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Abstract

Deoxyribonucleic acid replication is one of the most crucial tasks taking place in the cell, and it has to be precisely
regulated. This process is initiated in the replication origins (ORIs), and thus it is essential to identify such sites for a deeper
understanding of the cellular processes and functions related to the regulation of gene expression. Considering the
important tasks performed by ORIs, several experimental and computational approaches have been developed in the
prediction of such sites. However, existing computational predictors for ORIs have certain curbs, such as building only
single-feature encoding models, limited systematic feature engineering efforts and failure to validate model robustness.
Hence, we developed a novel species-specific yeast predictor called yORIpred that accurately identify ORIs in the yeast
genomes. To develop yORIpred, we first constructed optimal 40 baseline models by exploring eight different sequence-based
encodings and five different machine learning classifiers. Subsequently, the predicted probability of 40 models was
considered as the novel feature vector and carried out iterative feature learning approach independently using five different
classifiers. Our systematic analysis revealed that the feature representation learned by the support vector machine
algorithm (yORIpred) could well discriminate the distribution characteristics between ORIs and non-ORIs when compared
with the other four algorithms. Comprehensive benchmarking experiments showed that yORIpred achieved superior and
stable performance when compared with the existing predictors on the same training datasets. Furthermore, independent
evaluation showcased the best and accurate performance of yORIpred thus underscoring the significance of iterative
feature representation. To facilitate the users in obtaining their desired results without undergoing any mathematical,
statistical or computational hassles, we developed a web server for the yORIpred predictor, which is available at:
http://thegleelab.org/yORIpred.
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Introduction
Deoxyribonucleic acid (DNA) is the main carrier of genetic infor-
mation for life. Before cell division, biomolecules and organelles
including the duplication of DNA molecules need to be copied
for appropriate distribution among the new daughter cells. This
process of DNA duplication happening in the dividing cell is
called DNA replication or semi-conservative replication [1]. DNA
replication occurs in the cytoplasm and nucleus for prokaryotes
and eukaryotes, respectively. However, the basic process of DNA
replication remains the same. The replication origin serves as
the site for genome replication, and hence it has to be tightly
regulated [2]. Bacterial genome has only one replication origin [3]
in contrast to the presence of multiple replication origins (ORIs)
in the eukaryotic genome [4]. Since the duplication of DNA is
initiated in the ORIs, it is necessary to identify such sites for
better understanding the transmission of genetic information.

Several in vitro and in vivo experimental techniques, such
as chromatin immunoprecipitation (ChIP), ChIP-sequencing,
DNase I footprinting technique, electrophoretic mobility shift
assays, gel retardation assay, isothermal titration calorimetry,
replication initiation point mapping and surface plasmon
resonance have been developed to identify DNA ORIs [5]. Lee
and Bell [6] reported that the origin recognition complex (ORC)
that binds ORIs could be accurately detected [7]. The ORIs of
Saccharomyces cerevisiae possess two characteristic sequence
patterns [8]: (1) ORIs have highly specific sequence patterns,
where ORC identifies the T-rich 17-bp ARS motif and its consen-
sus sequence that may interact with its neighboring B1/B2/B3
elements [9] and (2) ORIs’ nucleosome exclusion [10]. However,
due to their time- and cost-ineffectiveness, computational
tools based on various skew types were established. High-
throughput sequencing-based marker frequency analysis was
developed to analyze replication characteristics and to map
ORIs in both prokaryotes [11] and eukaryotes [12]. Ori-Finder [13]
and Ori-Finder 2 [14] apply Z-curve method and comparative
genomics analysis to identify ORCs in bacterial and archaeal
genomes. Other computational tools include CG software [15]
and GraphDNA [16]. The limitation of using such computational
tools is that these predictors were built only based on positive
samples containing information about ORIs.

However, in the recent decade, this limitation has been
overcome by the introduction of various computational meth-
ods, which have utilized both positive and negative samples
to train the replication origin predictors and to attenuate
the occurrence of false positives and false negatives. Chen
et al. [17] predicted a method to identify ORIs based on DNA
structural properties, whereas Li et al. [18] utilized pseudo
k-tuple nucleotide compositions (PseKNC) in predicting replica-
tion origin sites in S. cerevisiae. Subsequently, Zhang et al. [19]
and Xiao et al. [20] integrated dinucleotide physicochemical
features and position-specific features, respectively, with
general pseudo amino acid composition [21] and enhanced
their respective predictors’ performance accuracies. Later, Liu
et al. [22] developed a predictor called ‘iRO-3wPseKNC’ to predict
ORIs in four yeast species using three-window-based PseKNC.
Subsequently, the same group implemented different lengths of
ORIs and Guanine/Cytosine (GC) asymmetry bias and developed
a prediction algorithm called ‘iRO-PsekGCC’ for two yeast species
[23]. Two research groups developed their respective predictors
to predict ORIs in S. cerevisiae using the same dataset but
different approaches [24, 25]. Recently, Dao et al. [26] proposed
a computational platform to identify replication origin from
eukaryotes, where they applied feature selection technique on

hybrid features (a combination of Kmer and binary encoding)
and identified optimal feature set, which improved prediction
accuracies on multiple species. Among the existing methods,
four methods are applicable to yeast species. Of those, two
methods (iRO-3wPseKNC and iRO-PsekGCC) were developed
using diverse ORI lengths, and the remaining two methods
were developed using fixed ORI lengths. In this work, our
primary objective was to develop species-specific prediction
models from the dataset containing diverse ORI lengths. Despite
the advantages of the existing methods (iRO-3wPseKNC and
iRO-PsekGCC) and performance improvements [22, 23], certain
limitations cannot be ruled out: (i) existing methods employed
only a single encoding and classifier; (ii) only limited feature
engineering efforts have been made to explore the efficiency of
different feature types and classifiers for better classification,
as the existing tools focused on extracting only a few feature
encodings and (iii) failure to evaluate the model transferability.

