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Abstract

The accurate quantification of tumor-infiltrating immune cells turns crucial to uncover their role in tumor immune escape,
to determine patient prognosis and to predict response to immune checkpoint blockade. Current state-of-the-art methods
that quantify immune cells from tumor biopsies using gene expression data apply computational deconvolution methods
that present multicollinearity and estimation errors resulting in the overestimation or underestimation of the diversity of
infiltrating immune cells and their quantity. To overcome such limitations, we developed MIXTURE, a new ν-support vector
regression-based noise constrained recursive feature selection algorithm based on validated immune cell molecular
signatures. MIXTURE provides increased robustness to cell type identification and proportion estimation, outperforms the
current methods, and is available to the wider scientific community. We applied MIXTURE to transcriptomic data from
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tumor biopsies and found relevant novel associations between the components of the immune infiltrate and molecular
subtypes, tumor driver biomarkers, tumor mutational burden, microsatellite instability, intratumor heterogeneity, cytolytic
score, programmed cell death ligand 1 expression, patients’ survival and response to anti-cytotoxic
T-lymphocyte-associated antigen 4 and anti-programmed cell death protein 1 immunotherapy.
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Introduction
The immune checkpoint blockade (ICB) immunotherapy has
changed the paradigm of cancer treatment for several indica-
tions after decades of only partially effective therapies [1]. The
malignant phenotype of cancer is defined not only by the intrin-
sic activities of cancer cells but also by the tumor microenvi-
ronment components, especially the tumor-infiltrating immune
cells [2]. The exclusion of CD8 T cells from the tumor correlates
with poor clinical outcome in colorectal cancer [3], while a high
infiltrate of cytotoxic CD8 T cells has been mostly linked to
prolonged survival [4], being also predictive of increased overall
survival in patients with breast, head and neck and colorectal
cancer with hepatic and lung metastases [5]. In contrast, the
immunosuppressive regulatory T cells (Tregs) are associated
with shorter survival in several cancer types [5]. The immuno-
suppressive macrophage M2-phenotype favors the growth and
development of an invasive and pro-angiogenic phenotype [6]
and has been linked with poor prognosis in cancer patients [5].

Despite the substantial advancements in clinical cancer care,
most patients receiving anti-cytotoxic T-lymphocyte-associated
antigen 4 (CTLA-4) and anti-programmed cell death protein 1
(PD-1) ICB do not derive benefit. Therefore, there is an urgent
need to identify and develop predictive biomarkers of ICB
response, enabling a precision medicine approach in cancer
immunotherapy for better understanding and overcoming the
resistance mechanisms. Immune checkpoint inhibitor efficacy
is affected by a combination of factors that involve the oncogenic
drivers, the tumor mutational burden (TMB), microsatellite
instability (MSI), the expression levels of the PD-ligand 1 (PD-
L1) and the immune infiltrate [7]. The latter has been shown to
influence the response to ICB [8]. Increasing evidence suggests
that it is not only the density of immune infiltrating cells but
also their phenotype that impact the response to ICB. Although
the role of the immune microenvironment as a factor predicting
response to ICB remains to be validated [7], it holds the promise
to unveil the role of the immune system in cancer progression
and response to therapy.

Flow cytometry, immunohistochemistry and single-cell
RNA sequencing are the current gold standards studying the
tumor immune infiltrate. Still, they have limitations related
to sample availability, high throughput and high costs. Thus,
several computational algorithms made possible to infer the
immune tumor microenvironment (ITME) composition by using
immunological-associated gene sets approaches [9–11], or by
deconvolving the tumor immune content from bulk tumor
gene expression [12–18] applying profiled molecular signatures
based on gene expression signature data [13,14,17,19–22]. The
first ones require a significant number of genes, whereas the
second ones can be applied over a reduced set of molecular
signature genes. Regardless of their potential, current methods
present controversial results concerning their accuracy [14,23].
Specifically, current state-of-the-art molecular signature-based
deconvolution methods [16,18–20] present limitations driven by

(i) collinearity issues, due to highly correlated signature profiles,
(ii) f loating-point errors or lack of non-negative definition which
violate the sum-to-one coefficients constraints and (iii) highly
skewed gene expression input data. The collinearity issues
may over or misestimate cell types. Moreover, floating-point
error noise or the lack of non-negative coefficient constraints
may deliver over cell type identification, resulting in biased-
proportion estimates. Then, the skewed data distribution may
provide biased proportion estimates when using ordinary
least squares approaches. Consequently, current methods may
estimate an inaccurate and biased proportion of the tumor
immune cell type levels.

To overcome such limitations, we developed MIXTURE—a
new deconvolution method applying a noise constrained Recur-
sive Feature Selection algorithm for ν-support vector regression
(v-SVR)—contrasted with the current state-of-the-art methods
[17,19–21]. MIXTURE was evaluated on the LM22 signature—a 22
immune cells signature based on mature human hematopoietic
populations and activation state [17], and on the TIL10 signa-
ture—a Tumor Infiltrate Lymphocyte signature of 10 immune
cell types [20] and validated over simulated and flow cytometry
derived cell type proportion data. Here, we show the MIXTURE’s
superior performance analyzing both simulated and real bench-
mark datasets. We applied MIXTURE to evaluate the ITME asso-
ciation with known genomic features such as oncogenic drivers,
TMB, MSI, intratumor heterogeneity (ITH) and PD-L1 expression
in breast cancer (BRCA), lung cancer (LUAD), melanoma (SKCM),
head and neck squamous cell carcinoma (HNSC) and colorectal
cancer (COAD). Importantly, we correlated the ITME with both
survival and response to immunotherapy in melanoma patients
with known response to anti-CTLA-4 or anti-PD-1 immunother-
apy. Our analysis shows that MIXTURE outperforms the compet-
ing methods in estimating, accurately and robustly, the ITME.
Our study reveals new associations of the ITME with patients’
outcomes and validated biomarkers of response to ICB.

