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Abstract

Microcystis is a bloom-forming genus of cyanobacteria with some genotypes that produce

highly toxic microcystin hepatotoxins. In waterbodies where biological and physical factors

are relatively homogenous, toxin quotas (the average amount of toxin per cell), at a single

point in time, are expected to be relatively constant. In this study we challenged this assump-

tion by investigating the spatial distribution of microcystin quotas at a single point in time on

two separate occasions in a lake with a major Microcystis bloom. Microcystis cell concentra-

tions varied widely across the lake on both sampling occasions (730- and 137-fold) together

with microcystin quotas (148- and 362-fold). Cell concentrations and microcystin quotas

were strongly positively correlated (R2 = 0.89, P < 0.001, n = 28; R2 = 0.67, P < 0.001, n =

25). Analysis of Microcystis strains using high-throughput sequencing of the 16S-23S rRNA

intergenic spacer region showed no relationship between microcystin quota and the relative

abundance of specific sequences. Collectively, the results of this study indicate an associa-

tion between microcystin production and cell density that magnifies the potential for bloom

toxicity at elevated cell concentrations.

Introduction

Eutrophication and climate change have been implicated in a global increase in the frequency

and intensity of cyanobacterial blooms [1,2]. Many of the cyanobacteria responsible for these

blooms produce toxins that can cause tissue damage from external contact or may be lethal

when consumed by humans, livestock, pets and wildlife [3]. Toxic blooms have resulted in

major costs to tourism, agriculture, farming and human health worldwide, and loss of ecosys-

tem services and amenities [4].

Microcystis, a colony-forming cyanobacterium that produces the eponymous toxin micro-

cystin, forms blooms in most countries around the world and on all continents except Antarc-

tica [5]. More than 250 different congeners of microcystin have been identified [6], all of

which act by irreversibly inhibiting eukaryotic serine/threonine protein phosphatases (e.g., 1

and 2a; [7,8]) resulting in hepato-, nephro- and neuro-toxicity [9]. Ingestion of water
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contaminated with microystins has caused human fatalities [10] and the toxins have been

implicated in increased incidences of human liver cancer in some countries [11–16].

Not all Microcystis strains are capable of toxin production, and a single species can contain

both toxic and non-toxic genotypes. In lakes, microcystin concentrations are largely regulated

by the abundance of toxic genotypes, which can shift over the duration of a bloom and vary

spatially, resulting in correlations between cell abundance with toxin concentration [17,18].

Given the reliance of many monitoring programmes on cell counts rather than toxin detection,

an understanding of the variables that most affect toxin production is beneficial. Research on

Microcystis spp. in vitro has shown correlations between microcystin quotas (total intracellular

microcystins per cell) and a range physiochemical parameters, including nutrients [19–21]

and temperature [22], and other physiological variables such as growth stage [23,24]. However,

laboratory-based studies are often contradictory and usually only induce changes in microcys-

tin quotas by three- or four-fold. In addition, the factors that up- or down-regulate production

in vitro [19,20,25] may poorly reflect in situ conditions. This is because, the highly controlled

laboratory growth conditions do not necessarily mimic what happens in the environment, and

changes can occur in cyanobacteria maintained in culture for extended periods, such as loss of

colonial morphology [26,27].

Increasingly, studies have focused on microcystin regulation in situ, in particular through

the incorporation of molecular techniques such as metatranscriptomics into field ecological

studies, e.g., [28]. However, most studies that have measured microcystins in situ track the

toxin at one location over long temporal scales, or if they have focused on spatial variability

they have assessed total microcystins rather than determining microcystin quotas [29,30].

Examining microcystin quotas, rather than total microcystins, may allow greater insight into

the variables that regulate production of the toxin. Using field surveys, Wood et al. (2010 and

2012) [31,32] reported changes in microcystin quotas of nearly 20-fold over 5 h and microcys-

tin-E-synthetase (mcyE) gene expression of>400-fold as Microcystis cell concentrations

increased during formation of a bloom. Both of these studies tracked microcystin production

during bloom formation and provided no information on how microcystin quotas varied

instantaneously across a lake.

The aim of this study was to investigate the spatial distribution of microcystin quotas on

two separate occasions in a lake which had a major Microcystis bloom. We hypothesized that

microcystin quotas would not be constant but would be correlated with total Microcystis cell

concentrations. To address this hypothesis, samples were collected from a highly eutrophic

lake on two occasions, twelve months apart. A combination of microscopy, quantitative PCR

(QPCR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to

determine microcystin quotas in each sample. The abundance of Microcystis genotypes was

also assessed, by high-throughput sequencing (HTS) of the intergenic spacer (ITS) region in a

selection of samples, to examine the influence of genotype composition on microcystin quotas.