By addressing the above-mentioned issues, we developed a
novel species-specific predictor called yORIpred, which accu-
rately predict ORIs from four yeast species including S. cerevisiae,
Kluyveromyces lactis, Pichia pastoris and Schizosaccharomyces pombe.
To develop yORIpred, firstly, 40 baseline models were gener-
ated by exploring five different classification algorithms [ran-
dom forest (RF), gradient boosting (GB), artificial neural network
(ANN), support vector machine (SVM) and extremely random-
ized tree (ERT)] and eight diverse sequence encoding schemes
[Kmer composition, composition of k-spaced nucleic acid pairs
(CKSNAP), electron-ion interaction pseudopotentials (EIIP), din-
ucleotide physicochemical properties (DPCP), PseKNC, pseudo
dinucleotide composition (PseDNC), series correlation pseudo
trinucleotide composition (SCPseTNC) and trinucleotide physic-
ochemical properties (TPCP)] to provide comprehensive feature
information for model training. Notably, a two-step feature selec-
tion approach was employed during the baseline model genera-
tion. Secondly, the predicted probability of ORIs from 40 baseline
models was considered as novel features, where iterative feature
learning approach was applied to learn probabilistic features in
order to promote the feature representation capability in a highly
supervised iterative manner. Our systematic analysis revealed
that feature representation learned by SVM has a high dis-
crimination distribution characteristic between ORIs and non-
non-ORIs when compared with the remaining four classifiers.
yORIpred showed promising results in both cross-validation (CV)
analysis and independent evaluation, thus indicating that the
iterative feature representation is solely responsible for its accu-
rate and robust prediction. We anticipate that our proposed pre-
dictor may help to identify novel ORIs and useful in elucidating
their functional mechanisms.

Methods
Dataset construction

Recently, Liu et al. [22] constructed training datasets with the
varying length for four yeast species (S. cerevisiae, K. lactis P.
pastoris and S. pombe) based on DeOri database [14]. Of those,
S. cerevisiae contains 341 ORI sequences and 343 non-ORI
sequences; S. pombe contains 339 ORI sequences and 336 non-
ORI sequences; P. pastoris contains 306 ORI sequences and 303
non-ORI sequences and K. lactis contains 148 ORI sequences
and 148 non-ORI sequences. Since DeOri database was not
updated, Liu et al. dataset was considered in this study for the
following reasons: (i) they applied several filtering schemes and
constructed a reliable training dataset; (ii) none of the sequences
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for each species-specific dataset possesses greater than 80%
sequence identity with other sequences and (iii) employing such
datasets for the development of model enables a fair comparison
between the existing methods and our proposed method.

To evaluate our prediction model, we constructed an
independent dataset for the S. cerevisiae species by utilizing
a recently reported ORI dataset (Ori-Finder 3) [27]. Generally,
random sequences have been used as non-ORIs, but we
employed sequences other than ORI functions reported for S.
cerevisiae. Specifically, we considered recombination hot/cold
spot sequences downloaded from iRSpot-Pse6NC2.0 [28] and
considered them as non-ORIs. Subsequently, samples have been
excluded that share >75% sequence identity with the training
dataset, which resulted in 67 ORIs and 837 non-ORIs.

Feature descriptors

Generally, DNA sequences with variable length should be con-
verted into fixed length of numerical vectors by means of fea-
ture extraction [29]. Here, we employed eight different feature
descriptors and evaluated their contribution in classifying ORIs
from non-ORI sequences, when provided as an input to different
machine learning (ML) classifiers. In brief, each descriptor is
described as follows:

Kmer

Kmer represents the normalized occurrence frequencies of k
neighboring base pairs in the DNA sequence [28, 30, 31]. For
instance, Kmer (k = 2) descriptor can be calculated as:

ft = m(t)
N

, t ∈ {AA, AC, AG, . . . , TT} , (1)

where m(t) represents the total number of the Kmer type t and
N denotes the sequence length. Here k is set as 2, 3, 4 and
5 and combined together that resulted as 1360=(42+ 43+ 44 +
45)-dimensional (1360D) feature vector.

CKSNAP

CKSNAP converts a DNA sequence into a numerical feature
vector by computing the occurrence frequency of all possible k-
spaced nucleotide pairs (KNP) along the sequence. For instance,
in the sequence ‘AXXTXXXG’, ‘AT’ and ‘TG’, respectively, rep-
resent two-spaced and three-spaced nucleotide pairs. The fre-
quency of KNP can be defined as:

f (KNP) = m (KNP)

N − k − 1
, k ∈ [0, kmax] , (2)

where m(KNP) represents the number of KNP along the sequence,
and (N-k-l) represents the number of KNP along a sequence with
length N. We kept kmax = 5 that generated 96D feature vector.

EIIP

EIIP represents the distribution of free-electron energies along
the DNA sequence. The EIIP values of nucleotides A, T, G and
C are 0.1260, 0.1335, 0.0806 and 0.1340, respectively. Utilizing
these values, EIIP generated 64D feature vector for a given DNA
sequence (S) that can be computed as follows:

S = [EIIPGGG.fGGG, EIIPGGC.fGGc, . . . , EIIPAAA.fAAA] . (3)

The various combination of trinucleotides is shown as sub-
scripts in Equation (3); EIIPxyz = EIIPx + EIIPy + EIIPz, expresses the
EIIP values of one of the trinucleotides (xyz), where x, y, z ∈{G, T,
C, A}; and fxyz denotes normalized trinucleotide frequency.