Materials and methods
Quantification of tumor-infiltrating immune cells

The linear deconvolution of the cell types present in a gene
signature matrix (X), holding N genes for k cell types, associated
with the components of a mixture of cell types present in a
tumor gene expression profile (Y), involves solving the following
regression model equation Y = X•BT. The proportions for all cell
types in the mixture sample is represented by the column vector
B = {βj ≥ 0 ∧ ∑

βj = 1∀j = 1, . . . , k}, i.e. the vector of regression
coefficients satisfying both, the non-negativity and sum-to-one
constraints [24].

MIXTURE deconvolution algorithm

The MIXTURE algorithm re-estimates B by iteratively removing
the columns of X associated with null coefficients from the
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Step MIXTURE Function: Inputs (Y, X); Output: B̂ = {β̂k ≥ 0 where
∑

β̂k = 1, ∀k}

1 X∗ ← X
2 � ← 0.007

3 B̂ = B̂v with ν = arg min
ν=0.25,0.5,0.75

RMSEv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a) B̂v = SVR(O, W, ν)

b) ˆβ ′
vk =

{ ˆβvk if ˆβvk > 0
0 otherwise

.

c) B̂v′ = B̂′
v/∑ ˆβ ′

vk
.

d) ˆβ ′
vk =

{ ˆβ ′
vk if ˆβ ′

vk > �

0 otherwise
.

e)RMSEv =
√ ∑

(O−W∗B̂′
v)

N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

4 if B̂ = {β̂k ≥ 0∀k} GOTO 9

5 B̂ ←
{

β̂νk, β̂νk ≥ 0
0, β̂νk < 0

.

6 B̂ ← B̂
/∑

β̂k
.

7 X∗ ← remove.colums(X∗, ∀k : β̂k ≤ �)
8 GOTO 3

9 B̂ ← B̂
/∑

β̂k
. (this yields β̂k ≥ 0wedge

∑
β̂k = 1, ∀k = 1, . . . , c)

regression step after all estimated coefficients result in β̂j ≥ 0
by using the v-SVR approach as a regression function similar
to CIBERSORT. Floating-point errors affect the inequality com-
parison β̂j ≤ 0 used to define the null coefficients, resulting in
an overestimation of the number of positive coefficients, and
negatively impacting the selection step. To avoid this, MIXTURE
defines a noise constraint threshold � = 0.007 (chosen through
a simulation process—see supplementary section ‘Noise Con-
strain Threshold Selection’) to iteratively set as zero or null
(β̂j = 0) those estimated normalized coefficients satisfying β̂j ≤ Δ

leading to a more accurate estimation of the cell types present in
the sample. Specifically, the MIXTURE algorithm is based in the
following procedure:

The algorithm receives as input the bulk tumor gene expres-
sion profile Y and the signature matrix X (Step1). Then (Step 2)
set the Noise Threshold to a given value Δ = 0.007. In Step 3,
the optimization v-SVR process takes place by minimizing the
root mean squared error between Y and their estimated profile
Ŷ = X • B̂ over three v values of 0.25, 0.5 and 0.7, and using Δ to
define null coefficients. Then it returns the normalized vector B̂
from the best ‘v’. If all β̂k ≥ Δ (Step 4) it returns the normalized B̂,
removes all columns from X for whom β̂k < Δ, and go to Step 3.
The algorithm stops if all the elements of the normalized vector
B̂ resulted > Δ.

Benchmarking of deconvolution methods

We tested MIXTURE’s performance against four state-of-the-art
algorithms, namely ABBAS, ABIS, CIBERSORT and quanTIseq, by
using both LM22 and TIL10 signatures to estimate their cor-
responding cell types on the evaluated samples (Table 1). We
assessed their ability to estimate the cell type content and
proportion estimates from (i) the LM22 and TIL10 molecular
signature profiles as pure cell samples (self-test), (ii) Simulated
bulk samples built from a random gene expression from the
molecular signature, LM22 or TIL10, and adding known pro-
portions of randomly chosen cell type signature profiles, (iii)
f low cytometry derived cell type proportion content of Follicular
Lymphoma and Plasma Blood Mononuclear Cells samples and
(iv) from full negative cell type content samples from pure cell
lines (see supplementary material for details).

Validation and discovery data sets

To validate MIXTURE on real cancer samples, we evaluated BRCA,
LUAD, SKCM, HNSC and COAD TCGA biopsies to look for associa-
tions with known genomic features like oncogenic drivers, TMB,
ITH and MSI (see supplementary material for details).

Statistical analysis

We used the Wilcoxon test to compare the estimated coefficients
between methods (paired or unpaired accordingly) with P < 0.05
as the significance threshold value. Since correlation is not a
suitable method to compare predicted versus truth proportions
(it does not allow estimation bias nor systematic error analysis),
the Bland–Altman statistical method for assessing agreement
between clinical measurements [25] was used to compare esti-
mated proportions against the true simulated or flow cytometry
derived ones [26]. The mean ± standard deviation was used to
show the overall bias when appropriate, and loess smoothing
to visualize bias. We applied the Pearson coefficient for corre-
lation analysis and Cox Proportional Hazards models for sur-
vival analysis with the survival R library” To evaluate cell type
content prediction accuracy, an analysis of sensitivity, positive
predictability and F1-scores was conducted. For patient propor-
tion analysis, Pearson’s chi-squared method was performed, and
P-values were calculated by Monte Carlo simulation.

Code availability

In order to use MIXTURE, we have developed both R and
Python algorithms available at https://github.com/elmerfer/
MIXTURE.App.

