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Abstract

Anti-cancer peptides (ACPs) are known as potential therapeutics for cancer. Due to their unique ability to target cancer cells
without affecting healthy cells directly, they have been extensively studied. Many peptide-based drugs are currently
evaluated in the preclinical and clinical trials. Accurate identification of ACPs has received considerable attention in recent
years; as such, a number of machine learning-based methods for in silico identification of ACPs have been developed. These
methods promote the research on the mechanism of ACPs therapeutics against cancer to some extent. There is a vast
difference in these methods in terms of their training/testing datasets, machine learning algorithms, feature encoding
schemes, feature selection methods and evaluation strategies used. Therefore, it is desirable to summarize the advantages
and disadvantages of the existing methods, provide useful insights and suggestions for the development and improvement
of novel computational tools to characterize and identify ACPs. With this in mind, we firstly comprehensively investigate 16
state-of-the-art predictors for ACPs in terms of their core algorithms, feature encoding schemes, performance evaluation
metrics and webserver/software usability. Then, comprehensive performance assessment is conducted to evaluate the
robustness and scalability of the existing predictors using a well-prepared benchmark dataset. We provide potential
strategies for the model performance improvement. Moreover, we propose a novel ensemble learning framework, termed
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ACPredStackL, for the accurate identification of ACPs. ACPredStackL is developed based on the stacking ensemble strategy
combined with SVM, Naïve Bayesian, lightGBM and KNN. Empirical benchmarking experiments against the state-of-the-art
methods demonstrate that ACPredStackL achieves a comparative performance for predicting ACPs. The webserver and
source code of ACPredStackL is freely available at http://bigdata.biocie.cn/ACPredStackL/ and https://github.com/liangxiao
q/ACPredStackL, respectively.

Key words: anti-cancer peptides; bioinformatics; prediction; sequence analysis; ensemble learning; performance
assessment

Introduction
Cancer is a leading cause of death worldwide and has been a
significant public health concern [1]. Conventional chemother-
apy is one of the primary treatments for cancer. However, it
is expensive and can cause adverse effects on healthy cells
[2]. Moreover, highly adaptable cancer cells often develop drug
resistance [3]. Further, drug resistance poses significant chal-
lenges for chemotherapy and development of anti-tumour drugs
[4]. Thus, it is urgent to find more effective strategies for can-
cer treatment. Anti-cancer peptides (ACPs), a particular type
of antimicrobial peptides (AMPs), are known as small peptides
that usually have less than 50 amino acids [5]. It has been
reported that ACPs can directly target cancer cells without affect-
ing healthy cells [6]. Moreover, compared with conventional
therapeutics, peptides have other attractive advantages as sum-
marized in [5], such as high specificity, low intrinsic toxicity, high
tissue penetration and ease of modifications. Therefore, ACPs
have been extensively studied as an alternative approach for
cancer treatment in recent years [6].

Several public databases, such as CancerPPD [5], DADP [7],
CAMP [8] and APD [9], collect more and more experimentally
validated ACPs, providing rich resources for knowledge-based
discovery of novel ACPs. Although experimental techniques
facilitate the discovery of ACPs, these techniques are costly,
labour-intensive and are not practically suitable for the
discovery of ACPs in a cost-effective manner. Computational
methods that are capable of identifying ACPs accurately can
complement with experimental techniques and greatly facilitate
the high-throughput characterization of ACPs.

To date, a variety of computational methods have been
developed for the identification of ACPs. Table 1 summarizes
the existing computational methods and covers a wide range
of aspects, including the applied machine learning (ML)
algorithms, extracted biological features, evaluation strategies
and webserver/software availability. In these studies, the ACPs
identification task is formulated as a binary classification
problem. There are three major steps in these studies: the first
step is to collect experimentally validated ACPs as positive
samples and non-ACPs as negative samples to construct
benchmark datasets. At the second step, a variety of peptide
sequence-based features are calculated and extracted for model
training. Finally, the extracted feature sets are used as the input
to feed into machine learning algorithms to train the prediction
models and predict whether a query peptide is ACP or not.

We categorize these methods in Table 1 into three groups
according to the types of machine learning methods employed:
(i) The first group is the single ML-based methods, and they
are developed based on conventional ML algorithms, such as
support vector machine (SVM) and random forest (RF). As can
be seen from Table 1, SVM is the most popular algorithm. In
all, 10 out of 14 methods are developed based on SVM. Besides,
there are two methods PEPred-Suite [10] and ACPred-Fuse [11]

are developed based on RF. In addition, MLACP [12] is developed
using both SVM and RF, and AntiCP 2.0 is implemented using
SVM, RF, KNN, ETree, ANN and ridge, respectively; (ii) the second
group is the ensemble learning-based method, and there is only
one predictor, termed iACP-GAEnsC [13], in this group. iACP-
GAEnsC is developed based on five different base-classifiers,
including SVM, Probabilistic Neutral network (PNN), RF, General-
ize regression neural network (GRNN) and K-nearest neighbour
(KNN). The final ensemble model is constructed based on these
base-classifiers by using genetic algorithm and voting strategy,
(iii) the third group is the deep learning (DL)-based method.
There is also only one predictor, named ACP-DL [14], in this
group. ACP-DL utilizes the k-mer sparse matrix and a binary
profile to encode the input sequences into a 2D matrix, and
then feeds the encoded matrix into the long short-term memory
(LSTM) neural network to train the prediction model.

All three groups of methods reviewed above need to extract
and calculate a variety of peptide sequence or sequence-
derived features for model training. These sequence features
and sequence-based features are also summarized in Table 1.
Amino acid composition (AAC), dipeptide composition (DPC),
Composition-Transition-Distribution (CTD) and Binary Profiles
(BP) features are among the most widely employed types of
features in these methods. Different methods employ various
features that favour the ML-based models to predict ACPs.
Apparently, the employed features used by each method are
essential for the method to identify ACPs. Accordingly, it would
be important to understand the feature importance and the
impact of individual features on the output of the prediction
model. Five evaluation strategies including 10-fold cross-
validation, 5-fold cross-validation, independent test, leave-one-
out cross-validation and jackknife test were employed by the
existing methods. All these evaluation strategies belong to
cross-validation [25]. Among these, jackknife test, also called
leave-one-out cross-validation, can be conducted to obtain
a consistent outcome for a predictor [26, 27] on the same
benchmark dataset. For k-fold cross-validation, when dividing
a benchmark dataset, there are a large number of possible
divisions even for a very simple dataset [25, 27]. Thus, a same
predictor would yield different results when selecting different
divisions for a same benchmark dataset [27]. Independent
test is often used to evaluate the generalization ability of the
model. Experimentally verified ACPs are currently very limited.
With the increasing availability of ACPs in the future, newly
identified ACPs may be independent on current ACPs. Thus,
they can be regarded as more reliable independent datasets
to evaluate the performance of existing predictors. Certainly,
with more ACPs being incorporated into the training dataset,
the performance of existing predictors is expected to be further
improved. Out of 16 predictors, 9 have been implemented as
online webservers; however, some webservers are not developed
and made available. It is recommended that more webservers
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or stand-alone software should be made publicly accessible to
facilitate users’ research efforts.