DPCP

We employed 15 PCPs: PCP1, F-rise; PCP2, F-tilt; PCP3, F-slide;
PCP4, F-twist; PCP5, F-roll; PCP6, roll; PCP7, F-shift; PCP8, twist;
PCP9, tilt; PCP10, shift; PCP11, slide; PCP12, rise; PCP13, enthalpy;
PCP14, energy; and PCP15, entropy. DPCP is computed as follows:

DPCP(a) = f (a) × PCP(Xa)b, (4)

Xa is the value of bth (b = 1,2, . . . ,15) dinucleotide PCP. Ulti-
mately, DPCP provides a 240D vector.

TPCP

We employed 11 PCPs: PCP1, bendability (consensus); PCP2,
bendability (DNase); PCP3, nucleosome positioning; PCP4,
trinucleotide GC content; PCP5, consensus (rigid); PCP6, con-
sensus (roll); PCP7, DNase I (rigid); PCP8, nucleosome (rigid);
PCP9, molecular weight (daltons); PCP10, DNase I; and PCP11,
nucleosome. Notably, the PCP values of both trinucleotides and
dinucleotides have been provided in our previous study [32, 33].
These encodings have been widely applied in computational
biology [34–36].

TPCP(a) = f (a) × PCP(Xa)b, (5)

Xm is the value of bth (b = 1,2, . . . ,11) trinucleotide PCP. Even-
tually, TPCP provides 704D vector.

PseDNC

PseDNC integrates both local and global sequence-order infor-
mation of DNA sequences, whose feature vector for a given DNA
sequence is defined as:

S = [c1, c2, . . . , c16, c16+1, . . . , c16+λ]T, (6)

where

cm =
⎧⎨
⎩

fm∑16
i=1 fi+α

∑λ
j=1 τj

(1 ≤ m ≤ 16)

ατm−16∑16
i=1 fi+α

∑λ
j=1 τj

(17 < m ≤ 16 + λ)
, (7)

where fm represents the normalized different dinucleotides fre-
quency, α is the weight factor, λrepresents the total number of
pseudo components and τj represents the j-tier correlation factor
that reflects the sequence-order correlation between all the j-th
adjacent dinucleotides along a DNA sequence. τj is defined as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ1 = 1
N−2

∑N−2
i=1 �(BiBi+1, Bi+1Bi+2)

τ2 = 1
N−3

∑N−3
i=1 �(BiBi+1, Bi+2Bi+3)

τ3 = 1
N−4

∑N−4
i=1 �(BiBi+1, Bi+3Bi+4)

. . . . . . ..
τλ = 1

N−1−λ

∑N−1−λ

i=1 �(BiBi+1, Bi+λBi+λ+1)

(λ < N), (8)

where λ is an integer and τλrepresents λ-tier correlation factor,
whose correlation function is given as:

�
(
BiBi+1, BjBj+1

) = 1
μ

μ∑
n=1

[
Pn (BiBi+1) − Pn

(
BjBj+1

)]2, (9)
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where μ is fourteen DNA local structural properties (Tilt, Roll,
Rise, Shift, Slide, Twist, GC content, Adenine content, Thymine
content, Stacking energy, Bending stiffness, Electron_interaction,
Enthalpy and Entropy). The standardized values of 14 structural
properties taken from previous work [24]. Pn(BiBi+1) is the value
of the nth DNA local property for the dinucleotide (BiBi+1) at
position i and Pn(BjBj+1)represents the corresponding value for
the dinucleotide (BjBj+1) at position j. They are calculated as
follows:

Pn (B1, B2, . . . , Bk) = Pn (B1, B2, . . . , Bk) − 〈Pn (B1, B2, . . . , Bk)〉
SD 〈Pn (B1, B2, . . . , Bk)〉 , (10)

where <> and SD represent the mean and standard deviation.
Finally, PseDNC with the following parameters λ = 2 and α = 1.0,
generated a total of 18D feature vector.

PseKNC

PseKNC is an extended version of PseDNC that incorporates k-
tuple nucleotide composition [37, 38]. PseKNC feature vector for
a given DNA sequence is expressed as follows:

S = [
c1, c2, . . . c4k c4k+1, . . . , c4k+λ

]T, (11)

where

cm =

⎧⎪⎨
⎪⎩

fm∑4k
i=1 fi+α

∑λ
j=1 τj

,
(
1 ≤ m ≤ 4k

)
ατ

m−4k∑4k
i=1 fi+α

∑λ
j=1 τj

,
(
4k ≤ m ≤ 4k + λ

) , (12)

where fm represents the normalized occurence frequency of the
ith k-tuple nucleotide, λrepresents the total number of counted
ranks or tiers of the correlations along the nucleotide sequence;
τj is defined as:

τj = 1
N − j − 1

N−j−1∑
i=1

�
(
BiBi+1, Bi+jBi+j+1

) (
j = 1, 2, 3, . . . , λ; λ < N

)
(13)

The correlation function is given as follows:

�
(
BiBi+1, Bi+jBi+j+1

) = 1
μ

μ∑
n=1

[
Pn (BiBi+1) − Pn

(
Bi+jBi+j+1

)]2, (14)

where μ is fourteen DNA local structural properties as men-
tioned in PseDNC. Pn(BiBi+1) is the value of the nth DNA local
property for the dinucleotide (BiBi+1) at position i and Pn(Bi+jBi+j+1)
represents the corresponding value for the dinucleotide
(Bi+jBi+1+j) at position i + j. Eventually, PseDNC with the following
parameters Kmer = 5, λ = 5 and α = 0.8, generated a total of 1029D
feature vector.