Results
MIXTURE outperforms other deconvolution methods in
a self-test analysis

We analyzed the performance of MIXTURE (Figure 1A) against
the current state-of-the-art methods assuming that any method
should be able to estimate the provided signature matrix propor-
tions correctly (i.e. pure cell type-gene expression profile). That

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
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Table 1. Summary of the compared software packages

Software Deconvolution
method

Noise constraint Recursive Feature
Extraction

Signature Platform Refs

ABBAS OLS No Yes Any R [19]
ABIS RLM No No Any R / WEB (http://timer.cistrome.org/) [21]
quanTIseq LSEI No No Any R [20]
CIBERSORT v-SVR No No Any R / WEB (https://cibersort.stanford.e

du/)
[17]

MIXTURE v-SVR Yes Yes Any R / Shiny / Python / Dash -

Abbreviations: OLS: ordinary least squares, RLM: robust linear model, LSEI: least squares with equality and inequality constraint, v-SVR: nu-support vector regression.

means that if we replace Y by each column of X (a pure cell type
profile), the method should provide only one coefficient equal
to 1 and the remaining coefficients equal to 0, as presented in
Equation (1):

X = X • B = X •
⎡
⎢⎣ β̂1 = 1 0

β̂j = 1
0 β̂k = 1

⎤
⎥⎦ (1)

All methods were tested on LM22 and TIL10 molecular signa-
tures to estimate the coefficient associated with each cell type
present on each signature. To highlight the collinearity issues
which produce tumor cell types misestimation, we performed
the autocorrelation matrices (A = X • XT) for each molecular
signature. We found that both signature cell type profiles are
highly correlated evidencing collinearity issues (Figure 1B). All
methods, except MIXTURE, overestimate the number of cell
types (NCTs) present in each profile for both signature matrices
showing their lack of robustness to collinearity. Specifically,
the ABBAS method provides between 6 to 9 and 4 to 6 cell
types for LM22 and TIL10, respectively. The ABIS method pro-
vides between 10–13 and 4–8 cell types for each signature. The
quanTiseq method is more robust to collinearity, thus providing
better estimations and fewer false-positive detections on LM22.
However, it misidentifies monocytes (M), CD4 T cells (CD4), M1
macrophages (M1) and Tregs. The CIBERSORT method provides
the expected NCTs only for the 23% of the signature profiles
and overestimates a maximum of 8 and 6 cell types for LM22
and TIL10 signatures, respectively (Figure 1C).The values outside
the main diagonal (Figure 1C), which represent false-positive
detections, should be zero. Most methods, except MIXTURE, pro-
vide values β̂j < 9.7e−3(3Q), evidencing the floating-point error
in the definition of null coefficients, i.e. cell types that should
reach β̂j = 0 (Supplementary Table 1). These results show the
unpredictable identification and proportion estimation of the
immune cell types on tumor samples.

MIXTURE outperforms other methods on simulated
data scenarios

One thousand simulated bulk mixture samples were built, for
each signature matrix, by adding up between 2–8 (LM22) and 2–6
(TIL10) cell type expression profiles randomly chosen. They were
weighted by normalized βs drawn from a uniform distribution
between 0.2 and 1, and then a random gene expression profile
taken from the respective molecular signature was added. By
doing this, bulk mixture samples with known cell type propor-
tions and appropriate distributional characteristics were gener-
ated (see supplementary material for details). MIXTURE is the

method that provides the most accurate number of present cell-
types, reaching at most two more cell types than expected in 75%
of the cases for both molecular signatures (Figure 1D and E). The
ABBAS and ABIS methods provide more than the expected cell
types in 100% of the cases, while CIBERSORT either over or under-
estimates the expected amount of cell types. The quanTIseq
performs better than ABAS, ABIS and CIBERSORT, but worse
than MIXTURE for the LM22 signature, and surprisingly provides
no cell type identification for most of the cases when using
simulated samples from its own signature TIL10 while MIXTURE
performs with higher precision (Figure 1D and E).

We then compared the proportion estimates of the detected
cell types against the simulated ones using Bland–Altman and
correlation plots [25]. MIXTURE shows higher precision in pre-
dicting simulated proportion values of the mixture sample (Sup-
plementary Table 2, Figure 2A and B). We found that ABBAS, ABIS
and CIBERSORT tend to underestimate high-proportional values
(prediction dependent bias) probably due to the overestimation
of cell types, as seen in Figure 1D and E. When using the LM22
molecular signature, ABBAS and quanTIseq provided the highest
false-positive predicted proportions, amount of β̂j > 0 when the
βj = 0 is expected by simulation and evidenced by vertical dots
at βj = 0 and the highest false-negative predicted proportions
i.e. β̂j = 0 when the simulated was βj > 0 and evidenced as
lying dots onto the X-axis in correlation plots. The quanTIseq
method with the TIL10 signature shows bias towards both pre-
diction extremes β̂j = 1 given a βj < 1 and β̂j = 0 given
a βj > 0 (i.e. false-negative) while CIBERSORT and MIXTURE
tend to provide false-positives for both molecular signatures and
false-negatives only for TIL10. However, MIXTURE estimations
were much more robust than CIBERSORT estimations to noise
inputs regardless of the used signature, with less bias and less
sensitivity to prediction dependent bias and fewer false-positive
and negative predictions. This shows that quanTIseq may miss-
assign cell types, whereas ABIS and CIBERSORT may be affected
by collinearity and floating-point noise (Figure 2A and B).

MIXTURE accurately estimates cell population
proportions on real benchmark datasets

After proving that our method is robust to collinearity issues
and floating-point errors on simulated data, we tested its per-
formance on flow cytometry derived cell-type contents on real
follicular lymphoma (FL) and peripheral blood mononuclear cells
(PBMCs) benchmark data [17], following the same procedure
as Newman et al. [17]. In the FL dataset, only 3 cell types (B
cells, CD8 and CD4 T cells) among 12 cell types were present,
whereas 9 cell types (naïve and memory B cells, CD8 T cells,
naïve, memory resting and memory activated CD4 T, γ δ-T cells,
activated NK cells and Monocytes) out of 22 were present in the

http://timer.cistrome.org/
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
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Figure 1. Development and benchmarking of MIXTURE, a new deconvolution algorithm to estimate the immune cell infiltrate from transcriptomic data. (A) The

MIXTURE workflow and data output overview with LM22 and TIL10 signatures. MIXTURE estimates the ITME of human samples from transcriptomic data. (B) Heatmaps

showing auto correlation of ITME cell types in LM22 and TIL10 signature matrices. (C) ABBAS, ABIS, quanTIseq, CIBERSORT and MIXTURE self-check test. The estimated

coefficient β̂ > 0 are presented in each rectangle for both LM22 and TIL10 signature matrices. The coefficients represent the estimated proportion for each cell type

when its pure signature was used to feed the algorithm. (D) Distribution of the estimated NCTs for the LM22 signature. (E) Distribution of the estimated NCTs for the