Materials and methods

Spatial distribution of microcystin quotas

Lake Rotorua (42˚24’05S, 173˚34’57E) is a small (0.55 km2), shallow (max. depth 3 m), eutro-

phic lake in northeast South Island, New Zealand [33]. Water samples were collected between

1400 to 1530 h on 23 April 2013 at 28 stations distributed across the lake and between 1520 to

1640 h on 15 April 2014 at 25 stations in a small partially enclosed bay at the southern end of

the lake (Fig 1). The southern bay was sampled to increase the spatial resolution of sampling

microcystin quotas as Microcystis scums had been observed to be highly variable spatially and

temporally in this area. During the lake-wide study sampling was designed to allow for

PLOS ONE Spatial variabilty in microcystin quotas

PLOS ONE | https://doi.org/10.1371/journal.pone.0254967 July 21, 2021 2 / 13

and the Marie Curie International Research Staff

Exchange Scheme Fellowship (PIRSES-GA-2011-

295223).

Competing interests: No competing interests exist.

https://doi.org/10.1371/journal.pone.0254967


collection of an approximately equal number of mid-lake (n = 11) and littoral zone (n = 9), in

addition to targeting areas where scum formation was visible (n = 6). During the bay study,

rather than targeting ‘zones’ we specifically selected areas where the surface cell concentrations

were visibly different. Surface water samples (upper 5 mm) were collected by partially sub-

merging a Falcon tube (50 mL) horizontally just below the water surface to allow the water to

run into the tube until it was at least three quarters full.

Samples were processed immediately. One set of sub-samples (1.5 mL) was preserved using

Lugol’s iodine for Microcystis cell enumeration. Another set of sub-samples (1–3 mL; unfil-

tered) was frozen immediately in liquid nitrogen for total microcystin analysis. A final set of

sub-samples (3–19 mL) for DNA analysis was collected on Whatman GF/C glass microfiber

filters which were placed in a sterile Eppendorf tube and stored on ice. The first 0.8 mL from

the DNA filtrate was collected directly in a glass autosampler vial for extracellular microcystin

analysis and stored on ice. All processed samples were stored at −20 ˚C within 3–4 h of field

processing except for those for cell enumeration, which were stored in the dark at ambient

temperature.

During the bay study, temperature, pH, turbidity, conductivity and dissolved oxygen (DO)

were measured just below the surface (�3 cm) using an EXO2 water quality SONDE (Yellow

Spring Instruments, Ohio, USA).

Laboratory analysis

Microcystis enumeration was undertaken using an inverted microscope (Olympus CKX41,

Wellington, New Zealand). Samples were lightly ground mechanically (Wheaton Tissue

Grinder, Wheaton, NJ, USA) for about 30 s to break up Microcystis colonies and allow

enumeration of individual cells [34]. Ground subsamples (0.1–1 mL) were settled in

Utermöhl chambers [35], and Microcystis cells from 10 random fields were counted at 400×
magnification.

Fig 1. Location of sampling sites in Lake Rotorua. a) New Zealand map showing location of Lake Rotorua, b) 28 lake-wide

stations (shape files from www.arcgis.com), and c) 25 bay stations. Red box in b) shows location of the bay study. The image used

in (c) was taken using a drone.

https://doi.org/10.1371/journal.pone.0254967.g001
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A standard curve for the mcyE QPCR assay was prepared using a culture of Microcystis
CAWBG617 (isolated from Lake Rotorua [36]). The culture was grown in a glass flask (500

mL) in MLA medium [37] under a light regime of 90 μmol m-2 s-1 with a 12 h:12 h light:dark

cycle, at a temperature of 18 ˚C ± 1 ˚C. A subsample (60 mL) of the culture in an expontential

growth phase was filtered onto a glass fibre filter (Whatman GF/C) and the filter was stored

frozen (−20 ˚C) for DNA extraction. A second subsample (10 mL) was preserved using Lugol’s

iodine and the cells were enumerated microscopically as described above.