SCPseTNC

In SCPseTNC approach, trinucleotide physiochemical indices are
incorporated to generate the representations of DNA sequences.
It is computed as follows:

S = [c1, c2, . . . , c64 c64+1, . . . , c64+λ�]T, (15)

where

cm =
⎧⎨
⎩

fm∑64
i=1 fi+α

∑λ�
j=1 τj

, (1 ≤ m ≤ 64)

ατm−64∑64
i=1 fi+α

∑λ�
j=1 τj

, (65 < m ≤ 64 + λ�)
, (16)

where fm and Λ represent the normalized trinucleotide fre-
quency and number of physicochemical indices, respectively. τj

is defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1 = 1
N−4

∑N−4
i=1 K1

i,i+1

τ2 = 1
N−4

∑N−4
i=1 K2

i,i+1

. . .

τ� = 1
N−4

∑N−4
i=1 K�

i,i+1

. . .

τλ�−1 = 1
N−λ−3

∑N−λ−3
i=1 K�−1

i,i+λ

τλ� = 1
N−λ−3

∑N−λ−3
i=1 K�

i,i+λ

(λ < N − 3) (17)

The correlation function is given by:

{
Kn

i,i+m = Pn (BiBi+1Bi+2) · Pn (Bi+mBi+m+1Bi+m+2)

n = 1, 2, 3, . . . , �; m = 1, 2, 3, . . . , λ; i = 1, 2, 3, . . . , N − m − 2
, (18)

where Pn(BiBi+1Bi+2) is the numerical value of the nth (n = 1,2,3,
. . . ,�) physicochemical index of the trinucleotide BiBi+1Bi+2 at
position i and Pn(Bi+mBi+m+1Bi+m+2) represents the corresponding
value of the trinucleotide Bi+mBi+m+1Bi+m+2 at position i + m. Ulti-
mately, SCPseDNC with the following parameters λ = 2 and α =
0.5, generated a total of 86D feature vector.

ML classifiers

Five different classifiers were utilized namely, SVM, ANN, RF,
GB and ERT. Since SVM contribution is significant in yORIpred
implementation, a brief description of SVM and its utilization is
detailed below.

SVM

SVM is one of the powerful ML algorithms that have been widely
applied in various prediction problems [39–45]. The aim of SVM
is to transform the input features into a high-dimensional space
and find the optimal hyperplane that can maximize the distance
between ORIs and non-ORIs [46]. Two SVM parameters, namely
kernel parameter γ and penalty parameter C, have to be opti-
mized during the training to achieve the best performance. We
employed a grid search approach to optimize these parameters
with the following search range: 2–15≤ γ ≤2−5 with a step
size of −2 and 2–5≤ C ≤215 with a step size of 2. It is worth
mentioning that our preliminary analysis showed that radial
basis function achieved superior performance when compared
with the other three kernel functions (Sigmoid, Polynomial and
Linear). A brief description of the remaining classifier has been
provided in previous studies [47–49], whose respective classifier
tuning hyperparameters search range is provided in Table S1.
Notably, 10-fold CV was employed for tuning ML parameters on
training dataset and examined their performances.

Iterative feature representation learning

We employed iterative feature representation learning to
develop a robust prediction model. This approach has been
widely applied in computational biology [32, 50]. Figure 1 shows
the iterative feature learning framework that involves three
sub-steps: (1) feature optimization; (2) probabilistic feature
generation and (3) iterative feature generation, which are as
follows:



Species-specific yeast DNA replication origin 5

Figure 1. An overview of the species-specific yORIpred framework for predicting ORIs from yeast species. It involves the following steps: (i) the construction of the

training and independent datasets, (ii) feature extraction by employing eight feature representation algorithms and (iii) iterative feature representation scheme that

has three sub-steps. Finally, each sequence is assigned a score ranging from 0.0 to 1.0 by yORIpred. If the score > 0.5, it indicates that the sequence is predicted to be

ORIs; otherwise, it is non-ORIs.

Feature optimization

Generally, original feature dimension may contain irrelevant
information, which may lead to poor performance of predic-
tion model and low model robustness [51–53]. Feature selection
protocol is one of the important steps in developing predic-
tion model to reduce or remove redundancy for improving the
model performance and reducing the computational time. To
include more relevant information from each descriptor, feature
optimization was applied on seven feature encodings (Kmer,
CKSNAP, PseKNC, SCPseKNC, EIIP, DPCP and TPCP) and excluded
PseDNC (18D) due to its smaller feature dimension. A systematic
two-step feature selection approach was applied to identify the
optimal feature set from the original feature dimension, where
the first step is to rank features followed by the sequential
forward search (SFS). Generally, extreme GB (XGBoost) has been
known as a prediction algorithm [54]. Besides prediction, it can
effectively rank features according to the importance score, and
it has been widely applied in various problems to identify the rel-
evant feature set [55, 56]. Here, we employed XGBoost for ranking
features and sorted them in descending order based on the score.
Subsequently, SFS was applied to identify the optimal feature

subset from each encoding subsets. In SFS, k (k = 2) features were
added each time to five different ML classifiers and evaluated
their performance using 10-fold CV. Ultimately, a feature set that
achieved a superior performance in terms of accuracy (ACC) is
considered as the optimal model for each classifier.

Generation of probabilistic features

From step 1, we obtained 40 optimal models (8 encodings × 5
classifiers), whose predicted probability of ORIs were concate-
nated and considered as a 40D novel feature vector.

Iterative feature generation

Inspired by the layer-wise way of learning features in deep neural
networks [57], we employed a similar strategy to develop a final
prediction model. Here, we employed five different classifiers
individually for iterative approach. The procedure is as follows:
In the first run of the iterative strategy, 40D probabilistic fea-
ture vector obtained from step 2 inputted to ML classifier (e.g.
SVM) and developed their corresponding model using 10-fold
CV. The predicted probability of ORIs from the optimal model
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was considered as a new feature vector, which was combined
with the previous 40D vector and obtained 41D feature vector.
We repeat this process in an iterative manner and obtained
1D predicted probability of ORIs by training multidimensional
features at each successive step, and then fusing both output
and input characteristics as a input feature to the subsequent
iteration process. This iterative approach will be terminated
after 11 rounds to avoid over-fitting.