These ML-based methods greatly facilitate the identification
of ACPs and promote the research progress in the field. However,
several issues still remain in most of these methods that need
to be addressed. First, the currently available ACPs datasets are
relatively small, which are not suitable for training a robust
deep learning-based prediction model [28]. Therefore, the per-
formance of ACP-DL, which is the only existing deep learning-
based method for ACPs identification, is substantially limited by
the size of the dataset available [14]. Second, the single machine
learning-based methods only apply single algorithms to train the
model, and the performance is not robust in some cases. From
the viewpoint of classification, individual classifiers are often
limited and only focus on certain aspects of the classification. As
a consequence, the performance of individual classifier-based
methods of ACPs identification is often limited in terms of
their classification capability and performance. In this context,
ensemble learning can combine multiple different classifiers
to harness the merits of all assembled models to improve the
predictive performance. It has been demonstrated that ensem-
ble learning usually outperforms individual classifiers [29, 30].
Ensemble learning has been successfully used in many bioin-
formatics studies, such as DNA-binding proteins identification
[31, 32], non-classical secreted protein prediction [33], promoter
prediction [34] and ncRNA-protein interaction prediction [35].
While there is only one ensemble learning-based method cur-
rently available, called iACP-GAEnsC [13], for ACPs identification,
more ensemble learning frameworks should be considered and
leveraged to develop more accurate and robust predictors in
the future. Three, all existing methods are ‘Black-box’ models,
and as such, it is difficult to interpret and understand why
these models make the predictions. In this regard, cutting-edge
model interpretation algorithms can be applied to interpret the
machine learning-based methods, which can help us better
understand why the predictors make such predictions. Finally,
all existing methods are developed and evaluated using different
benchmark and independent test datasets. Table 2 summarizes
the datasets used for the development and assessment of the
existing methods. There is a lack of a benchmark model to
assess and evaluate the existing models comprehensively. This
benchmark model can serve as a baseline to assist model com-
parison and facilitate users to choose the appropriate method
to use.

Next we propose a new stacking ensemble learning-based
approach, termed ACPredStackL (Anti-Cancer peptide Predictor
based on Stacking Learning), for the improved identification of
ACPs. The stacking strategy can consider some different and
weak classifiers, learn them in parallel and integrate them by
training a meta-model to make the prediction based on different
weak models’ predictions. The proposed ACPredStackL frame-
work consists of two-level classifiers. The first-level classifier of
ACPredStackL trains four different weak learners, including KNN,
Naïve Bayesian (NB), LightGBM and SVM. Then the combined
prediction outcomes of the first-level classifier are fed into a
logistics regression (LR) algorithm to train the meta-model (i.e.,
the second-level learner). The predicted outcomes of the LR
model will be used as the final prediction results. We validate
and compare the predictive performance of ACPredStackL and
other state-of-the-art methods based on the datasets reviewed
in Table 2. Moreover, we further develop an online webserver of
ACPredStack to facilitate community-wide efforts in analyzing
and identifying ACPs, which is freely available at http://bigdata.
biocie.cn/ACPredStackL/.

Materials and methods
Datasets

We review all the datasets used for developing the currently
available ACP predictors. The details of these datasets are
presented in Table 2. Among these datasets, Tyagi2013 [15] and
Hajisharifi2014 [2] are two fundamental datasets. Tyagi2013 was
collected from a well-known antimicrobial database (APD2)
[9], antimicrobial peptides (CAMP) [8] and database of anuran
defence peptides (DADP) [7]. Hajisharifi2014 was collected from
APD2. The other datasets were mostly derived from these
two datasets. For instance, the training datasets in Chen2016
[17], Li2016 [18], Akbar2017 [13], Xu2018 [19], Kabir2018 [21]
and Schaduangrat2019 [22] are the same as Hajisharifi2014. The
training datasets and ACPs in the independent datasets used
in Wei2018 [20] and Rao2019 [11] are the same datasets derived
from Tyagi2013, Chen2016 and the ACP database CancerPPD [5].
Yi2019 integrated Wei2018 and Chen2016 into a larger dataset.
Agrawal2020 was obtained from Yi2019, Vijayakumar2015,
Wei2018, Tyagi2013, Chen2016 and CancerPPD [5].

In this study, we applied the Boopathi2019 dataset as the
benchmark dataset to evaluate the performance of ACPred-
StackL. There are three main reasons why we used Boopathi2019:
(i) Boopathi2019 contained a larger number of samples than the
other datasets. Figure 1 illustrates the relationships between
Boopathi2019 and the other datasets. As can be seen, the training
datasets of Boopathi2019 integrated three datasets, Tyagi2013,
Wei2018 and Chen2016. The independent testing datasets of
Boopathi2019 were collected from four datasets, including DADP
[7], DBAASP [37], DRAMP [38] and LAMP [39]. As a result,
Boopathi2019 covers the majority of the datasets used in other
predictors; (ii) Boopathi2019 excludes those sequences that have
more than 50 amino acid residues that may form the outliers
during the prediction model training, (iii) The training datasets
of Boopathi2019 applied a lower CD-HIT [40] threshold of 0.8
(Table 2) to exclude more redundant sequences than the other
datasets and avoid over-estimation of the model performance.

Feature extraction

In this study, we employed five different sequence encoding
schemes provided in the iFeature software package [41] to encode
the protein sequences, which included amino acid composi-
tion (AAC), pseudo-amino acid composition (PAAC), Composi-
tion, Transition and Distribution (CTD), composition of k-spaced
amino acid pairs (CKSAAP), and quasi-sequence-order descrip-
tors (QSOrder). These five sequence encoding schemes are intro-
duced in the following subsections.

