PDA tumor from distal 

pancreatectomy), DS20181141 (PDA tumor from distal pancreatectomy) (H) Corresponding 

mfIHC images of DS20181166, and DS20181141.
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Extended Data Figure 2. Single Cell RNA Sequencing of PDA tissue reveals heterogeneous 
cellular composition and expression of immune checkpoints.
(A) Single cell RNA sequencing tissue sample breakdown (n = 3 Adj/Norm tissue, n=10 

PDA tissue from fine needle biopsy, and n=6 PDA tissue from surgical resection), patient 

clinical data, and tumor characteristics (grade and stage) (Left panel). Breakdown of 

sequenced PBMC samples with corresponding patient clinical data (Right panel). (B) 
UMAP of the merged tissue colored by Patient ID prior to batch correction (Left panel) and 

post batch correction (Right panel). (C) UMAP of 3 individual adjacent/normal samples and 

(D) 16 PDA tissues. We distinguished two epithelial populations: tumor cells and acinar 
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cells. In the non-epithelial compartment, we identified fibroblasts, pericytes, CD8+ T cells, 

CD4+ T cells, Tregs, NK cells, B cells, plasma cells, mast cells, macrophages, granulocytes, 

dendritic cells, endothelial cells, and a small endocrine population.

Extended Data Figure 3. Single Cell RNA Sequencing of PDA PBMCs reveals heterogeneous 
cellular composition and expression of immune checkpoints.
(A) Merged UMAP plots of PBMCs from 4 healthy donors and 16 PDA patients (total of 

70,113 cells). CD8 T cells (green), CD4 T cells (light green), NK cells (purple), pDCs 

(blue), Granulocyte (light orange), Monocyte (orange), B cells (yellow), Plasma cells (light 

yellow). (B) Dot plot analysis of key markers to define the 8 identified cell populations. 
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Color of dot represents average expression, while the size of the dot represents percent 

expression. Dot plot represents merged healthy (n=4) and PDA (n=16) patient gene 

expression of PBMC lineage markers. (C) Average expression of immune checkpoint 

ligands and receptors in the identified cell populations in merged blood samples. (D) 
Average expression of immune checkpoint receptors on CD8+ T cells in merged PBMCs. 

(E) Average expression of differentially expressed genes in CD8+ T cells comparing healthy 

(black) to PDA (grey) PBMCs. Disease stage is plotted on the left.

Extended Data Figure 4. Single cell RNA sequencing reveals 3 CD8+ T cell populations: effector, 
exhausted, and memory CD8+ T Cells.
(A) Feature plots of immune checkpoints (PDCD1, LAG3, TIGIT, HAVCR2), activation 

markers (IFNG, GZMB), and exhaustion markers (GZMK, EOMES) in CD8+ T cells. (B) 
Number of effector (pink), exhausted (green), and memory (blue) CD8+ T cells captured in 

each individual tissue sample by scRNA seq. (C) Average scaled expression heatmap of 

highly enriched genes by potential effector, exhausted, and memory cell populations. (n = 3 

Adj/Norm tissue and n= 16 PDA tissue for panels A–C).
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Extended Data Figure 5. Single cell RNA sequencing of myeloid subsets in human pancreatic 
cancer.
(A) Violin Plots illustrating comparison of immune checkpoint ligands in myeloid clusters in 

PDA vs. adjacent normal/pancreas samples. (B) Average expression heatmap of checkpoint 

ligands in merged macrophages (all cells expressing CD68 within the myeloid population) 

and (C) merged granulocytes (all cells expressing FCGR3B within the myeloid population). 

Left panels denote disease state (adjacent/normal vs. PDA tissue) and stage. (D) Map of all 

putative ligand receptor differential interactions that are upregulated in 16 PDA compared to 

3 adjacent/normal pancreas. The line color denotes cellular source of the ligand, and putative 
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interactions were visualized in Cytoscape® V3.7.1. (E) Dot plot analysis showing 

expression of adenosine receptors in PDA tumor cell types. Red indicates high expression, 

blue low expression, and the size of the dot is relative to the percent that marker is 

expressed. Dot plot represent n=16 PDA patient gene expression of adenosine receptors.