DNA was extracted from the GF/C filters (for both the study samples and the QPCR stan-

dard) using a DNeasy PowerSoil Kit (Qiagen, USA) according to the protocol supplied by the

manufacturer. All DNA samples were screened in duplicate for inhibition using an internal

control assay. Each 12.5 μL reaction volume contained 6.25 μL KAPA Probe Fast QPCR Kit

Master Mix (2×), 1 μL of primers targeting the internal transcribed spacer region 2 of the

rRNA gene operon of Oncorhynchus keta salmon sperm (0.4 μM, Sketa F2 and Sketa R3; IDT,

USA [38]), 1 μL TaqMan probe synthesised with a FAM reporter dye at the 5´end and a Black

Hole Quencher 2 at the 3´end (0.2 μM; Sketa P2; IDT, USA [38]), 1 μL extracted salmon

sperm DNA (15 ng; Sigma, USA) and 1 μL of template DNA. The cycling profile was 95 ˚C for

3 min, followed by 50 cycles of 95 ˚C for 3 s and 58 ˚C for 10 s. When inhibition was observed,

samples were diluted (1/10) with Milli-Q water and re-analysed.

Quantitative-PCR was used to enumerate the copy numbers of the mcyE gene. Samples

were anlaysed in triplicate in 12.5 μL of reaction mix containing 6.25 μL KAPA Probe Fast

qPCR Kit Master Mix (2×), 1 μL of primers targeting a region within the mcyE open reading

frame of the microcystin synthase gene (0.4 μM, mcyE-F2 and MicmcyE-R8 [39]), 0.2 μL of

mcyE probe [40] and 1 μL of template DNA. QPCR efficiency was >0.8. DNA from

CAWBG617 was used to generate a five-point linear standard curve (R2 >0.99) ranging from

10.8×106 to 10.8×102 cells mL-1.

Twelve samples from the bay study (encompassing a range of microcystin quotas) were

selected for HTS analysis of the ITS region between the 16S and 23S rRNA genes. A region of

approximately 500 bp was amplified using cyanobacterial-specific primers; ULR [41,42] and

CSIF [43], modified to include Ilumina™ adapters. PCR reactions were performed in 50-μL vol-

umes containing 25 μL of AmpliTaq Gold1 360 Master Mix (Life Technologies), 5 μL CG

inhibitor (Life Technologies), 0.5 μM of each primer, and template DNA (ca. 20 ng). PCR

cycling conditions were: 95 ˚C for 10 min, followed by 27 cycles of 95 ˚C for 30 s, 50 ˚C for 45

s, 72 ˚C for 45 s, and a final extension of 72 ˚C for 7 min. PCR products were visualized with

1% agarose gel electrophoresis with Red Safe DNA Loading Dye and UV illumination. PCR

products were purified (Agencourt1 AMPure1 XP Kit; Beckman Coulter, USA), quantified

(Qubit1 20 Fluorometer, Invitrogen), diluted to 10 ng μL-1 and submitted to New Zealand

Genomics Limited (Auckland, New Zealand) for library preparation. Libraries were sequenced

on a MiSeq Illumina™ platform (2 × 300 reads).

Overlapped raw sequence reads were denoised, trimmed and filtered prior to downstream

analyses. Paired-end reads were assembled into contigs using USEARCH [44]. Merged reads

of<200 bp were discarded. The data were then filtered with VSEARCH [45], and reads with

more than one expected error per read were discarded [46]. The data were dereplicated by

removing all non-unique sequences, to make downstream computation faster. Operational

taxonomic units (OTUs) were generated using VSEARCH by clustering each unique sequence

at the 99% identity threshold. Non-unique reads were then mapped back onto these clusters,

and any cluster that contained fewer than 10 sequences was discarded. Taxonomy was assigned

to each OTU using a reference database which was constructed using cyanobacterial ITS

sequences from GenBank [47]. Only ITS sequences assigned to Microcystis were utilized for

further analysis.
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Subsamples collected for extracellular microcystin required no further preparation prior to

analysis. Subsamples for ‘total’ microcystin analysis were freeze-thawed and sonicated (30

min, 60 kHz) four times after adding formic acid (final concentration 0.1% v/v). The extract

was clarified by centrifugation (10,000 × g, 5 min) and the supernatant was placed in a glass

autosampler vial. The extraction efficiency of this aqueous microcystin extraction was previ-

ously validated using comparison to that extracted in methanol [48].