AAC

AAC represents the occurrence frequencies of 20 amino acids
in a protein sequence. It has been previously used as a feature
descriptor in several ACPs predictors [10–12, 15, 18, 20, 22]. For
the amino acid aa and a protein sequence s, the occurrence fre-
quency of aa in s is Naa/L, where Naa is the occurrence time of aa
in s and L is the length of s. As a result, we obtain the occurrence
frequencies of 20 amino acids in s, and then represent s as a
20-dimensional vector using the AAC encoding scheme.

PAAC

The conventional amino acid composition only takes into
account the occurrence frequencies of 20 amino acids in a

http://bigdata.biocie.cn/ACPredStackL/
http://bigdata.biocie.cn/ACPredStackL/
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Table 2. A summary of the training and independent test datasets used in the existing methods

Datasetsa Training datasets Independent test datasets CD-HIT
threshold

Dataset
availability

Number of ACPs Number of
non-ACPs

Number of ACPs Number of
non-ACPs

Tyagi2013 [15] 225 225 50 50 – Yes
Hajisharifi2014 [2] 138 206 No No 0.9 Yes
Vijayakumar2015 [16] 217 3979 40 40 1.0 Yes
Chen2016 [17] 138 206 150 150 0.9 Yes
Li2016 [18] 138 206 150 150 0.9 Yes
Akbar2017 [13] 138 206 No No 0.9 Yes
Manavalan2017b [12] 187 398 422 + 126 422 + 205 0.9 No
Xu2018 [19] 138 206 No No 0.9 Yes
Wei2018 [20] 250 250 82 82 0.9 Yes
Kabir2018 [21] 138 206 150 150 0.9 Yes
Schaduangrat2019 [22] 138 205 No No 0.9 Yes
Boopathi2019 [23] 266 266 157 157 0.8 Yes
Yi2019 [14] 376 364 129 111 0.9 Yes
Rao2019 [11] 250 250 82 2628 0.8 Yes
Agrawal2020 [24] 689 689 172 172 - Yes
Basith2020c [36] - - 246 1733 0.9, 0.6 Yes

aDatasets are named using the second name of the first author plus the publication year in the corresponding literature.
bManavalan2017 contains two independent test datasets. One contains 422 ACPs and 422 non-ACPs, and the other contains 126 ACPs and 126 non-ACPs, respectively.
cIn Basith2020, positive and negative samples with >90% and > 60% sequence identity with training data sets used in existing methods were removed.

protein sequence. However, in this way it loses the sequence-
order information of the protein chain. PAAC incorporates the
sequence-order effect and the frequency of 20 amino acids
into a composite encoding scheme [42]. In PAAC, a protein
sequence is encoded as a (20 + λ)-dimensional vector, where
the first 20 components of the vector represent the frequency
of 20 amino acids, and the last λ components represent the
sequence-order information. Since PAAC is originally proposed,
it has proven to be an effective feature encoding scheme and
has been widely applied to improve the prediction performance
in several domains [43]. It has been employed as a useful feature
descriptor in ACPs predictors such as Hajisharifi et al. [2] and
ACPred [22]. Calculation of PAAC features of the input protein
sequences is performed using the PseAAC webserver [43] and
the iFeature package [41]. In this work, we set λ = 4. As a result, a
peptide sequence is encoded as a 24-dimensional vector.

The CTD feature

CTD employs seven different physicochemical properties to
represent a protein or peptide sequence. For each property,
twenty amino acids are partitioned into three groups. CTD
uses three descriptors including composition (C), transition (T)
and distribution (D) to describe the amino acid distribution of
each property in each group along a protein sequence [44]. In
our work, we only used the descriptor D to encode a peptide
sequence, as D was found to lead to a better predictive perfor-
mance than C and T descriptors in our preliminary analysis. The
descriptor D has been used for prediction of ACPs in ACPred-
FL [20], PEPred-Suite [10], mACPpred [23] and ACPred-Fuse [11].
For each property, D uses five descriptor values to denote the
fractions of the entire sequence for each of the three groups.
Thus, there are 15 descriptor values for each property. Refer to
[44] for more details about calculation of the D predictor. Among
the seven physicochemical properties, hydrophobicity is repre-
sented by seven descriptors in the iFeature package [41]. There are
a total of 13 properties consisting of seven types of hydropho-
bicity and six other properties. Thus, in this work, a peptide

sequence is encoded as a vector with 13 × 15 = 195 descriptor
values.

CKSAAP

CKSAAP is known as amino acid pair spectrum encoding and has
been used for prediction of ACPs in ACPred-Fuse [11]. It trans-
forms a protein sequence into a numerical vector by calculating
the occurrence frequency of all possible k-spaced amino acid
pairs along the protein sequence. A k-spaced amino acid pair
denotes that there are k spaces between any two amino acids
in the sequence. For example, in the sequence ‘AXXGXXXT’, ‘AG’
is a 2-spaced amino acid pair, whereas ‘GT’ is a 3-spaced amino
acid pair. Let knp denote the k-spaced amino acid pair, then the
frequency of knp can be defined as follows:

f (knp) = Count(knp)
l − k − 1

, (1)

where Count(knp) represents the count of knp along the protein
sequence, while l is the length of the protein sequence. k ε [0, kmax]
denotes the space between amino acid pairs. Thus, (l − k − 1)
denotes the number of all k-spaced amino acid pairs along a
protein sequence with the length l. As a result, the protein
sequence is encoded as a 20 × 20×(kmax+1) dimensional vector.
In this work, we set kmax= 4.

QSOrder

QSOrder describes the amino acid distribution based on the
distance between any two amino acids located in two different
positions along a protein or peptide sequence [44]. It has been
used for prediction of ACPs in mACPpred [23]. For a protein or
peptide sequence P with L amino acids, the sequence-order-
coupling is defined as:

τd =
∑L−d

i=1

(
M [Pi, Pi+d]

)2, (2)
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Figure 1. Relationships among the various datasets related to the Boopathi2019 dataset.

where the matrix M represents the Schneider-Wrede physic-
ochemical distance matrix [45] or the Grantham chemical
distance matrix [46], and M[Pi, Pi+d] denotes the distance between
the two amino acids at positions i and i + d along the sequence
P. In this work, we set d = 1, 2, 3, 4 and 5, respectively.
For each type of amino acid aa, two QSOrder descriptors are
defined as:

Xaa = faa∑20
1 faa + 0.1 × ∑5

1 τd

aa = 1, 2, 3, . . . , 20, (3)

Xd = 0.1 × τd−20∑20
1 faa + 0.1 × ∑5

1 τd

d = 21, 22, 23, 24, 25, (4)

where faa denotes the normalized occurrence of aa in P.
Therefore, a peptide sequence is encoded as a 25-dimensional
vector using one of the two amino acid distance matrices.
There are a total of 50 QSOrder features encoded for a peptide
sequence.