Feature fusion approach

The feature fusion approach is quite popular in bioinformat-
ics and computational biology [58]. In addition to the iterative
feature representation, we employed a feature fusion approach
and evaluated whether this approach improves the prediction
performance. Briefly, eight different sequence-based encoding
vectors of Kmer, CKSNAP, PseKNC, PseDNC, SCPseKNC, EIIP, DPCP
and TPCP were merged as follows:

FF = [EV(Kmer), EV(CKSNAP), EV(PseKNC), EV(PseDNC),

EV(SCPseKNC), EV(EIIP), EV(DPCP), EV(TPTP)], (19)

FF is the sequential fusion that yielded 3597D features.
Notably, fused features may contain irrelevant or mutual infor-
mation that directly impacts performance. Therefore, we applied
the two-step feature selection approach (as mentioned above)
on FF by employing five different classifiers independently and
developed their corresponding optimal model.

Evaluation metrics

To quantify the performance of developed models and evalu-
ate among them, we employed five commonly used evaluation
metrics [59–61]: sensitivity (Sn), specificity (Sp), ACC, Matthews
correlation coefficient (MCC), balanced accuracy (BACC). The
definition of each metric is expressed as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ACC = TP+TN
TP+TN+FP+FN

Sn = TP
TP+FN

Sp = TN
TN+FP

BACC = Sn+Sp
2

MCC = TP×TN−FP×FN√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

(20)

where TP is the number of ORIs correctly predicted as ORIs, TN
is the number of non-ORIs correctly predicted as non-ORIs, FP
is the number of ORIs incorrectly predicted as non-ORIs and
FN is the number of non-ORIs incorrectly predicted as ORIs,
respectively. In addition to the above metrics, we employed
receiver operating characteristic (ROC) curves that plot Sn as a
function of (1 − Sp) with different decision thresholds. Subse-
quently, we computed area under the curve from ROC curve.
Furthermore, a two-tailed test was employed to compute the
statistical differences between two ROC curves [62].

Results and Discussion
Assessing the contribution of different feature
descriptors and classifiers

We employed five different classifiers (ANN, RF, GB, ERT and
SVM) and eight different feature encodings (Kmer, CKSNAP,
DPCP, PseDNC, TPCP, PseKNC, SCPseKNC and EIIP) to assess
their contribution in ORIs prediction for each yeast species.

Conventionally, each encoding was inputted to five different
classifiers and developed their respective prediction model
using 10-fold CV. In total, 40 prediction models (8 encodings
× 5 ML classifiers) were developed for each species, whose
performances are shown in Figure 2 and Tables S2–S5. Figure 2
shows that each classifier performance fluctuates for different
feature encodings, where it shares similar MCC with the other
classifiers, sometimes slightly superior MCC and marginally
lower MCC. For instance, SVM-based performance in P. pastoris is
outstanding using CKSNAP, Kmer and TPCP, similar to MCC with
the different classifiers using DPCP, EIIP and SCPseTNC, while
slightly deteriorating using PseDNC and PseKNC (Figure 2B).
Parallelly, a similar phenomenon was observed in other three
species (K. lactis, S. cerevisiae and S. pombe). It is worth mentioning
that we did not observe any standout classifier that consistently
performed well regardless of using eight different feature
encodings.

To obtain an overview performance of each classifier, we
computed average performances of eight encodings as shown in
Figure S1. Results indicate that RF, ERT and GB achieved similar
performances with MCC in the range of 0.690–0.700, superior to
SVM and ANN in K. lactis. In the case of S. cerevisiae, RF, ERT and
SVM achieved similar performances with MCC in the range of
0.414–0.418, which is better than GB and ANN. Furthermore, SVM
showed superior performance in the remaining two datasets.
Overall, the above analysis indicates that the three classifiers’
(RF, ERT and SVM) performances are similar regardless of the
datasets, while slightly superior to ANN and GB.

Feature optimization results via two-step feature
selection

As described above, we obtained 40 baseline models and
considered only 35 models for feature optimization, and
excluded five models (five classifiers based on PseDNC) because
of the lower feature dimension (18D). Firstly, we used XGBoost
to predict the feature importance score for seven encodings
separately and selected the non-zero importance score features.
Figure 3A shows that feature encoding possesses less than
100 original dimension (CKSNAP, EIIP and SCPseTNC) and
holds 86–100% non-zero feature importance score regardless
of the datasets. Interestingly, features with higher-dimensions
(Kmer, DPCP, PseKNC and TPCP) contained significantly reduced
features containing non-zero feature values. Subsequently, we
ranked these non-zero features according to their score and
carried out SFS to identify the optimal feature set.

Table S2-S5 shows the optimal performance of 35 models and
their optimal feature set dimension for K. lactis, P. pastoris, S.
cerevisiae and S. pombe. We observed that our feature selection
approach improves the majority of the baseline models’ pre-
diction performances compared with their control. At the same
time, it also deteriorates some baseline model performances. For
instance, the optimal feature sets of three encodings (CKSNAP,
TPCP, SCPseTNC) performances for SVM is lower than their
control in P. pastoris (Table S3). The deterioration of the model
performance due to the following reasons: (i) all features in
the original dimension is equally essential for model perfor-
mance, mainly encodings with lower dimension and (ii) XGBoost
excluded many features by assigning zero from the higher-
dimensional feature that may include relevant feature informa-
tion. Instead of detailing each optimal feature set based model
on different datasets, we computed the average ACC for baseline
models only whose performance improved by feature selection
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Figure 2. Performance comparison of different classifiers trained using eight different feature types based on 10-fold cross-validation for four yeast species. (A)

K. lactis, (B) P. pastoris, (C) S. cerevisiae and (D) S. pombe. Kmer, Kmer composition; CKSNAP, composition of k-spaced nucleic acid pairs; EIIP, electron-ion interaction

pseudopotentials; DPCP, dinucleotide physicochemical properties; PseKNC, pseudo k-tuple composition; PseDNC, pseudo dinucleotide composition; SCPseTNC, series

correlation pseudo trinucleotide composition; TPCP, trinucleotide physicochemical properties.