Microcystin samples were analyzed directly or diluted (1/10 to 1/100 with 50% methanol

containing 0.1% formic acid) by LC-MS/MS multiple-reaction monitoring as described in

Puddick et al. (2016) [49]. Compounds were separated on an Acquity I-Class ultra-perfor-

mance liquid chromatography system (Waters Co.) using a C18 column (Waters Acquity

BEH-C18, 1.7-μm, 50×2.1 mm) maintained at 40 ˚C in a column oven. Sample components

were eluted using a flow rate of 0.4 mL min-1 and a gradient of 10% acetonitrile (mobile phase

A) to 90% acetonitrile (mobile phase B), each containing 100 mM formic acid and 4 mM

ammonia. The samples were injected at 5% B and held for 12 s before a linear gradient up to

35% B over 24 s, to 50% B over a further 72 s and to 65% B over a final 42 s, before flushing

with 100% B and returning to the initial column conditions. Sample components were ana-

lyzed on a Xevo-TQS mass spectrometer (Waters Co.) operated in positive-ion electrospray

ionisation mode (source temperature 150 ˚C; capillary voltage 1.5 kV; nitrogen desolvation gas

1,000 L hr-1 at 500 ˚C; cone gas 150 L hr-1). Multiple-reaction monitoring channels for each

microcystin congener and nodularin-R assessed for the m/z 135 fragment ion produced from

the protonated molecular cations of each toxin ([M+2H]2+ for MC-RR and variants; [M+H]+

for the others).

Retention times for microcystins were within ±0.02 min compared to a quality control

material produced from microcystin/nodularin standards and an extract of a well-character-

ised cyanobacteria strain (Microcystis CAWBG11; [50]). A five-point mixed external calibra-

tion curve was produced using the microcystin congeners; MC-RR, MC-YR and MC-LR (DHI

Lab Products, Denmark). The limit of detection for MC-RR, MC-YR, MC-LR and nodularin

in ‘total’ and extracellular microcystin samples was 0.02 ng mL-1 and the limit of quantitation

was 0.06 ng mL-1. Matrix effects were assessed in a selection of lake water samples by fortifying

an aliquot of sample with the quality control material described above. No compensation for

suppression/enhancement effects was made as the results were within ±10% of the expected

result.

Microcystin quotas were calculated as the amount of microcystin per microcystin-produc-

ing cells (determined using mcyE QPCR). The concentration of all microcystin congeners

observed in the samples was summed, deducting the dilution-adjusted extracellular microcys-

tin concentration from the dilution-adjusted ‘total’ microcystin concentration, and divided by

the concentration of microcystin-producing Microcystis.
Visualization of Microcystis cell densities and microcystin quotas for each study (lake-wide

and bay) were spatially interpolated across a rectangular surface then clipped to the area of the

lake before generating lake and bay-wide plots in ArcGIS 10.1 (Esri, CA, USA).

Statistical analyses were conducted using R software [51]. Two-parameter linear regression

was used to determine relationships between: Microcystis cell concentration and microcystin

quotas; measured physiochemical variables and microcystin quotas (bay study only); and the

abundance of the top five ITS OTUs and microcystin quotas (only selected samples from the

bay study).

Principal component analysis (PCA) was performed in R [51] to determine which predic-

tors measured in the bay study (Microcystis cell concentration, turbidity, conductivity, water

temperature, pH and DO) held the most explanatory power. The explanatory power of each

principal component (PC) was evaluated using Kaiser’s criterion (threshold of variance > 1),
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scree plots and biplots with datapoints coded using the microcystin quota value. Eigenvalues

and eigenvectors for the retained PCs were also visualised using biplots with arrows expressing

the direction and strength (represented by the arrow length) of each predictor. A rotation

matrix was used to correlate the contribution of predictor variables to each PC and identify

predictor variables with low explantory power (eigenvalues between −0.4 and 0.4). Highly cor-

related predictors were identified using Pearson’s correlation (r > 0.8) and highly co-linear

predictors were assessed by their variance inflation factor (VIF; > 3). When highly correlated

and co-linear predictors were identified, the strongest predictor (as evaluated in the PCA) was

retained. Multiple linear regression analysis was undertaken in R [51] using the predictor vari-

ables retained following PCA and data simplification.