Framework of ACPredStackL

We summarize the stacking ensemble learning-based frame-
work of ACPredStackL in Figure 2. The three major steps in the
overall workflow are respectively described below.

Step 1. Feature representation

The sequences in the input datasets are encoded based on
AAC, PAAC, CTD, CKSAAP and QSOrder encoding schemes.
The dimensions of features generated by these five encoding
schemes are 20, 24, 195, 2000 and 50, respectively. Each peptide
sequence in the input datasets is therefore converted into a
2289-dimensional feature vector. Thus, the benchmark training
and test datasets used in this study are represented as a
266 × 2289 matrix and a 157 × 2289 matrix, respectively. After
that, we employed the ZScore algorithm using the iFeature
package [41] to normalize the feature values.

Step 2. Feature selection

Each input sequence is encoded as a high dimensional feature
vector (with a total dimension of 2289). High-dimensional fea-
tures may contain redundant or noisy features that often lead
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Figure 2. The overall framework of ACPredStack. Its development involves several major stages, including data preparation, feature encoding, ensemble modelling,

performance comparison and webserver implementation.

to the decreased predictive performance of the trained model.
We employ a two-step feature selection strategy [47–50] to select
the most informative features from the original features. The
procedure is described as follows. In the first step, the F-score
algorithm from the iLearn package [51] is used to rank the fea-
tures according to their ability to distinguish ACPs from non-
ACPs. At the second step, we apply a sequential forward search
procedure (FSP) [52] to select the suboptimum subset of features
with stronger identification ability of ACPs. Let s and r denote the
suboptimum subset and the ranking feature list, respectively, s
is initialized with an empty set. FSP first moves the best feature
from r to s, and then move d most informative features from r to
s, and use 10-fold cross-validation to evaluate the classification
performance of features in s. This procedure continues until r
becomes empty. The selected subset s generated after such mul-
tiple iterations is used as the final suboptimum feature set that
achieves the best classification performance. In this study, to
improve the feature search efficiency, we first set a larger d = 50
to roughly select the top t features as an initial suboptimum

feature subset. Then, we set a smaller d = 5 to further select an
optimum feature subset from the features within the range of
top [t-100, t + 100] in r. The final optimum s consisted of the top
600 features.

Step 3. Stacking ensemble learning

There exist three different ensemble learning strategies, includ-
ing boosting, bagging and stacking [29, 53]. In this study, ACPred-
StackL applied the stacking strategy to integrate KNN, NB, Light-
GBM and SVM as the base-classifiers (i.e., first-level) and logistic
regression as the meta-classifier (i.e., second-level). At the first
level, we constructed three SVM classifiers with the RBF kernel
by tuning the two hyperparameters C and γ . We named the
classifier with C = 2.0 and γ = 0.00049 as SVMa, C = 1.0 and γ = 1
as SVMb, C = 8.0 and γ = 0.00049 as SVMc, respectively. As a
result, ACPredStackL integrated six base-classifiers in the first-
level learner. For ease of description, letD = {xi, yi}n

i=1 denote
the training datasets and T = {tj}m

j=1 represent the test dataset,
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respectively. Here, xi denotes the feature vector of a peptide
sequence, yi = 1 if xi is an ACP and yi = 0 otherwise. The corre-
sponding tj is a peptide sequence that will be predicted as an ACP
or non-ACP. The workflow of our stacking ensemble strategy is
as follows.

Firstly, the first-level classifiers transform the input datasets
into new datasets for the second-level classifier. To avoid overfit-
ting [53], we implemented our stacking model using the stacking
cross-validation algorithm provided in the ‘mlxtend’ package
[54] to prepare the inputs for the second-level classifier. In our
model, 5-fold cross-validation was employed to splitD into five
equal size subsets: D = {D1, D2, D3, D4, D5}. For each Dk(k =
1, 2, 3, 4, 5), we learn six base classifiers Bkt(t = 1, 2, . . . , 6) from the
remaining 4-fold subsets D\Dk. For each {xi, yi} ∈ Dk, we obtain a
new sample {x′

i, yi}, where x′
i = {Bkb(xi)}, (b = 1, 2, . . . , 6), and then

transform Dk into D′k that uses six predicted probability values
as new features. In the same way, for each tj ∈ T, j ∈ [1, m],
a feature vector consisting of six predicted probability values
{Bkb(tj)}, (b = 1, 2, . . . , 6) is constructed as a new sample, and then
T is transformed into a new test dataset Tk that is represented
as a m × 6matrix, here m is the number of test samples. After
five rounds of iterations, we construct a new training dataset
D′ = cup5

k=1D′k, and five test datasets Tk(k = 1, 2, 3, 4, 5). Then,
we integrate five Tk(k = 1, 2, 3, 4, 5) to obtain a final test dataset
T′ that is represented as a m × 6matrix. T′[i, j], i ∈ [1, m], j ∈ [1, 6],
denotes the cell value of the i-th row and the j-th column of T′,
which is defined as T′[i, j] = (

∑5
k=1 Tk[i, j])/5.

Secondly, the new training dataset D′ and test dataset T′ are
provided as the input datasets of the second-level classifier.
Then a logistic regression classifier is trained based on D′, and
10-fold cross-validation and jackknife test are conducted to eval-
uate the trained stacking ensemble model. T′ is used to further
evaluate the generalization ability of the stacking ensemble
model.

Performance evaluation

To quantify the performance of ACPredStackL and compare with
that of other methods, we used five common performance eval-
uation metrics [11, 33, 55–65], including sensitivity (Sn), speci-
ficity (Sp), precision, accuracy (Acc) and Matthew’s Correlation
Coefficient (MCC), which are defined as follows:

Sn = TP
TP + FN

Sp = TN
TN + FP

Precision = TP
TP + FP

Acc = TP + TN
TP + TN + FP + FN

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

, (5)

where TP, TN, FP and FN denote the numbers of true pos-
itives, true negatives, false positives and false negatives,
respectively. In addition, we also plot the receiver-operating
characteristic (ROC) curves based on the output of ACPredStackL,
and accordingly calculated the Area Under the Curve (AUC)
values.

We conducted a series of benchmarking tests including 5-
fold cross-validation, 10-fold cross-validation, jackknife cross-
validation and independent test to validate and compare the
predictive performance of ACPredStackL and other existing pre-
dictors.