Figure 3. Effect of feature selection and optimization. (A) The percentage of features identified to be important by XGBoost for seven different encodings using four

species-specific datasets. (B) Percentage of improvement in terms of accuracy compared between optimal feature set models and control. We considered only feature

selection improved models and excluded deteriorated models from seven encodings. The number of improved models is mentioned in the figure.

approach and compared with the respective control. Figure 3B
shows that all five classifiers’ average improvement is similar
to the range of 2.29–2.78% for the P. pastoris dataset. Notably,
we observed a similar phenomenon for the S. pombe dataset. In

the case of K. lactis, SVM improvement is immense, followed by
RF and remaining three classifiers. In the case of S. cerevisiae,
except ANN, the remaining four classifiers achieved similar
enhancements. Overall, feature selection improved 31/35, 29/35,
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Figure 4. Performance comparisons of five different classifiers during iterative feature learning process. (A) Performance-based on K. lactis and the best performance

is shown in green asterisk, and the comparison of the best model from five classifiers is shown in (B). (C) Performance-based on P. pastoris and the comparison of the

best model from five classifiers is shown in (D). (E) Performance-based on S. cerevisiae and the comparison of the best model from five classifiers is shown in (F). (G)

Performance-based on S. pombe and the comparison of the best model from five classifiers is shown in (H).

30/35 and 27/35 models, respectively, for P. pastoris, K. lactis, S. cere-
visiae and S. pombe. These improved models obtained from fea-
ture selection, PseDNC-based five models excluded from feature
optimization, and models with original features for their deteri-
oration during feature selection considered for the subsequently
analysis.

Impact of different classifiers during iterative feature
learning process

We obtained the predicted probability of ORI from 40 baseline
models and considered the novel features fed to five different
classifiers, and independently performed an iterative feature
learning process. To intuitively examine the results, we plotted
ACC change as incrementing the feature dimension at each iter-
ation step (Figure 4). The result shows that RF, ERT, GB and ANN
have a common trend for each species; performance remains
in equilibrium (4A, C, E and G). However, SVM has a general
tendency for two species (K. lactis and P. pastoris), ACC peaked at
the beginning and converged to the steady-state (4A and C). In
the case of S. cerevisiae, the ACC curve of SVM increased initially,
peaked and assembled to a steady-state. Next, we compared the
best models’ performances for three species (K. lactis, P. pastoris
and S. cerevisiae). Figure 4B, D and F shows that SVM significantly
outperformed the other classifiers in all five metrics. In the
case of S. pombe, all classifiers achieved maximum ACC either
in the first or second iteration, whose performances are similar
(Figure 4H). Due to the excellent and consistent performance of
SVM-based model in our iterative approach, we selected this as
the final model for each species and named it as yORIpred.

SVM-based iterative feature representation learning strategy
significantly improved the performance when compared with
their counterparts. However, it is unclear whether simply the
classifier choice played a key role or some other hidden factors.
Hence, we carried out two different analyses for three species (K.

lactis, P. pastoris and S. cerevisiae) to understand this event: (1) SVM
was used to assess the performance based on other classifiers’
probabilistic features at each iteration. SVM performance topol-
ogy was identified to be similar to the four classifiers (data not
shown), indicating features generated by four classifiers (using
iterative approach) showed a moderate discriminative capability
between ORIs and non-ORIs. (2) SVM-based probabilistic fea-
tures were inputted into four classifiers and evaluated their
performance at each iteration. Figure 5 shows that all four clas-
sifiers ACC graph topology is identical to SVM regardless of the
species, thus indicating that SVM-based generated predicted
probability values at each iteration step possess a very high dis-
criminative capability between ORIs and non-ORIs. As a result,
not only SVM but also other methods performed exception-
ally well. Overall, the above analysis shows that the classifier’s
choice (SVM) to generate probabilistic features (during the iter-
ative approach) plays a significant role in yORIpred-improved
performance.

Comparison of yORIpred performance with the feature
fusion approach

Recently, several studies demonstrated the advantage of feature
fusion approaches in several prediction problems [56, 63]. Hence,
we applied the feature fusion method to investigate whether
it can enhance the prediction performance compared with the
iterative feature learning approach. Precisely, all eight different
encodings combined linearly and generated a 3597D feature
vector. For each species, firstly, we ranked features with non-
zero scores identified by XGBoost and subsequently applied SFS
by employing five different classifiers (as mentioned above) and
identified the corresponding optimal model. Figure 6 shows the
performance of five different classifiers for each species. Inter-
estingly, three classifiers’ (RF, ERT and GB) ACC curve topology
are similar to each other regardless of the species. However, ANN
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Figure 5. Performance comparison of SVM with the other four classifiers using the SVM generated predicted probability features. A classifier that reached the maximum

accuracy is shown in green asterisk. (A) K. lactis, (B) P. pastoris and (C) S. cerevisiae.

and SVM have a different ACC curve topology. The maximum
ACC achieved by the optimal feature set is shown in a green
asterisk. Next, we compared the optimal models obtained from
feature fusion with yORIpred, and the result is shown in Table 1,
where the feature fusion model is named with the prefix FF. The
result shows that yORIpred performance is consistently better
than feature fusion models. To get a statistical significance
between yORIpred and other methods, we compared two AUC
values and computed P-value using a two-tailed test [62]. By
applying a P-value threshold of 0.05, yORIpred significantly out-
performed all feature fusion models for two species (P. pastoris
and S. cerevisiae). In the case of K. lactis, yORIpred performed bet-
ter than FF-RF, FF-ERT and FF-GB and significantly outperformed
the other two models. Furthermore, yORIpred performance is
similar to other FF models in S. pombe. Altogether, the above com-
parative analysis highlights that the iterative learning approach
is the sole reason for the yORIpred-improved performance.