Results

Whole lake and bay study

Microcystis cell concentrations varied 730- and 140-fold in the lake-wide and bay surveys,

respectively, with the highest densities (71 × 106 and 4.8 × 106 cells mL-1 respectively) recorded

on the western sides of the lake and the bay (Fig 2a and 2c). Total microcystin concentrations

varied 14,300- and 12,500-fold across the lake and bay respectively (min. 0.0003 and 0.03 μg

L-1, max. 4.3 and 376 μg L-1). Microcystin quotas varied 148- and 362-fold across the lake and

bay respectively (Fig 2b and 2d; min. 0.03 and 0.008 pg cell-1, max. 4.2 and 2.8 pg cell-1), and in

a similar pattern to the cell concentrations. The percentage of toxic genotypes did not vary

greatly across the sample sets and was relatively low, ranging from 1 to 7% in the lake study,

and from 2 to 32% in the bay study. In the bay, total Microcystis cell density was positively line-

arly related to the total microcystin concentration (R2 = 0.68, P < 0.001) and microcystin

quota (R2 = 0.67, P< 0.001; Supplementary Information S1 in S1 File). In the whole lake, the

relationship between Microcystis cell concentration and total microcystin concentration was

also strong and significant (R2 = 0.91, P< 0.001; Supplementary Information S2a in S1 File),

but the relationship between cell concentration and microcystin quotas was weaker than

observed in the bay (R2 = 0.29, P = 0.003; Supplementary Information S2b in S1 File). The

weaker relationship for the lake was largely due to two samples in bays in the northwest of the

lake (samples 23 and 24) and one sample in the southwest (sample 7) with low microcystin

quotas but high cell densities (Fig 2a and 2b). Removing these samples substanitally improved

the microcystin quota–cell density relationship (R2 = 0.89, P< 0.001; Supplementary Informa-

tion S2d in S1 File). Relationships between microcystin quotas and measured physiochemical

variables (temperature, pH, turbidity, conductivity and DO; bay study only) were weak (R2�

0.24) but were significant for conductivity (P = 0.04), and temperature (P = 0.01; Supplemen-

tary Information S3 in S1 File).

The Microcystis ITS genotype composition of twelve samples collected from the bay study

was assessed by HTS to determine if the relative abundance of genotypes (with potentially dif-

fering microcystin production capacities) may have influenced the observed microcystin quo-

tas. Nineteen OTUs were identified in the Microcystis ITS analysis, of which five contributed

60%, 15%, 10%, 5% and 4% of the total sequence reads over all samples. The relative abun-

dance of these five genotypes varied between samples, but OTU5 was dominant in all but two

of the samples (Fig 3). Linear regression analysis of the microcystin quotas and the relative

abundance of the five major OTUs showed weak and nonsignificant relationships (R2� 0.11,

P� 0.3; Supplementary Information S4 in S1 File).

The influence of Microcystis cell concentrations and physiochemical parameters (tempera-

ture, pH, turbidity, conductivity and DO) on microcystin quotas for the bay study samples was

evaluated using PCA. Three PCs were required to describe a reasonable proportion of the
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Fig 2. Microcystis cell density (a and c) and microcystin quotas (b and d) in Lake Rotorua (Kaikoura, New Zealand) across the whole lake (a and b, 23

April 2013, 1400–1530 h) and the southern bay (c and d, 15 April 2014, 1520–1640 h). The southern bay is shown in (a) and (b) surrounded by a black

box.

https://doi.org/10.1371/journal.pone.0254967.g002
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variance observed in the dataset (81%; Supplementary Information S5a in S1 File) and the

addition of more PCs would not have added substantial explanatory power (tailing off

observed in the scree plot; Supplementary Information S5b in S1 File). Biplots for the different

combinations of the PCs suggested that all three PCs demonstrated some potential for defining

the microcystin quotas of the samples, with groupings of microcystin quotas observed for PC1

vs. PC2 and PC1 vs PC3 (Supplementary Information S5c in S1 File). Correlations between

each PC and the original data showed that PC1 was driven by Microcystis cell concentration,

turbidity, water temperature and conductivity, PC2 was driven by DO, and PC3 was driven by

turbidity and pH (Supplementary Information S5d in S1 File). Different biplot vectors of the

four PC1 predictors indicated that each should be retained in the analysis (Supplementary

Information S5e in S1 File). This was reinforced by low Pearson’s correlations between each

predictor (R� 0.65; Supplementary Information S5f in S1 File) and low VIFs, indicating that

the predictors were not co-linear (� 2.7; Supplementary Information S5g in S1 File).

Multiple linear regression of microcystin quotas using all predictor variables (Microcystis
cell concentration, temperature, turbidity, conductivity, dissolved oxygen and pH) yielded a

model with a multiple-R2 of 0.71 and an adjusted-R2 = 0.62 (p< 0.001; Supplementary

Information S6a in S1 File). As the regression relationship between microcystin quotas and

Microcystis cell concentrations had a R2 of 0.67 and an adjusted-R2 of 0.65 (p< 0.001; Supple-

mentary Information S1b and S6b in S1 File), cell concentrations provided the majority of the

predictive power in the model and the inclusion of the physiochemical parameters only mar-

ginally improved the performance of the model.