Results and discussion
In this study, we evaluate and compare the performance of
ACPredStackL with other computational methods on several
benchmark datasets. We also identify the most important fea-
tures for the model prediction and interpret prediction outputs
of ACPredStackL.

Performance evaluation on benchmark datasets

In this section, we first examine the ability of individual
sequence features for identification of ACPs. Five features
with the best performance are selected and then used as the
input to ACPredStackL to evaluate the feature representation
ability of our model. Subsequently, 10-fold cross-validation
and independent test are conducted to further evaluate the
performance of ACPredStackL.

Performance evaluation of different features

Firstly, we evaluated and examined the ability of differ-
ent sequence features in distinguishing ACPs from non-
ACPs. LightGBM was employed to evaluate the performance
of 23 selected features derived from sequences [41]. The
detailed results of 10-fold cross-validation test are provided in
Supplementary Table S1. The results demonstrate that five types
of features, including PAAC, AAC, CTDD, CKSAAP and QSOrder,
achieved better classification accuracies, which improved Acc
from 83.5 to 88.7. These results indicate that these five types of
features could indeed greatly help to distinguish the ACPs from
non-ACPs.

Visualization of feature representations

To illustrate the feature representation ability of ACPredStackL,
we used the t-SNE plot [66] to visualize representation map with
two dimensions that were automatically learned by ACPred-
StackL. The results are shown in Figure 3. The original input
representation map illustrated in Figure 3A shows that there
are large overlaps between the ACPs and non-ACPs. Based on
the representation map (Figure 3B) learned after the first level
of ACPredStackL, we found that many points were classified as
the wrong class. However, the representation map (Figure 3C)
learned after the second level of ACPredStackL shows that the
separation between the ACPs and non-ACPs was almost distinct
and could be well distinguished. These results suggest that
ACPredStackL is able to effectively learn good feature represen-
tations for classifying ACPs.

10-fold cross validation test on the benchmark training datasets

To evaluate the performance of ACPredStackL, we first per-
formed 10-fold cross-validation tests on the benchmark training
datasets. The performance results are provided in Figure 4
and Supplementary Table S2. The results demonstrate that
ACPredStackL outperformed all base classifiers in terms of MCC,
Acc and Sn. ACPredStackL and SVMb achieved the highest Sp
(0.925). Although ACPredStackL achieved a slightly lower AUC
than SVMa and SVMb (0.966 versus 0.963), it performed better
than the other five base classifiers in terms of AUC. To further
evaluate the performance of ACPredStackL, we compared it
with mACPpred [23], which was a state-of-the-art predictor
developed based on the same benchmark datasets. From
the results provided in Figure 4 and Supplementary Table S2,
we conclude that ACPredStackL achieved a slightly better
performance compared with mACPpred in terms of MCC (0.839

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
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Figure 3. t-SNE plots of the input representation (panel A), feature representation after the first-level layer (panel B), and feature representation after the second-level

layer (panel C).

versus 0.836), Acc (0.918 versus 0.917), and Sn (0.913 versus
0.891), but a slightly lower performance in terms of AUC (0.963
versus 0.968) and Sp (0.925 versus 0.944). These results illustrate
that ACPredStackL achieved a competitive performance in
ACPs prediction by integrating the multi-features and assem-
bling various base classifiers through the stacking ensemble
strategy.

Performance comparison on the independent test datasets

The prediction model with an excellent performance of cross-
validation test may have poor generalization ability when
assessed on the independent test datasets [23]. Therefore,
we further conducted the independent test to validate and
evaluate the robustness of ACPredStackL and compared its
performance with a number of existing predictors, including
iACP [17], SVMACP [12], RFACP [12], mACPpred [23], ACPred-
Fuse [11] and ACPred-FL [20]. Among the compared predictors,
SVMACP and RFACP are two machine learning-based methods
proposed in the same work, which are constructed based
on SVM and RF, respectively. The performance comparison
results are shown in Table 3. The prediction results of ACPred-
Fuse and ACPred-FL were obtained through their webservers,
and the results of the other four predictors were retrieved
from the literature [23]. The performance results show that
ACPredStackL outperformed the other predictors on four out of
five evaluation metrics, with the only exception of Sp, for which
RFACP achieved best. These results indicate that ACPredStackL
provides a better generalization ability and can achieve a more
accurate performance than the existing methods. The detailed
performance results of all base classifiers on the independent
test dataset are provided in Supplementary Table S3. The results
clearly show that ACPredStackL achieved the best performance
than all other base classifiers in terms of four (out of five)
evaluation metrics, with the only exception of Sp, which
LightGBM achieved best. Altogether, these results demonstrate
this ensemble learning method can improve the performance
by combining multiple base learners.

Performance evaluation of ACPredStackL on other
benchmark datasets

In this section, we comprehensively evaluate and assess the
performance of ACPredStackL on the other benchmark datasets
and compare the results with several existing methods.

Performance evaluation on the Yi2019 dataset

As far as we know, ACP-DL [14] is the first deep learning-based
predictor. This work has conducted 5-fold cross-validation
experiments on two benchmark datasets named ACP740 and
ACP240. Figure 5A and B show performance comparison results
on the 5-fold cross-validation test using ACP740 and ACP240,
respectively. The results of ACP-DL in Figure 5A and B were
obtained from the corresponding literature [14]. As can be
seen, compared with ACP-DL, ACPredStackL achieved a better
performance in terms of Acc (87.44 versus 81.48), MCC (75.06
versus 63.05), Precision (88.73 versus 82.41), Sn (86.44 versus
82.61) and Sp (88.85 versus 80.59) on the ACP740 dataset; as
well as higher Acc (86.30 versus 85.42), MCC (73.01 versus 71.44),
Precision (89.73 versus 80.28) on the ACP240 dataset.

Performance evaluation on the Hajisharifi2014 dataset

Hajisharifi et al. [2] constructed a benchmark dataset containing
136 ACPs and 206 non-ACPs. Several state-of-the-art ACP pre-
dictors, including iACP [17], iACP-GAEnsC [13], TargetACP [21]
and ACPred [22], are developed and evaluated based on this
benchmark dataset through jackknife test. Therefore, we con-
ducted the jackknife test to compare ACPredStackL with the
aforementioned predictors. Figure 5C displays the performance
comparison results on this benchmark dataset. The results of
all the compared methods were obtained from the literature [13,
22]. As can be seen, ACPredStackL and TargetACP achieved the
highest MCC value of 0.92, while ACPredStackL obtained the best
Sn value of 95.65%. On the other hand, although ACPredStackL
had a slightly lower value on Acc than iACP-GAEnsC (96.21% ver-
sus 96.45%) and TargetACP (96.21% versus 96.22%), it performed
better than other ACPred, iACP and Hajisharifi et al’s method.