Performance comparison of yORIpred with the existing
predictors on the same training dataset

We compared the performance of yORIpred with the existing
methods, namely iRO-3wPseKNC and iRO-PsekGCC, where both
methods were developed using the same training datasets and,
respectively, contained four and two species-specific prediction
models. Generally, comparing the CV or independent perfor-
mances using the same dataset is a more objective approach
that avoids bias. Table 2 shows the performance comparison
results between yORIpred and the existing predictors revealing a
better predictive performance by yORIpred than other predictors
in terms of MCC, ACC, Sn, Sp and AUC. Specifically, the MCC
achieved by yORIpred was 16.2% higher than iRO-3wPseKNC
for K. lactis; 31.0–37.0% higher than two existing methods for
P. pastoris; 22.5–29.6% higher than two current methods for S.
cerevisiae and 4.0% higher than iRO-3wPseKNC for S. pombe.

By applying a statistical cut-off of 0.05, yORIpred significantly
outperformed iRO-3wPseKNC for three species, namely K. lactis,
P. pastoris and S. cerevisiae and slightly better than iRO-3wPseKNC
for S. pombe. Furthermore, yORIpred significantly outperformed
iRO-PseKGCC for both species. It should be noted that the same
RF classifier with different feature encodings employed in the
existing methods. As a result, it could not capture the pattern
that discriminates well between ORIs and non-ORIs. However,
our approach overcomes the limitations of the existing methods
and the feature fusion approach employed in this study and
showed excellent performance. The possible reason for yORIpred

superior performance includes: (i) integrating different classi-
fiers and feature encoding schemes and generating probabilistic
features; (ii) systematic evaluation of different classifiers during
iterative feature learning and selecting SVM and (iii) probability
features generated by SVM shows a very high discriminative
capability of ORIs from non-ORIs.

Performance validation on the independent dataset

We compared the predictive performance of yORIpred against
the existing methods using the independent dataset for S.
cerevisiae, which includes 67 ORIs and 837 non-ORIs. Since
the dataset is imbalanced, comparison using ACC is not
straightforward; hence, we used BACC to rank the methods as
shown in Table 3. The comparison results revealed that yORIpred
achieved the best performance with MCC and BACC of 0.583
and 0.879. Specifically, MCC performed by yORIpred was 6.4%
higher than the second-best method, iRO-3wPseKNC. Among
the existing methods, iRO-PseKGCC performance was low in
our evaluation. Overall, yORIpred not only performed well on
the training dataset but also replicated its CV performances
during independent evaluation, thus highlighting its stability
and robustness in ORIs prediction.

Web server development

As an implementation of the developed yORIpred approach, we
have made available an online web server version of yORIpred
at http://thegleelab.org/yORIpred. The web server is equipped
with 16 cores, 64 GB memory and a 2 TB hard disk. To uti-
lize the yORIpred web server, users should select particular
species from the homepage and input DNA sequences in the
textbox or upload sequences in Fast Adaptive Shrinkage Thresh-
old Algorithm (FASTA) format via the file-selection dialog box.
The prediction results are provided in table format with detailed
information about the serial number, FASTA ID, predicted class
(ORIs or non-ORIs) and predicted probability of ORIs. Notably, the
probability score of ORIs is in the range from 0 to 1, where a
probability score close to 1 means the result is likely to be an ORI,
and a score close to 0 means the result is unlikely to be an ORI.
More detailed instructions for using the yORIpred web server can
be found at the web server’s README page.

Limitations and future work

Despite the performance of yORIpred for predicting species-
specific ORIs from yeast species, it has the following limitations:

http://thegleelab.org/yORIpred
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Figure 6. Selection of the optimal feature set based models for five different classifiers from the feature fusion. The relationship curve of prediction accuracy and

dimension of feature subset. The curve in this figure reflects the change of predictor accuracy with the varying feature subset dimension. The selected model for each

classifier is mentioned in the green asterisk. (A) K. lactis, (B) P. pastoris and (C) S. cerevisiae and (D) S. pombe.

Table 1. Performance comparison of yORIpred with the predictors based on feature fusion approach

Species Method MCC ACC Sn Sp AUC P-value

K. lactis yORIpred 0.865 0.932 0.946 0.919 0.955 —
FF-RF 0.757 0.878 0.899 0.858 0.937 0.353
FF-ERT 0.779 0.889 0.919 0.858 0.939 0.404
FF-GB 0.770 0.885 0.885 0.885 0.932 0.246
FF-ANN 0.730 0.865 0.878 0.851 0.897 0.010
FF-SVM 0.703 0.851 0.872 0.831 0.913 0.049

P. pastoris yORIpred 0.790 0.895 0.909 0.881 0.946 —
FF-RF 0.563 0.782 0.781 0.782 0.828 <0.0001
FF-ERT 0.577 0.788 0.778 0.799 0.833 <0.0001
FF-GB 0.560 0.780 0.778 0.782 0.818 <0.0001
FF-ANN 0.540 0.770 0.775 0.766 0.820 <0.0001
FF-SVM 0.521 0.760 0.752 0.769 0.799 <0.0001