TIL10 signature. In both graphs, the X-axis represents the true number of coefficients fed into the algorithm and the Y-axis the estimated coefficients calculated by

each method. LM22 signature matrix: BN = naïve B cells, BM = memory B cells, PC = Plasma cells, CD8 = CD8 T cells, CD4N = naïve CD4 T cells, CD4Mr = resting memory

CD4 T cells, CD4Ma = activated memory CD4 T cells, FH = follicular helper T cells, Tr = regulatory T cells, TGD = gamma delta T cells (γ δ T cells), NKr = resting Natural killer

cells, NKa = activated Natural killer cells, M = Monocytes, M0 = M0 Macrophages, M1 = M1 Macrophages, M2 = M2 Macrophages, Dr = resting Dendritic cells, Da = activated

Dendritic cells, Mr = resting Mast cells, Ma = activated Mast cells, E = Eosinophils and N = Neutrophils. TIL10 signature matrix: B = B cells, CD4 = CD4 T cells, CD8 = CD8 T

cells, D = Dendritic cells, M1 = M1 Macrophages, M2 = M2 Macrophages, Mo = Monocytes, N = Neutrophils, NK = Natural killer cells, Tr = regulatory T cells.
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Figure 2. MIXTURE performance on cell type proportion estimation. (A-B) Bland–Altman and correlation plots for Scenario 2 using ABBAS, ABIS, quanTIseq, CIBERSORT

and MIXTURE. The upper panels represent the differences between estimated against true simulated values for LM22 and TIL10 signatures, respectively. Horizontal

lines indicate the mean ± standard deviation of errors and the loess smooth regression line represents prediction dependent bias. The lower panels show the correlation

plots between estimated coefficients and true simulated proportion values. The red line represents the expected identity line, and the blue line is the linear regression

line representing prediction depended bias. (C-D) Bland–Altman and correlation plots for Scenario 3 comparing estimated coefficients against true flow cytometry-

derived immune content for FL (upper panels) and PBMCs (lower panels) datasets using LM22 and TIL10 signature, respectively by following the validation process from

Newman et al. Bland–Altman plots show the difference between estimated coefficients and true coefficients (obtained by flow cytometry). The horizontal continuous

and dashed lines represent the overall mean and standard deviation of errors, and the blue continuous line represents the loess smooth regression line to show

prediction dependent bias. In correlation plots, the red straight line represents the identity and the blue line represents the regression line between true and estimated

proportions. (E-H) For Scenario 4, deconvolution analysis of 1018 pure tumor cell lines from 55 different cancer types obtained from the Cancer Cell Line Encyclopedia

(CCLE) was performed with ABBAS, ABIS, CIBERSORT, quanTIseq and MIXTURE methods. In figures E and F, the distribution of the number of total immune cell types

estimated by each evaluated method is shown, while figures G and H show the distribution of total un-normalized immune content using LM22 or TIL10 signatures,

respectively.
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PBMCs dataset. These cell types were mapped to the LM22 and
TIL10 cell types (Supplementary material Tables 3 and 4). Similar
results, as obtained with simulated data, were obtained by using
such datasets for LM22 (Figure 2C) and TIL10 (Figure 2D), where
all methods provided comparable results between them on both
signatures. The MIXTURE algorithm presented the lesser error
standard deviation for FL data on both signatures, and equal or
lesser than CIBERSORT on PBMCs data. In contrast, the ABBAS
method presented the lesser standard deviation for PBMCs data
but a significant bias-dependent error (Supplementary Table 5
and Figure 2C and D). In all cases, the error trend bias (i.e. smooth
lines closer to the origin line in the Bland–Altman plots and
regression line closer to the identity line in the correlation plots)
was the smallest for MIXTURE. Considering the present cell
types, those with available proportion values (i.e. coefficients
βj > 0) as the true positive ones and those cell types not present
in the sample as the true negative ones, we evaluated cell type
detection capabilities and prediction error distribution of each
deconvolution method and molecular signature (Supplementary
Table 6). In all the analyses, MIXTURE presented the smallest
error rate and the highest F1 score, except for TIL10 and PBMCs
data where the ABIS method provided the best performance
scores, and MIXTURE resulted superior than CIBERSORT in error
rate and similar for F1 score. However, MIXTURE presented better
trend bias behavior than the ABIS method. On the other hand,
when evaluating the distribution of the errors (Supplementary
Figure 1) for null and true coefficients (i.e. zero and true cell
type proportions), we found that for null coefficients, the third
quartile (3Q) of the errors values of quanTIseq for LM22 (TIL10)
was 0.0 (0.0) for both benchmark data, followed by MIXTURE
with 0.01 (0.0) and 0.0 (0.08) for FL and PBMCs data, respectively.
The error distribution associated with true cell type proportions
present in the sample (βj > 0) was much more symmetric for
MIXTURE than for all the other methods, yielding the smallest
interquartile range for both molecular signatures in FL data
(Supplementary Table 7). Although both CIBERSORT and MIX-
TURE were very robust to the signature matrix as well as to
the target dataset, MIXTURE provided accurate estimations with
lesser error bias and a smaller standard deviation compared to
CIBERSORT. In those cases where the error bias was lesser for
ABBAS, the error trend bias was worse for this method compared
to MIXTURE (Figure 2C and D). Moreover, MIXTURE presented
better performance when using the LM22 molecular signature.
These results confirm MIXTURE superior performance on real
benchmark datasets.