Performance evaluation on the Tyagi2013 dataset

Tyagi et al. constructed two benchmark datasets to evaluate
their predictor named AntiCP [15]. The training dataset con-
tained 225 ACPs and 225 non-ACPs, and the independent test
dataset contained 50 ACPs and 50 non-ACPs, respectively. We
conducted 10-fold cross-validation on the training dataset, and
independent test on the test dataset. The performance com-
parison results between ACPredStackL and other methods are
illustrated in Figure 6A and B. The results of all other compared
methods were obtained from the literature [20], which con-
ducted the same experiments in their original work to evaluate

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
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Figure 4. 10-fold cross validation test on the benchmark dataset. Note that the values on the y axis represent performance scores of evaluation metrics.

Table 3. Performance comparison of ACPredStackL, mACPpred, SVMACP, RFACP, iACP, ACPred-Fuse and ACPred-FL on the independent test
dataset

Methods AUC MCC ACC Sn Sp

mACPpred 0.967 0.829 0.914 0.885 0.943
SVMACP 0.896 0.592 0.768 0.554 0.981
RFACP 0.891 0.511 0.707 0.414 1.000
iACP 0.747 0.338 0.667 0.580 0.753
ACPred-Fuse - 0.581 0.761 0.541 0.981
ACPred-FL - −0.161 0.427 0.667 0.192
ACPredStackL 0.974 0.847 0.924 0.936 0.910

Note: Bold-font values denote that corresponding methods achieved the best performances on the corresponding evaluation metrics.

Figure 5. Performance evaluation on the Yi2019 and Hajisharifi2014 datasets. Panel A shows the performance results of ACPredStackL and ACP-DL on the 5-fold cross

validation using ACP740. Panel B illustrates the performance results of ACPredStackL and ACP-DL on the 5-fold cross validation using ACP240. Panel C illustrates the

performance results of the Hajisharifi’s method, iACP, iACP-GAEnsC, TargetACP, ACPred and ACPredStackL using the Hajisharifi2014 dataset. Note that the values on the

y axis represents performance scores of evaluation metrics.
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Figure 6. Panel A and B display the performance comparison of AntiCP_AAC, AntiCP_DC, Hajisharifi’s method, iACP, ACPred-FL and ACPredStackL on the Tyagi2013

dataset. Panel C and D illustrate performance comparison of AntiCP_AAC, AntiCP_DC, Hajisharifi’s method, iACP, ACPred_FL, PEPred_Suite and ACPRed_Fuse on the

Rao2019 dataset. Note that the values on the y axis represents performance scores of evaluation metrics.

the performance of ACPred-FL. It should be noted that AntiCP
contained two predictors: AntiCP_AAC and AntiCP_DC, which
were built using the features of dipeptide composition (DC)
and amino acid composition (AAC), respectively. Ten-fold cross-
validation results (Figure 6A) show that ACPredStackL achieved
a better performance than the other compared predictors in
terms of all evaluation metrics. Moreover, the independent test
results (Figure 6B) show that ACPredStackL achieved the highest
accuracy of 0.926, the maximum MCC of 0.851 and Sn of 1.00,
respectively.

Performance evaluation on the Rao2019 dataset

Rao et al. [11] constructed two benchmark datasets to evalu-
ate their predictor named ACPred-Fuse. The training dataset
contained 250 ACPs and 250 non-ACPs, while the independent
test dataset included 82 ACPs and 2628 non-ACPs, respectively.
We compared ACPredStackL with other seven predictors on
these two benchmark datasets. The performance results are
illustrated in Figure 6C and D. The results of all the compared
methods were obtained from the literature [11]. As can be seen
Figure 6C, 10-fold cross-validation results show that ACPred-
StackL achieved the highest accuracy of 82.8%, as well as the

maximum MCC of 0.661, AUC of 0.893 and Sn of 81.6, respectively.
The independent test results (Figure 6D) shows that ACPred-
StackL achieved the same performance as ACPred-Fuse in terms
of four evaluation metrics including Sn (72.0%), Sp (89.5%), Acc
(89.0%) and MCC (0.320), while ACPredStackL achieved the max-
imum AUC of 0.894.

Performance evaluation on the Basith2020 dataset

The Basith2020 [36] dataset was an imbalanced one consisting
of 246 ACPs and 1733 non-ACPs, respectively. It was constructed
as an independent ACP dataset to evaluate the performance of
different ACP predictors. In this study, we also used this dataset
to further evaluate the performance of our method. The perfor-
mance comparison results with other currently available ACP
predictors are shown in Supplementary Table S4. AUC and MCC
are often used as major metrics to evaluate the performance
[67]. As can be seen from Supplementary Table S4, ACPredStackL
achieved the highest AUC of 0.943. As a comparison, the other
ten predictors achieved lower AUC scores ranging from 0.061
to 0.932. In terms of MCC, mACPpred achieved the best perfor-
mance with an MCC of 0.642, while ACPredStackL achieved the
second best MCC of 0.615. The other nine predictors achieved

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
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lower MCC ranging from −0.135 to 0.587. To evaluate the bal-
anced performance of Sn and Sp, the balanced accuracy (BACC)
was is another primary metric to assess the performance of
different predictors [36]. In this regard, ACPredStackL achieved
the best performance with a BACC of 0.878. In summary, among
the 11 available predictors, ACPredStackL achieved the best per-
formance in terms of BACC and AUC, and the second best
MCC. These results demonstrate that ACPredStackL provides a
competitive predictive performance of ACPs on the independent
Basith2020 dataset.

Performance evaluation of ACPs identification from other peptides

Basith et al. [36] constructed independent data sets of six
different types of peptides, including ACP, AHTPs (antihy-
pertensive peptides), ATbPs (antitubercular peptides), AIPs
(anti-inflammatory Peptides), QSPs (quorum sensing peptides)
and CPPs (cell-penetrating peptides). For each dataset, all the
positive samples were experimentally verified peptides. We
thus used the experimentally verified peptides from the above
six datasets to form a multi-peptide dataset, which contained
246 ACPs sequences and 885 other peptide sequences. We
employed the CD-HIT program [40] with the sequence similarity
threshold of 0.8 to remove identical peptides, and then used
the remaining 189 ACPs sequences as the positive samples
and 431 other five types of peptides as the negative samples
to construct the new test dataset. Subsequently, we used this
new dataset to evaluate the performance of different ACP
predictors. The results are shown in Supp Table S5. As can be
seen, ACPredStackL achieved the best performance with an
MCC of 0.565, Acc of 77.9%, Sn of 87.3% and AUC of 0.884,
respectively. The corresponding metrics of the other methods
ranged from −0.281 to 0.509, 30.6% to 77.3%, 38.1% to 84.1% and
0.334 to 0.828, respectively. These results again demonstrate
that the competitiveness of ACPredStackL in identifying ACPs
from other types of peptides than the currently available ACP
predictors.