Extended Data Figure 6. CyTOF analysis of PBMCs from healthy, chronic pancreatitis, and PDA 
patients.
(A) Patient breakdown and characteristics of CyTOF performed on patient blood samples (n 

= 16 healthy patients, n = 10 chronic pancreatitis patients, and n=36 PDA patients). (B) t-
SNE analysis of CyTOF of all merged PBMC samples with granulocytes (CD66b+). (C) t-
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SNE analysis of CyTOF of all merged PBMC samples without granulocytes. Key marker t-

SNE feature plots of CD3 (total T cells), CD4 (Helper CD4+ T cells), CD8 (Cytotoxic T 

cells), CD19 (B cells), CD11b (Myeloid cells), CCR2, PDL-1, and CD68 (Macrophage 

marker). (D) Bar plots of relative cell type abundance (B cell, CD4+/CD8+ T cell, CD4+ T 

cell, CD4−/CD8− T cell, Dendritic cell, CD14+/CD16+ Monocyte, CD14+/CD16− Monocyte, 

and CD14− CD16+ Monocyte) from CyTOF of PBMCs of healthy, chronic pancreatitis, and 

PDA patients. (E) Quantification of unbiased analysis (Astrolabe pipeline) of PBMC 

immune populations in n=16 healthy patients, n=36 PDA patients, and n=10 chronic 

pancreatitis patients. Two-sided Student’s t-tests were performed to compare between 

groups and a p value of <0.05 was considered significant. (F) Relative CyTOF marker 

expression in CD8+ T Cells from PDA tumor tissue. (G) PCA analysis of PBMCs at 

different disease states. Healthy (neon blue), PDA (red), and Chronic Pancreatitis (green).
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Extended Data Figure 7. Immunofluorescence of immune checkpoints in pancreatic tumors.
(A) Individual channels of immunofluorescent staining of patient tissues with antibodies 

specific for TIGIT/CD8A, TIGIT/FOXP3, PVR/Pan-cytokeratin, PVR/CD163, PVR/

Vimentin, and PVR/VE-cadherin. Three individual patient tumors were examined 

independently per staining analysis. (B) Manual gating of PD-L1+ CD68+ macrophages in 

normal adjacent (n=8) and PDA (n=10) tissue. Two-sided Student’s t-test was performed, 

and asterisk indicates a p value of <0.05 was considered statistically significant. 

Representative individual CyTOF biaxial density plots from normal adjacent and PDA tissue 
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of a matched patient (19–262) of PD-L1 expression in CD68+ macrophages (as a percentage 

of total CD11b+ cells).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CyTOF and multiplex fluorescent immunohistochemistry (mfIHC) mapping reveals 
heterogeneous immune infiltration in human pancreatic cancer.
(A) PCA analysis comparing intensity of marker staining of n=8 normal or adjacent 

pancreata tissue samples (blue) compared to n=9 PDA tumor samples (red). (B) Merged adj/

norm panc (left) and PDA (right) t-SNE analysis of defined cell clusters from CyTOF 

analysis on tissue samples. The size of the dot represents the number of cells in the cluster. 

Each color represents a cell population: CD4 T cells (red), CD8 T cells (pink), B cells 

(blue), Myeloid (light orange), Macrophages (orange), CD45− cells (light purple), Unknown 

(purple). (C) Bar plot representation from FlowSOM CyTOF analysis of n=8 adj/norm 

tissue samples and n=9 PDA tumor samples. Analysis was only performed on samples with 

greater than 3,000 live singlets. (D) Manual quantitation of total immune cells (CD45+), 

myeloid cells (CD11b+), CD4+ T cells, CD8+ T cells, potential Tregs (CD4+ CD25+), and B 
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cells. Manual gating included n=8 adj/norm patients and n=10 PDA patients per group. 

Asterisk denotes a p-value less than 0.05 determined by two-sided Student’s t-test. (E) 
Correlation plot of total CD11b+ myeloid cells compared to total CD8+ T cells. (F) mfIHC 

composite images of formalin-fixed, paraffin-embedded tissue specimens from four different 

patients with chronic pancreatitis (top row) and four patients with PDA (bottom row). 

Antibodies and colors are as follows: CD163 (orange), PD-L1 (magenta), Pancytokeratin 

(PanCK; white), CD3 (green), CD8 (yellow), FOXP3 (red), and DAPI (blue). (G) 
Comparison of cellular infiltration between n=34 chronic pancreatitis patients and n=71 

PDA patients (P-values: Other 0.0001, CD163+ cells 0.020, CD8+ T cells 0.3483, Treg 

<0.0001, Epithelial <0.0001). (H) Correlation between percentage of CD8+ T cells and 

CD163+ cells in chronic pancreatitis and PDA.
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Figure 2. Single cell RNA sequencing reveals heterogenous expression of immune checkpoints in 
PDA tissue.
(A) UMAP on 3 adjacent/normal pancreas (left) and 16 PDA patient (right) tissues. 