Discussion

Variability in microcystins quotas

Our results indicate that Microcystis cell concentrations positively influenced microcystin quo-

tas. This aligns similarly with positive relationships from observations of Microcystis scums at

Fig 3. Stacked column graph representing the relative distribution of different operational taxonomic units (OTUs) from Microcystis
intergenic spacer regions in twelve samples from the bay study (see Fig 1c for location of samples) ordered by decreasing microcystin quota.

https://doi.org/10.1371/journal.pone.0254967.g003
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Lake Rotorua [31,32] and a mesocosm study where water column samples were collected at

fine resolution [49]. In a recent labortory study, Wang et al. (2021) [52] also observed upregu-

lation in mcy expression and microcystin concentrations when cell density reached approx.

22 × 106 cells mL-1. Increases in acyl-homoserine lactones occurred concurrently, leading the

authors to suggest a role for microcystins in quorum sensing.

Sequencing of the ITS has previously been used to evaluate changes in populations of

Microcystis genotypes, as the gene is subject to high levels of sequence variation [53,54]. In

the samples assessed from the bay study, relationships between OTU relative abundance and

microcystin quotas were not significant, indicating that Microcystis genotype composition

was not a major contributing factor to microcystin quotas in the samples. Despite the samples

being collected from a relatively small area and at approximately the same time, a range of

genotype compositions was observed in the assessed samples. OTU5 was the dominant geno-

type in the majority of the samples and exhibited the largest variation in relative abundance

(min. 21% and max. 90%). This differs from a study of the genotype composition of post-

ively-buoyant Microcystis colonies from the same study lake (Lake Rotorua, Kaikoura),

where low levels of genotype variability were observed with one genotype comprisinig the

majority of the sequence reads (72% in one samples and�90% in the other samples; note

that OTUs from the colony study do not match those from the present study) [55]. This sug-

gests that the sampling method used in the present study captured a wider array of the Micro-
cystis genotypes present in the lake than the earlier study that targeted large Microcystis
colonies and/or that the genotype composition within a lake can vary markedly between

years.

Inclusion of all data points from the lake-wide study in the analysis produced weak relation-

ships between Microcystis cell density and microcystin quotas. This was largely due to two

samples collected from a bay at the north-west end of the lake. A dense surface scum in this

bay had persisted for several days, possibly enhanced by entrapment of oxygen bubbles in

extracellular polymeric substances that increase buoyancy [56]. This ‘stagnant’ Microcystis
scum was in stark contrast to the transient scums in other regions of the lake where wind

movement, water currents and cellular buoyancy likely contributed to the variability. Further

research is required to determine the reason for the low microcystin quotas in ‘stagnant’

samples.

During the bay study, physicochemical parameters were measured at each sampling site

using the SONDE probe. Conductivity and temperature had a weak but significant linear

regression relationship with microcystin quota, with PCA indicating that all of the physio-

chemical predictor variables (alongside Microcystis cell concentration) provided some explana-

tory power. However, multiple linear regression analysis indicated that the physiochemcial

variables only had a low level of predictive power; whilst Microcystis cell concentrations

explained most of the variation in microcystin quotas.

In contrast to the results of the present study, the relationship between Planktothrix agard-
hii biomass and microcystin quotas in four waterbodies in Italy showed limited variability in

microcystin quotas [57]. This observation might indicate that microcystins have different eco-

logical roles among cyanobacterial species or that they are up-/down-regulated by other fac-

tors. Additionally, the Planktothrix in the Italian study did not form surface scums, with

samples taken from depths of 1–5 m and 10 m to coincide with the subsurface layer where it

concentrated, although surface scums have been reported in some instances [58]). The differ-

ent sampling methodologies and distributions of the Microcystis and Planktothrix studies lim-

its the ability for comparative assessment of changes in quotas.
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Conclusions

The data in our study provide compelling evidence of an association between increased micro-

cystin production and high cell densities in Microcystis. The combination of high cell concen-

trations in blooms with elevated cell microcystin quotas has important implications for

magnifying the toxin content of blooms. The reasons for the upregulation remain unknown

but lend support to hypotheses such as cell-to-cell signaling, gene regulation, or as a reponse to

oxidative stress and photodamage [25,59,60]. Further studies which aim to characterise the

micro-environment in a scum, in concert with the use of molecular approaches such as meta-

transcriptomics, could provide insights into the up- and down-regulation of microcystins,

their ecological role and chemical ecology.
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