Model interpretation

Interpreting and understanding the model’s output is vitally
important in many bioinformatics applications. ACPredStackL
combines six base classifiers, including KNN, NB, LightGBM,
SVMa, SVMb and SVMc. Among these base classifiers, KNN,
NB, SVMa, SVMb and SVMc are ‘Black-box’ classifiers. Light-
GBM can evaluate the importance of the features according to
their weights for predictions; however, the relationship between
each feature and the prediction result is unknown. Although
ACPredStackL employed the F-score to rank the original features
and select the optimal features for model training, we did not
know how the selected optimal features would impact on the
model predictions, and how exactly ACPredStackL made the
prediction is also unknown to us. Recently, a unified framework
termed SHapley Additive exPlanations (SHAP) [68] is proposed to
interpret the output of the machine learning model. It assigns
each feature an SHAP value that represents the effect on the
prediction of the trained model with that feature. Let F denote
the set of all features, for a feature i ∈ F, its SHAP value ∅i is
defined as follows:

∅i =
∑

S⊆F\{i}
|S| ! (|F| − |S| − 1) !

|F| !

[
fS∪{i}

(
xS∪{i}

)
− fS (xS)

]
, (6)

whereS represents the feature subset of F that excludes the
feature i, and xS represents the values of the input features in
S. For all feature subset S, we retrain two models fSand fS∪{i}, and
compare the predictions from the two models on the current
input fS∪{i}(xS∪{i}) − fS(xS). According to Equation 6, the SHAP value
of each feature can be computed and used to represent the effect
on the model prediction.

In this study, we applied the SHAP framework to interpret
the predictions of our model. The distribution of the impact of
the top 20 selected features on the output of ACPredStackL is
illustrated in Figure 7. As can be seen, a number of features with
high values achieved positive SHAP values, and other features
had lower and negative SHAP values. Positive SHAP values indi-
cate the prediction of ACPs, while negative SHAP values indicate
the prediction of non-ACPs. Taking CTDD (163) in Figure 7 as an
example, we found that its values were relatively high for most
ACPs samples and low for most non-ACPs samples. Thus, for
a new sample whose class (ACP or non-ACPs) is unknown, if
CTDD (163)‘s value in the sample is very high then the predictive
result will favour ACP, otherwise non-ACP. Certainly, the final
predictive result will be made by all feature attributions in the
sample.

To further illustrate the impact of these features on the model
output, we plotted the distributions of the top six features for
both ACPs and non-ACPs in Figure 8. The results indicate that
the mean values of the six features were clearly distinct between
the positive and negative samples. We further performed a
student’s t-test to examine the statistical difference. The results
indicate that the P-values were less than or equal to 0.01 for
all of the top six features. This means that the distributions of
each feature were significantly different between the positive
and negative samples. Similar results for the distributions of
the other 14 features in the positive and negative samples are
illustrated in Supplementary Figure S1. Taken together, these
results highlight that the features employed in ACPredStackL
have a strong representation and discriminative ability for the
prediction of ACPs.

Case studies

The explanation model based on the additive feature attribution
methods [68] is defined as follows:

g
(
x′) = ∅0 +

M∑
i=1

∅ix′i, (7)

where ∅0 represents the base value of the model output, and
x′ ∈ {0, 1}M represents a sample vector with M features, x′i ∈
{0, 1} represents the ith feature of x′ and ∅i ∈ R denotes the
attribution values (in Equation 6) of the ith feature. Accordingly,
a model’s output is explained as a sum of SHAP values of each
input feature.

We performed the case studies by selecting four synthesized
peptide sequences (Table 4) from [69] to further evaluate the pre-
dictive capability of ACPredStackL. Among these four peptides,
Gradient2 is validated to be active against breast adenocarci-
noma (MCF7) cells, and the other three are active against both of
the MCF7 and lung adenocarcinoma (A549) cancer cell lines. To
reduce redundancy and avoid over-estimation, we employed the
CD-HIT program [40] with a sequence similarity threshold of 0.8
to check four peptides against the benchmark training datasets.
The prediction results for these four case study peptides are
provided in the Table 4. As can be seen, all the four peptides were

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
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Figure 7. The top 20 features based on SHAP values generated for prediction of ACPs using ACPredStackL. Feature values are indicated by colors (low: blue; high: red).

SHAP values greater than zero indicate prediction of ACPs, while SHAP values less than zero indicate prediction of non-ACPs. Note: each feature has a high dimension,

the number within bracket behind each feature indicates which dimension of the feature.

correctly predicted as ACPs by ACPredStackL. The visualization
of the model outputs is illustrated in Supplementary Figure S2.
As can be seen from Table 4 and Supplementary Figure S2, the
base SHAP value of the model output was 0.39 which repre-
sented the average model output over the training dataset. The
output SHAP values for these four peptides were 0.69, 0.67,
0.70 and 0.68, respectively. The real numbers on the horizontal
axis in each subfigure of Supplementary Figure S2 represents
SHAP values, red bars denote the positive feature attributions
that push the prediction higher, and blue bars denote the neg-
ative feature attributions that push the prediction lower. In
Supplementary Figure S2, both the normalization feature value
and the feature attribution range of each feature were below
the horizontal axis, the sum of all feature attributions plus the
base SHAP value was represented as the prediction output of the
model. Taking the peptide Helical1 (Supplementary Figure S2A)
as an example, six features including AAC (4), QSOrder (27), CTDD
(20), PAAC (7), PAAC (4), QSOrder (44) made positive contributions
to the prediction of ACPs. Four out of six features were included
in the top 20 selected features (see Figure 7), including QSOrder
(27), CTDD (20), PAAC (7) and PAAC (4). Thus, these results can
explain how the ACPredStackL model made the final decision of
the prediction. Thereby improving the model interpretability.