MIXTURE provides consistent and higher robustness on
false discovery for LM22 and TIL10 signatures

Since robust methods should not provide any immune cell type
estimation when evaluating pure cell type samples CIBERSORT,
quanTIseq and MIXTURE methods were challenged to estimate
the number of immune cell types present in the 1018 pure
tumor cell lines from the genomics of drug sensitivity in can-
cer database considered as negative controls as they are free
from immune cell types i.e. all βj = β̂j = 0, ∀j = 1..k. (Sce-
nario 4). In this test, MIXTURE provides the lesser amount of
falsely detected immune cell types for both signatures (LM22
and TIL10), estimating a total NCTs ≤4 and NCTs ≤3 in 75% for
LM22 and TIL10, respectively (Figure 2E and F). However, CIBER-
SORT provides NCTs ≥ 9 and NCTs ≥ 3 in 75% of the LM22
and TIL10 cell lines (Figure 2E and F). The quanTIseq method
provides NCTs > 0 for both signatures, reaching median values
of 11 and 8 cell lines for LM22 and TIL signatures, respectively.

Despite this, the absolute estimated coefficient values (unnor-
malized β̂) are lower for LM22 signature similar to MIXTURE,
whereas for TIL10 the values are higher than those estimated by
MIXTURE (Figure 2G and H). In contrast, MIXTURE provides the
lowest NCTs as well as the lowest absolute estimated coeffi-
cient values (paired Wilcoxon test, P < 0.01) regardless of the
molecular signature, whereas CIBERSORT is the one providing
higher levels of absolute estimated coefficient for both evaluated
molecular signatures (Figure 2G and H). Additionally, the distri-
bution of the absolute values (non-normalized coefficients) for
each cell type present on the molecular signatures predicted by
each model, showed that ABIS provided negative and positive
coefficients, whereas MIXTURE and quanTIseq provided the low-
est values for LM22 and MIXTURE provided the lowest values
for TIL10 (Supplementary Figure 2). These results confirm the
superior performance of the MIXTURE-LM22 pair.

Gene set based-unsupervised methods also show high
false discovery rates on pure cell lines

Although the MIXTURE algorithm is not fully comparable against
gene set based cell type estimation methods, we tested the later
ones on pure cell lines to evaluate score-based methods like
xCell [9], ImSig [11] and MCP counter [10] where, for instance,
from the 34 distinct cell types (Lymphoid and Myeloid cell types)
from xCell, using its web interface, it identified between 3 and
21 different cell types present in the cell lines samples. From
the 7 immune cell types present in the ImSig method, all except
the NK cells were detected in pure cell lines and similar results
were achieved by the MCP counter with scores >0 for all the
cell lines present in the model (Supplementary Figure 3). These
results suggest that the gene set score-based immune content
predictors presented high false-positive discovery rates, high-
lighting the relevance of the precision obtained by deconvolution
methods to assess the immune infiltrate composition robustly.

MIXTURE analysis shows the predictive value of
tumor-associated macrophages and CD8 T cells on
TCGA breast cancer data

Tumor-associated macrophages (TAMs) are abundant immune
cells in the tumor microenvironment capable of orchestrat-
ing inflammatory responses during breast cancer progression
promoting tumor angiogenesis, matrix remodeling, invasion,
immunosuppression, metastasis and chemoresistance [27,28].
Several clinical studies have shown the association between
the high infiltrate of TAMs in the tumor microenvironment
with poor prognosis in breast and other cancers [29] and TAMs
modulating therapies [30] are currently evaluated in clinical
studies which advocates for the efficient identification of the
ITME composition.

We explored the ITME composition on confidently assigned
PAM50 subtypes [31] in TCGA breast cancer primary tumors
(Scenario 5). In this dataset, 1091 BRCA samples were classi-
fied as 18.5% Basal-like, 11% Her2-Enriched, 11.8% Luminal B,
24% Luminal A, 25.6% Not Assigned and 9% Normal-Like. Not
assigned and Normal-like samples were left out, resulting in a
total of 703 subjects for analysis. We used CIBERSORT, quanTIseq
and MIXTURE hereafters because MIXTURE showed superior
performance than ABBAS and ABIS, and because LM22 and TIL10
were built and validated for CIBERSORT and quanTIseq, respec-
tively. The LM22 cell types were mapped to the 10 cell types of
TIL10 for comparison (see Supplementary Table 3). Our analysis
shows that the quanTIseq method did not provide comparable

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
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estimation profiles between LM22 and TIL10 while CIBERSORT
and MIXTURE were able to identify the different immune cell
types and an increased M2/M1 ratio in BRCA tumor biopsies for
both signatures (Figure 3A). The correlation values for quanTIseq
estimations show that only CD8 T cells and M1 macrophages
resulted in higher than 0.5 between their proportion profiles on
both molecular signatures. On the other hand, the B-cell pro-
portion profiles correlated higher than 0.5 between signatures
for CIBERSORT, whereas Natural Killer cells NK, CD8 T cells,
M2 macrophages and neutrophils showed correlations higher
than 0.5 by MIXTURE, suggesting their superior performance for
both cell type signatures (Figure 3B). Since our results show the
appropriateness of MIXTURE with the LM22 signature to explore
the ITME, we proceeded to use the MIXTURE-LM22 pair hereafter
to study the immune cell type proportion profiles and their asso-
ciation with survival according to the confident PAM50 intrin-
sic subtype assignation and by the Estrogen Receptor status
(ER+/−). We found that high levels of M1 macrophages were pos-
itively associated with good outcome irrespective of the PAM50
subtype and ER status as well as CD4 activated memory T cells
(Figure 3C). In contrast, high levels of M2 and M0 macrophages
were associated with poor patient outcome in agreement with
previously reported data [29,32] obtained through more expen-
sive and labor-intensive technologies like mechanically dissoci-
ated gentleMACS system and flow cytometry. Also, high levels
of γ δ-T cells were found to be associated with a good outcome.
However, controversial results were published for such cell types
in different tumor types [33]. This is also the case for Tregs and
CD8 T cells that were here associated with good outcomes for
the Her2 subtype as reported in [34] by immunohistochemistry
methods although its prognostic significance remains contro-
versial for breast cancer [35]. Our results suggest that MIXTURE
with the LM22 molecular signature provides an improved ITME
estimation from bulk gene expression profiles according to what
was reported by flow cytometry and IHC methods.