Populations identified as follows: acinar (pink), epithelial (red), fibroblasts (dark and light 

teal), CD8+ T cells (dark green), CD4+ T cells, (neon green), Tregs (light green), NK cells 

(purple), B cells (light blue), plasma cells (dark blue), mast cells (yellow), macrophages 

(dark orange), granulocytes (light orange), dendritic cells (brown), endothelial cells (dark 

pink), and endocrine (dark red). (B) Dot plot of key markers used to define the identified cell 

populations. Color of dot represents average expression, while the size of the dot represents 

percent expression. Dot plot represents merged n=3 adj/norm patients and n=16 PDA 

patients gene expression of lineage markers. (C) Average expression of immune checkpoint 

ligands and receptors in the identified cell populations in n=16 tumor tissue samples. (D) 
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Average expression of immune checkpoint receptors on CD8+ T cells in n=16 PDA patients 

and n=3 adj/norm patients merged tissues. (E) Pathway annotations from gene set 

enrichment analysis (GSEA) using the R package clusterprofiler in n=16 PDA samples 

compared to n=3 adj/norm samples. The color of the bar represents the p-value adjusted for 

multiple comparisons using the Benjamini Hochberg method. Enrichment score is plotted on 

the x-axis. (F) Unbiased differential expression between CD8+ T cells from adj/norm 

pancreas (black) and PDA (grey). Significantly up- and down-regulated genes are plotted as 

average expression per patient. This analysis was performed on all CD8+ T cells found in the 

adjacent/normal and PDA tissue. Disease stage is plotted on the left: resectable (green), 

locally advanced (light green), borderline resectable (blue), metastatic (pink), N/A (light 

blue).
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Figure 3. Single cell RNA sequencing reveals exhausted CD8+ T cell phenotype in PDA patients 
is defined by the immune checkpoint TIGIT.
(A) UMAP analysis of CD8+ T cells from n=3 adjacent/normal pancreas samples (left) and 

n=16 PDA tumors (right). The 6 identified subsets of CD8+ T cells were collapsed into 

potential memory (blue), effector (pink) and exhausted (green). (B) Single cell resolution 

heatmap analysis of top 10 genes for each identified CD8+ T cell subset. (C) Violin plots of 

normalized expression for selected markers mapped across the CD8+ T cell subsets. (D) 
Quantitation of potential exhausted (p=9.11E-6), effector (p=2.209E-5) and memory 

(p=0.0031) T cells in adjacent/normal pancreas and PDA patients, plotted as % total CD8+ T 

cells. Plots represent n=3 adj/norm and n=16 PDA patients. Two-sided Student’s t-test was 

performed to compare between groups and a p value of 0.05 or less was considered 

statistically significant. Panel of genes differentially expressed in (E) effector and (F) 
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exhausted CD8+ T cells in PDA (red) compared to adjacent/normal pancreas (blue). Plots 

represent n=3 adj/norm and n=16 PDA patients. Violin plots are shown as normalized 

expression. All violin plots in (E) and (F) have an adjusted p-value of p<0.01 and are 

considered statistically significant.
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Figure 4. Single cell RNA sequencing of pancreatic tissues reveals TIGIT is differentially 
expressed in NK cells from PDA patients and is a defining marker of Tregs.
(A) Merged UMAP of 5 identified subsets of NK cells from adjacent/normal pancreas (left) 

and PDA (right). Plots represent n=3 adj/norm and n=16 PDA patients. (B) Single cell 

resolution heatmap of each NK cell subset identified. Immune checkpoints (HAVCR2, 
TNFRSF4) are bolded. (C) Violin plots of normalized average expression within NK cell 

subsets demonstrating specific lineage markers for NK cells (such as NCAM1/FCGR3A) 

and immune checkpoint receptors. (D) Unbiased differential average expression of merged 

NK cells from adjacent/normal pancreas (black) and PDA (grey). Disease stage is plotted on 

the left. (E) Merged UMAP of all CD4+ T cells with 13 identified cell subsets. Naïve CD4+ 

T cells are denoted as Th0 (CCR7+) and Tregs as Tregs (FOXP3+). All other subsets are 

denoted as CD4 T cells. (F) Single cell resolution heatmap of each CD4+ T cell subset. 
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Boxes on the left designate naïve CD4+ T cells (Th0) and the CD4+ T cell subsets that are 

defined by immune checkpoint expression (TIGIT, TNFRSF18, PDCD1). (G) Feature plots 

of CTLA4 and TIGIT in regulatory CD4+ T cells (outlined). In all panels, plots represent 

n=3 adj/norm and n=16 PDA patients.
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Figure 5. Single cell RNA sequencing reveals distinct myeloid and dendritic cell subsets.
(A) Merged UMAP of 6 identified myeloid cell subsets in adjacent/normal pancreas (left) 

and PDA (right). (B) Single cell resolution heatmap of each myeloid cell subset identified. 