S. cerevisiae yORIpred 0.755 0.877 0.862 0.892 0.917 —
FF-SVM 0.513 0.756 0.719 0.793 0.812 <0.0001
FF-RF 0.513 0.756 0.724 0.787 0.812 <0.0001
FF-ERT 0.524 0.762 0.745 0.778 0.809 <0.0001
FF-GB 0.521 0.760 0.736 0.784 0.802 <0.0001
FF-ANN 0.465 0.733 0.707 0.758 0.788 <0.0001

S. pombe yORIpred 0.970 0.985 0.991 0.979 0.994 —
FF-SVM 0.944 0.972 0.988 0.955 0.989 0.322
FF-RF 0.950 0.975 0.994 0.955 0.994 1.0
FF-ERT 0.950 0.975 0.988 0.961 0.982 0.045
FF-GB 0.950 0.975 0.988 0.961 0.984 0.082
FF-ANN 0.962 0.981 0.994 0.967 0.994 1.0

The first and second columns, respectively, represent species and its corresponding prediction method. A P-value <0.05 was considered to indicate a statistically
significant difference between yORIpred and the selected method (shown in italic).

(i) The training dataset of yORIpred is relatively limited
(especially for S. pombe) due to the lack of experimentally
characterized ORIs. In the future, when more ORI sequences

become available, additional data should be collected for the
development of a more robust model and enable reliable whole-
genome ORIs annotation; (ii) The existing methods employed
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Table 2. Performance comparison of yORIpred with the existing methods on the same training dataset

Species Method MCC ACC Sn Sp AUC P-value

K. lactis yORIpred 0.865 0.932 0.946 0.919 0.955 —
iRO-
3wPseKNC

0.703 0.851 0.858 0.845 0.901 0.0158

P. pastoris yORIpred 0.790 0.895 0.909 0.881 0.946 —
iRO-
3wPseKNC

0.422 0.711 0.699 0.723 0.796 <0.001

iRO-
PseKGCC

0.484 0.742 0.745 0.739 0.800 <0.001

S. cerevisiae yORIpred 0.755 0.877 0.862 0.892 0.917 —
iRO-
3wPseKNC

0.459 0.730 0.707 0.752 0.808 <0.001

iRO-
PseKGCC

0.530 0.765 0.739 0.781 0.813 <0.001

S. pombe yORIpred 0.970 0.985 0.991 0.979 0.994 —
iRO-
3wPseKNC

0.929 0.965 0.979 0.949 0.986 0.144

The first and second columns, respectively, represent species and its corresponding prediction method. A P-value <0.05 was considered to indicate a statistically
significant difference between yORIpred and the selected method (shown in italic).

Table 3. Performance comparison of various methods on S. cerevisiae independent dataset

Method MCC BACC Sn Sp AUC

yORIpred 0.583 0.879 0.836 0.922 0.915
iRO-3wPseKNC 0.519 0.838 0.761 0.915 NA
iRO-PseKGCC −0.013 0.490 0.746 0.233 NA

The first column represents the method employed for the evaluation. iRO-3wPseKNC and iRO-PseKGCC did not give predicted probability values during our evaluation.
Hence, we cannot provide an AUC value. It is mentioned as not available (NA).

random sequences as non-ORIs during their model construction.
As a result, the prediction performance might be affected when
the user provides other functional DNA sequences (promoter
and coding sequence). In the future, DNA sequences other
than ORI functions should be considered along with the
random sequences as non-ORIs during model development,
which will be helpful to eliminate the false-positive results;
and (iii) yORIpred predictive capability relies on multiple ML
classifiers trained on numerous sequence-derived features.
Generally, the machine-learning models’ performance is directly
proportional to the informative features extracted from the
training dataset. In this regard, it is challenging to find a
novel sequence-based encoding scheme to improve model
performance. With more data available in the future, we plan
to apply several classical approaches reported recently [63–67]
and identify the most appropriate method.

Conclusions
Here, we proposed a novel species-specific yORIpred predictor
for accurate identification of ORI sites from yeast species. To
establish an accurate and efficient prediction model, we devel-
oped 40 baseline models by exploring various feature encodings
and classical ML classifiers. Subsequently, a 40D probabilistic
feature vectors generated from the baseline models were fed into
SVM and an iterative feature representation learning scheme
was applied to create more informative features. Our empirical
studies based on CV and independent evaluation demonstrated
the effectiveness of yORIpred species-specific models by outper-
forming the existing methods, iRO-3wPseKNC and iRO-PsekGCC.
Furthermore, we demonstrated the superiority of yORIpred com-

pared with the feature fusion approach. The improved perfor-
mance of yORIpred is mainly due to the following aspects: (i)
integrating different classifiers and feature encoding schemes
to generate probabilistic features, (ii) identifying an appropriate
SVM classifier during iterative feature learning and (iii) prob-
abilistic features obtained through the iterative approach has
a very high discrimination capacity of ORIs from non-ORIs. A
user-friendly web server has been established that allows the
prediction of ORIs from the given genomic sequences, which
will significantly enhance its impact in driving genome biology.
We anticipate that yORIpred could be a powerful tool for accu-
rate and high-throughput ORIs prediction from DNA sequences.
Moreover, the current approach could be extended to other
DNA sequence-based prediction problems, such as post repli-
cation modification sites, recombination hot-spot and enhancer
predictions.

Key Points
• In this study, we present yORIpred, a powerful bioin-

formatics tool for the accurate prediction of species-
specific yeast ORIs.

• yORIpred utilized eight different feature encodings
schemes to encode the sequences and integrated with
iterative feature representation algorithm to build the
stable predictor.

• Benchmarking comparison shows that yORIpred sig-
nificantly outperforms the state-of-the-art predictors.

• A user-friendly web server is available (http://theglee
lab.org/yORIpred) to facilitate online high-throughput
prediction of ORIs.

http://thegleelab.org/yORIpred
http://thegleelab.org/yORIpred
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