MIXTURE analysis reveals the impact of known
biomarkers on the immune infiltrate in lung cancer
biopsies

Although antibodies targeting CTLA-4 and PD-1 co-inhibitory
receptors have provided unprecedented opportunities to treat
cancer patients [1], response to therapy is not predictable.
Identifying predictive markers of therapeutic response is
paramount to this treatment modality. Currently, genomic
features like mutations in oncogenic drivers (EGFR and KRAS)
and in tumor suppressor genes (TP53 and STK11), as well as
TMB, are associated with different ITMEs in non-small cell lung
cancer (NSCLC) patients evaluated by immunohistochemistry
[36] or by whole genome/exome techniques [37]. Moreover,
the TMB and PD-L1 expression are currently considered as
prognostic biomarkers for ICB therapy for NSCLC [38]. Since
strong adaptive immune response and a pronounced immune
evasion phenotype is observed in lung cancer associated with
these biomarkers, they were explored by applying MIXTURE
to the TCGA-LUAD cohort. We found that tumor biopsies with
similar immune infiltrate cluster together according to the
presence of TP53 mutations, EGFR mutations, TMB and PD-
L1 expression (Figure 4A). We also found that the presence of
any mutation in EGFR drives a lower infiltrate of CD8 T cells
and a higher infiltrate of monocytes and dendritic cells (DCs)
compared to EGFR-wt biopsies (Supplementary Figure 4A). We
found that Del19 and L858R-EGFR mutated tumors present
lower infiltrate of CD8 T cells, M1 macrophages and activated

memory CD4 T cells but higher infiltrates of monocytes, resting
memory CD4 T cells compared to EGFR-wt biopsies (Figure 4B).
Opposite to the effect of EGFR mutations in the composition of
the ITME, the presence of any mutation in TP53 induces a higher
infiltrate in CD8 T cells, M1 and M0 macrophages and a lower
infiltrate of DCs compared to TP53-wt biopsies (Supplementary
Figure 4B). Interestingly, MIXTURE analysis showed that the co-
occurrence of TP53 mutations and EGFR mutations revert the
inflamed immune infiltrate induced by TP53, confirming the
immunosuppressive effect of EGFR mutations in lung cancer.
Specifically, TP53-EGFR mutant tumors present a lower infiltrate
of CD8 T cells and M1 macrophages compared to TP53 mutant
tumors (Figure 4C and D). EGFR-mutant tumors also show an
increased infiltrate in monocytes compared to wild-type or
TP53 and STK11 mutant tumors (Figure 4E). The latter, a known
tumor suppressor, does not seem to induce an inflamed immune
infiltrate, as shown for TP53 by MIXTURE. Our analysis also
indicates that CD8 T cells and M1 macrophages infiltrate
correlate with PD-L1 mRNA levels on the TCGA-LUAD cohort
(Figure 4F). In contrast, a lower infiltrate of activated DCs was
found in high versus low PD-L1 expressing tumors. In addition,
lower infiltrate of activated and resting DCs accompanied by a
higher infiltrate of M0 macrophages was observed in high TMB
(known biomarker for anti-PD-1 blockade therapy response)
compared to low TMB tumors (Supplementary Figure 4C). We
also found that tumors with high TMB display an immune
infiltrate enriched in CD8 T cells and M1 macrophages with
decreased infiltration of monocytes (Figure 4G).

MIXTURE estimates an immunosuppressive tumor
microenvironment in high intratumor heterogeneity
melanoma

Cutaneous melanoma is the most highly mutated malignancy
and has the highest objective response rates to checkpoint
blockade [39]. The leading hypothesis in immunotherapy is
that tumors with high TMB are more immunogenic because
T cells respond efficiently to neoantigens, thus shaping the
efficacy of anti-PD-1 therapy. In a recent study, melanoma
patients from the TCGA-SKCM were grouped based on their
TMB, copy number variation (CNV), and ITH estimated as the
number of clones in the biopsy [40]. Neither TMB nor CNV
load, as a single component, were significantly associated
with patient survival. However, patients with low ITH had
significantly better survival [40]. To elucidate the immune
profiles of ITH-high, ITH-intermediate and ITH-low melanoma
tumors, we stratified the SKCM-TCGA cohort (Scenario 5)
through their ITH level and evaluated them with MIXTURE
(Figure 4H). Our analysis showed a decreased infiltrate of CD8
and activated memory CD4 T cells and increased levels of M2-
macrophages and memory CD4 T cells associated with ITH-
high tumors (Figure 4I), confirming that ITH delineates an
immunosuppressive microenvironment in the tumor, which
predicts low response to ICB. These results were confirmed in
HNSC biopsies from the TCGA (Supplementary Figure 5). The
cytolytic score—the geometric mean expression of two key
cytolytic effectors granzyme A and perforin-1—is an indirect
measure of antitumor immunity upregulated upon CD8 T
cell activation and following successful immunotherapy [41].
Critically, our analysis showed that there is a significantly higher
cytolytic score in ITH-low melanoma biopsies compared to
ITH-high tumors (Figure 4H and Supplementary Figure 6A) and
resulted associated to several immune cell types such as CD8

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
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Figure 3. MIXTURE reveals the importance of the ITME in prognosis of breast cancer patients. (A) The TCGA-BRCA cohort classified by the PBCMC algorithm excluding

the Not assigned and the Normal like subtype (n = 703) was analyzed. The estimated cell type proportions distribution (Y-axis) for each of the 10 cell types (X-axis)

of the LM22 signature (upper panel) and TIL10 signatures (lower panel) are shown. The LM22 cell types where collapsed in order to match the TIL10 10 cell types

(Supplementary Table 2). (B) Correlation matrix where red = 1.0 shows the highest correlation and blue = −1.0 shows the lowest correlation between the estimated cell

type proportions by using LM22 and TIL10 signature matrices. (C) Cox regression analysis shows the association of each cell type proportion estimated by MIXTURE with

patient prognosis for each molecular subtype using the LM22 signature. Green and red circles represent association with good and poor survival, respectively. TIL10

signature matrix: B = B cells, CD4 = CD4 T cells, CD8 = CD8 T cells, D = Dendritic cells, M1 = M1 Macrophages, M2 = M2 Macrophages, Mo = Monocytes, N = Neutrophils,

NK = Natural killer cells and Tr = regulatory T cells.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data


10 Fernández et al.

Figure 4. MIXTURE analysis reveals differential immune infiltrate driven by known biomarkers in cancer. (A) The heatmap represents the immune infiltrate composition

analyzed with MIXTURE using the LM22 signature in the TCGA-LUAD cohort (n = 526). Mutations in EGFR, TP53, STK11, PD-L1 gene expression and TMB are represented.