Boxes on the left designate the top expressing genes for each myeloid subset. (C) Selected 

feature plots of the immune checkpoints, LGALS9, CD274, PVR, CSF1R, SIRPA, HLA-
DQA1 in myeloid cells. (D) Selected feature plots of markers that define alternatively 

activated macrophages, granulocytes, and total macrophage subsets (left) and violin plots of 

immune checkpoint ligands that are upregulated in PDA patients (right). (E) UMAP analysis 

of dendritic cells in merged normal/adjacent pancreas and PDA. (F) Top ten highly enriched 

gene signature analysis of dendritic cell subclusters identifying potential DC subsets, 

including plasmocytoid DCs (pDCs), Langerhans-like DCs (Lang_DCs), conventional DCs 
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(cDCs), and activated DCs (Act_DCs). In all panels, plots represent n=3 adj/norm and n=16 

PDA patients.
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Figure 6. Predicted ligand receptor mapping in PDA patients demonstrate myeloid and non-
immune cell types as sources of immune checkpoint ligands.
(A) Violin plots, where each dot represent a single cell, of select dendritic cell lineage 

markers across all 9 identified subsets. (B) Immune checkpoint ligand expression heatmap 

within dendritic subclusters. (C) Circos plot map of all putative ligand receptor interactions 

that are upregulated in PDA macrophages, (D) granulocytes, (E) dendritic cells, (F) 
endothelial cells (G) epithelial cells compared to adjacent/normal pancreas visualized by 

circos plot using the Circos software V0.69-9 (circos.ca). The heatmap within the circos 

plots is the scaled average expression of each gene within PDA tissue cell populations. The 

interactions plotted are those in which the expression level of either the ligand, the receptor, 

or both are increased in expression in PDA samples compared to adjacent/normal tissue. (H) 
Violin plots for the normalized expression of TIGIT, CD96, and CD226 in CD8+ T cells in 
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PDA (red) compared to adjacent/normal pancreas (blue). Between adj/norm and PDA 

groups, the asterisk indicates P<0.0001, and exact P=4.8E-32. For Figure 6 panels A through 

H, n=3 adj/norm samples were examined and n=16 PDA patients were analyzed. (I) Dot plot 

analysis of TIGIT family members within PDAC tissue. Color of dot represents average 

expression, while the size of the dot represents percent expression. Dot plot represent n=16 

PDA patients gene expression.
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Figure 7. CyTOF and immunofluorescence protein validation of immune checkpoint expression 
in human pancreatic tissues and PBMCs.
Manual gating of CyTOF for immune checkpoints, including (A) TIGIT (n=8 adj/norm 

pancreas samples, n=10 PDA tumors), PD-1 (n=8 adj/norm pancreas samples, n=10 PDA 

tumors), and LAG3 (n=5 adj/norm pancreas samples, n=5 PDA tumors) in CD8+ T cells, (B) 
CTLA4 in CD4+ T cells (n=8 adj/norm pancreas samples, n=10 PDA tumors) and TIGIT in 

CD25+ CD4+ potential Tregs (n=8 adj/norm, n=10 PDA), and (C) CD56+ NK cells in n=5 

adjacent/normal pancreas samples and n=4 PDA tumor tissues. In Figure 7A–C two-sided 

Student’s t-tests were performed and a p value of <0.05 was considered statistically 

significant. (D) Representative individual CyTOF biaxial density plots from normal adjacent 

and PDA tissue of a matched patient (19–262) of TIGIT expression in both CD8 T cells (as a 

percentage of total CD3+ cells) and CD25+ potential Tregs (as a percentage of CD4+ cells). 
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(E) PDA patient tissues, where 3 individual patient tumors were examined independently per 

staining analysis, were stained with antibodies against TIGIT with either CD8A (CD8+ T 

cells) or FOXP3 (Tregs), and PVR with Pan-cytokeratin (epithelial cells), VE-cadherin 

(endothelial cells), CD163 (myeloid), or Vimentin (fibroblasts). (F) Quantitation of the 

percentage of CD8+ T cells (of total live cells) from CyTOF of healthy, PDA, and chronic 

pancreatitis patient PBMCs. Quantitation of PBMC CyTOF data represent n=16 healthy, 

n=36 PDA, and n=10 chronic pancreatitis patients. In the healthy versus chronic pancreatitis 

comparison, the n.s. P value = 0.0702. (G) TIGIT and PD-1 transformed protein expression 

within CD8+ T cells of healthy, PDA, and chronic pancreatitis patient PBMCs, and for the 

comparison between healthy and the chronic pancreatitis patients the n.s. P=0.1224. CTLA4 

expression in CD4+ T cells of healthy (n=16), PDA (n=36), and chronic pancreatitis (n=10) 

patient PBMCs, and for the comparison between healthy and the chronic pancreatitis 

patients the n.s. P=0.1216. In Figure 7F–G two-sided Student’s t-tests were performed and a 

p value of <0.05 was considered statistically significant. (H) Representative biaxial plots of 

TIGIT expression in CD8+ T cells in the tumor tissue and matched blood of three PDA 

patients (1229, 1246, 3210). (I) Correlation of CyTOF data from PDA patient tissue versus 

matched PBMC CD8+ T cells expressing TIGIT and PD-1 (of total CD3+ cells).
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