Webserver implementation

To facilitate community-wide effort for the prediction of ACPs
in a cost-effective and high-throughput manner, we have imple-
mented an online webserver freely accessible (http://bigdata.bio
cie.cn/ACPredStackL/). The view page was implemented using
HTML, bootstrap, jquery and ajax. The server side used the
springboot framework to receive the requests from users, and
then called the constructed ACPredStackL model to make ACPs
predictions. The webserver is managed using Tomcat 7 and
configured in a Linux environment on a 4-core cloud server
machine with 16 GB of memory and a 500 GB hard disk.

Step-by-step instructions for submitting a job to the web-
server is described as follows: First, users need to paste their
peptide sequences in the FASTA format in the text area. In
addition, users can alternatively upload a file containing peptide
sequences in the FASTA format. Second, users need to click the
‘Submit’ button to submit the job. In addition, users also have the
option to provide their email addresses so that they can receive
a notification email once the submitted job is completed. Finally,
after the submitted job is completed, user can view the predic-
tion results from the job list page. In this case, a notification
email will be automatically sent to users; users can view the job
details by clicking a hyperlink contained in the email.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa312#supplementary-data
http://bigdata.biocie.cn/ACPredStackL/
http://bigdata.biocie.cn/ACPredStackL/
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Figure 8. Distribution of the values of the six best-performing features between the positive and negative samples. Note that the values on the y axis represent feature

values in samples.

Table 4. Four active peptides against cancer cells used in the case study

Peptide ID Peptide sequence Prediction Base SHAP value Output SHAP values

Helical1 FLWIKLGKLAGAVLKLILGLKKVV ACP 0.39 0.69
AmphiArc1 KWVKKVHNWLRRWIKVFEALFG 0.67
AmphiArc2 KIFKKFKTIIKKVWRIFGRF 0.70
Gradient2 AWLKRIKKFLKALFWVWVW 0.68

Discussions and Limitations

The existing predictors of ACPs identification were trained and
tested on various benchmark datasets. All these predictors do
not provide the stand-alone software; as such, we were not
able to train them on selected benchmark datasets to com-
pare with ACPredStackL. However, if a predictor provides the
webserver that can predict ACPs from the manual input pro-
tein sequences, we compared ACPredStackL to the predictor via
the webserver using benchmark independent test datasets (see
Section ‘10-fold cross validation test on the benchmark train-
ing datasets’). ACPredStackL has achieved a competitive per-
formance on the benchmark training datasets when compared
with mACPpred. Further, ACPredStackL outperformed mACP-
pred, SVMACP, RFACP, iACP, ACPred-Fuse, ACPred-FL on four
out of five evaluation metrics using independent test datasets.
These results indicate that ACPredStackL has great capacity and
utility.

Moreover, we compared the performance of ACPredStackL
and other predictors on various test datasets (see Section
‘Performance evaluation of ACPredStackL on other benchmark
datasets’), which almost covered all the benchmark datasets
used in existing predictors. Compared with ACP-DL, the
only deep learning-based method of ACPs identification,
ACPredStackL achieved better performances in terms of all
major evaluation metrics on the ACP740 dataset, and in
terms of three out of five evaluation metrics on the ACP240
dataset, respectively. Generally speaking, deep learning-based
predictors require sufficiently large amounts of training data
in order to achieve better performance. However, there are
only a small number of known ACPs currently available.
Thus, the performance of deep learning methods such as
ACP-DL is expected to be further improved in accordance
with the increasingly available ACPs data in the future. In
terms of the two primary performance metrics Acc and MCC,
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ACPredStackL outperformed a number of conventional machine
learning based-predictors, including Hajisharifi et al, iACP,
ACPred, AntiCP-AAC, AntiCP-DC and ACP-FL. Visualization
representation maps learned by ACPredStackL clearly indicate
that ACPredStackL is a reliable feature representation method.
Altogether, these results demonstrate that ACPredStackL is a
powerful predictor of ACPs.

All the existing predictors including ACPredStackL are ML-
based approaches, which have the following limitations: First,
ML-based predictors typically need sufficiently large training
datasets. However, the number of currently available ACPs has
limited the performance of existing predictors. For a newly dis-
covered ACP, if its physicochemical or sequence features are
significantly different from those in the current ACP databases,
it would not be surprising that this APCs would be incorrectly
predicted by the existing methods. Second, there is a need to
develop new and informative feature representation schemes
for training machine learning models from protein or peptide
sequence information. In particular, ACP-specific feature repre-
sentation schemes can better describe and represent the bio-
logical properties of ACPs and thus might be useful for further
improving the performance of ACPs predictors.

Conclusion and future work
In this study, we have comprehensively reviewed all existing
ACP identification methods and proposed ACPredStackL, a
new stacking ensemble learning-based predictor for ACPs.
We performed a comprehensive benchmarking evaluation
of the currently available tools for the ACP prediction on
multiple datasets, which almost covered all benchmark datasets
used by current predictors. The results demonstrated that
ACPredStackL improves the performance of ACP prediction
by leveraging the merits of all assembled individual models.
ACPredStackL outperforms the majority of the existing pre-
dictors on two comprehensive metrics (Acc and MCC). A user-
friendly webserver of ACPredStackL is developed to facilitate
high-throughput prediction and is freely available at http://bigda
ta.biocie.cn/ACPredStackL/. Overall, ACPredStackL is anticipated
to be a powerful tool for the accurate and high-throughput
prediction of ACPs from sequences information. We hope that
this comprehensive review and the developed ACPredStackL tool
will provide useful insights for ACPs prediction, facilitate efforts
for identification and functional characterization of novel ACPs
and inspire follow-up research in the future.

There exist more than 7000 naturally occurring peptides that
are often associated with human physiology [70]. A number of
peptide therapeutics are currently being evaluated in clinical tri-
als. In this context, high-throughput computational methods are
urgently needed to identify promising peptides with therapeutic
potentials from sequences. However, most computational meth-
ods are tailored for specific type of peptides and can only be used
to identify special peptides belong to a specific type. In future
work, we plan to construct a general and more robust model that
can be used to simultaneously predict multiple different types of
peptides.

Key Points
• We provide a comprehensive survey and summary

of the existing machine learning-based methods for
ACPs identification.

• We propose a novel stacking ensemble learning-based
method, termed ACPredStackL, to improve the predic-
tive performance of ACPs.

• Extensive benchmarking tests demonstrate that
ACPredStackL achieves a better performance and
outperforms the existing methods on multiple
benchmark datasets.

• A publicly available webserver (http://bigdata.biocie.
cn/ACPredStackL/) is developed as an implementation
of ACPredStackL to facilitate community-wide efforts
for ACPs identification in a high-throughput manner.

Supplementary data

Supplementary data mentioned in the text are available to
subscribers in BRIBIO online.
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