(B) The bar plots represent the relative cell abundance of CD8 T cells, M1 Macrophages, Monocytes, regulatory T cells, resting and activated memory CD4 T cells on tumor

biopsies EGFR-wt (n = 459), EGFR L858R (n = 22), EGFR-Del19 (n = 22) or with other EGFR mutations (n = 23). (C-E) The bar plots represent the relative cell abundance of CD8

T cells (C), M1 Macrophages (D) and Monocytes (E) on tumor biopsies EGFRmut (n = 25), STK11mut (n = 49), TP53mut (n = 195), TP53-EGFRmut (n = 41), TP53-STK11mut

(n = 22) or wild-type for all these genes (n = 193). (F) The bar plots represent the relative cell abundance of CD8 T cells and M1 Macrophages on tumor biopsies with low

(n = 174), intermediate (n = 173) or high (n = 179) PD-L1 mRNA expression. (G) The bar plots represent the relative cell abundance of CD8 T cells, M1 Macrophages and

monocytes on tumor biopsies with low (n = 171), intermediate (n = 169) or high (n = 177) TMB levels. (H) The heatmap represents the immune infiltrate composition
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T cells, macrophages (M0, M1 and M2) and memory CD4 T cells
(Supplementary Figure 6B).

Colorectal tumors with high microsatellite instability
present a highly reactive immune infiltrate

MSI—the spontaneous loss or gain of nucleotides from repetitive
DNA tracts—is a tumor-agnostic predictive biomarker for
pembrolizumab therapy guidance [42]. MSI has been detected
in about 15% of all colorectal cancers [43], for which anti-
PD-1 blocking antibodies, pembrolizumab and nivolumab,
have shown clinical efficacy [44]. Understanding the immune
infiltrate in high microsatellite instability (MSI-H) is crucial to
elucidate the determinants of response to anti-PD-1 therapy. By
stratifying the TCGA-COAD (Scenario 5) biopsies according to
their MSI status [42], we found that MSI-H tumors presented a
significantly higher cytolytic score compared to microsatellite-
stable tumors (MSS) (Figure 4J and Supplementary Figure 7A
(see supplementary materials for MSI stratification details). We
then applied MIXTURE to elucidate the ITME of MSI-H and MSS
biopsies (Figure 4J) and found a prominent infiltrate composed
of CD8 T cells, M1 macrophages and activated memory CD4
T cells and low frequency of resting memory CD4 T cells as
well as an increased number of resting and activated NK cells
(Figure 4K) on tumors with MSI-H compared to MSS. There was
also a higher proportion of neutrophils and a lower proportion of
mast cells and plasma cells in MSI-H tumors compared to MSS
tumors (Supplementary Figure 7B). This highly reactive immune
infiltrate may explain the response to anti-PD-1 therapy in MSI-
H tumors and highlights the importance of the ITME estimation
as a predictive biomarker to select cancer patients for anti-PD-1
therapy.

MIXTURE reveals novel associations between the
immune infiltrate and response to therapy in
melanoma biopsies

Given the high financial costs and potential toxicities associated
with ICB therapies, there is an urgent need to identify new
and reliable biomarkers to distinguish better cancer patients
likely to respond to immunotherapy where the understand-
ing of the genetic landscapes of immunotherapy-sensitive
and -resistant tumors results essential. Current monoclonal
antibodies directed against CTLA-4 such as ipilimumab, yield
considerable clinical benefit for metastatic melanoma patients.
Additionally, overall mutational load, neoantigen load and
expression of cytolytic markers in the immune microenviron-
ment are significantly associated with clinical benefit [45].
By re-analyzing the transcriptomic data from the Van Allen
tumor biopsies cohort with MIXTURE and dividing the biopsies
into TMB-low and TMB-high, we found that TMB-high tumors
present a higher number of CD8 T cells, M1 macrophages
and follicular helper T cells compared to low TMB biopsies
(Figure 5A). This inflammatory infiltrate has been correlated
with improved response to anti-CTLA-4 immunotherapy [45–47].

Anti-PD-1 therapy is currently the most widely used
immunotherapy in cancer. Approximately 70% of melanoma
patients do not respond to anti-PD-1 treatment. Thus, a deeper
understanding of the factors that correlate with response to
therapy could help to prospectively identify patients likely to
benefit from treatment and could also shed light on rational
combinations of agents to increase response rates. Biopsies
from responders (n = 81) and non-responders (n = 107) patients
before treatment from four studies [48–51] that have annotated
cohorts of baseline biopsies or paired baseline/on-treatment
melanoma samples with anti-PD-1 therapy (Scenario 5). There
was clear evidence of a different immune infiltrate that could
affect treatment efficacy. Indeed, in biopsies from responding
patients, there was a significantly higher infiltration of CD8 T
cells, naïve and memory B cells and resting memory CD4 T cells.
Likewise, there was a lower abundance of γ δ-T cells and M2
macrophages (Figure 5B and C).

We wanted to study the change in the ITME before and
during immunotherapy treatment in patients responding and
non-responding patients [51]. MIXTURE revealed a significant
decrease in M2 macrophages of responders patients whereas
there was a significant increase in γ δ-T cells and activated
memory CD4 T cells (Figure 5D). We had previously analyzed
the same biopsy cohort with CIBERSORT and did not find a
selective infiltrate characterized by M2 macrophages and γ δ-
T cells in paired pretreatment/on-treatment samples [52]. This
shows the improved performance of MIXTURE compared to
CIBERSORT. In addition, when the tumor transcriptome of ‘on-
treatment’ biopsies was analyzed (Figure 5E), the infiltrate of
M2 macrophages resulted lower in responders patients, but a
higher infiltrate of CD8 T cells and naïve B cells was found
(Figure 5F). Also, the total immune infiltrate in tumors according
to their TMB and ITH score and their response to immunother-
apy was analyzed, as in the Liu et al. cohort. The total immune
infiltrate was significantly higher in the group of responding
patients with Low ITH + High TMB (Figure 5G). However, when
we analyzed the ITH and TMB parameters separately, we only
found a statistically significant difference in the total immune
infiltrate when comparing responders versus non-responders
subjects with High TMB (Supplementary Figure 8). These results
confirm the importance of combining biomarkers of response to
ICB to better select patients as it has recently been proposed [53].

MIXTURE analysis also revealed that the proportion of
patients displaying a tumor infiltrate enriched in naïve B
cells was higher in responders to anti-CTLA-4 at baseline
(Figure 5H) and on-treatment with anti-PD-1 (Figure 5I) therapy.
This is in accordance with recent studies that show that the
presence of B cells in human tumors, in compartments called
tertiary lymphoid structures (TLS), is associated with a favorable
response to immunotherapy in melanoma [54].

MIXTURE reveals the modulation of the ITME after
treatment with anti-CTLA-4 therapy

As discussed recently [50], the optimal role of anti-CTLA-4 in
conjunction or sequentially with anti-PD-1 ICB is unclear. Thus,

analyzed with MIXTURE using the LM22 signature in the TCGA- SKCM cohort (n = 401) with transcriptomic data matched to cytolytic score and ITH data from [40].The

cytolytic score and ITH levels are presented. (I) The bar plots represent the relative cell abundance of CD8 T cells, M2 Macrophages, resting and activated memory

CD4 T cells on melanoma biopsies with low (n = 110), intermediate (n = 244) and high (n = 47) ITH score. (J) The heatmap represents the immune infiltrate composition

analyzed with MIXTURE using the LM22 signature in the TCGA-COAD (n = 452) cohort with transcriptomic data matched to MSI status from [42]. The cytolytic score and

MSI status, MSI-H (high) or MSS (stable), are presented. (K) The bar plots represent the relative cell abundance of CD8 T cells, M1 Macrophages, activated and resting

memory CD4 T cells, activated and resting NK cells on MSI-H (n = 89) or MSS (n = 363) COAD biopsies. To compare between groups, a two-sided Mann Whitney–Wilcoxon

test was used. ns = no statistical significance, ∗ = P ≤ 0.05, ∗∗ = P ≤ 0.01, ∗∗∗ = P ≤ 0.001.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa317#supplementary-data
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Figure 5. MIXTURE reveals novel associations of immune infiltrate in melanoma biopsies treated with immunotherapy. (A) The bar plots represent the proportion of

CD8 T cells, M1 Macrophages and Follicular T Helper cells for patients from the Van Allen cohort (n = 40) split by the median into high versus low TMB. (B) The heatmap

represents the immune infiltrate composition analyzed with MIXTURE using the LM22 signature in tumor biopsies from patients before anti-PD- 1 treatment (n = 188)

from four different cohorts: Auslander (n = 9), Hugo (n = 27), Riaz (n = 49) and Liu (n = 107). Patients were grouped as responders (n = 81) and non-responders (n = 107)

according to the iRECIST criteria. Partial Response (PR), Complete Response (CR), Mixed Response (MR) and Stable Disease (SD) were considered as a responder patient

while Progressive Disease (PD) was considered as a non-responder patient. (C) The bar plots represent the proportion of CD8 T cells, M2 Macrophages, resting memory

CD4 T cells, γ δ T cells, naïve and memory B cells in responders and non-responder patients. (D) The paired box plots represent the proportions of M2 Macrophages,

γ δ T cells and activated memory CD4 T cells on paired analysis pre versus on anti-PD-1 treatment of responding patients calculated by MIXTURE (n = 24). (E) The heatmap
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understanding the biology underlying the response to anti-PD-1
therapy in tumors with or without prior anti-CTLA-4 therapy
may help to personalize the rational design of combination
therapies for individual patients. To address this, we analyzed
three RNAseq published datasets [48,50,51] from patients’
biopsies with clinically annotated data, naïve to Ipilimumab
(Ipi-naïve; Figure 6A) or that progressed to Ipilimumab (Ipi-
Progressive; Figure 6B) which were subsequently treated with
anti-PD-1 therapy. We found that both the infiltrate of naïve B
cells and memory B cells was not different between responding
and non-responding patients in the Ipi-naïve group, while it was
increased in responding patients in the Ipi-progressive group
(Figure 6C). Likewise, the infiltrate of CD8 and resting memory
CD4 T cells was significantly increased in responding patients
in the Ipi-Progressive group, but not in the Ipi-naïve group.
In addition, there was a higher infiltrate of γ δ-T cells in non-
responding patients of the Ipi-naïve group. Also, and confirming
our previous observations, the M2 macrophage infiltrate was
differentially lower in responding compared to non-responding
patients in the Ipi-progressive but not in the Ipi-naïve group
(Figure 6C). When we compared the ITME in Ipi-naïve versus
Ipi-progressive patients in the anti-PD-1 responding group, we
found that CD8 T cells, M1 macrophages and plasma cells were
differentially higher in the Ipi-progressive group compared to
the Ipi-naïve group while there was no statistical difference
in the non-responding group (Figure 6D). These results agree
with the previous findings [50,51], where there is evidence
of immune response in the ITME at the time of progression
following Ipilimumab therapy.

Discussion
Monoclonal antibodies against PD-1 and CTLA-4 have shown
robust antitumor activity but limited to a small number of
patients. Understanding the interplay between the tumor and
the immune surrounding cells is crucial to determine resistance
mechanisms. Here we show that the tumor-infiltrating immune
cells can be accurately quantified from RNA sequencing and/or
microarray data applying MIXTURE, overcoming the limitations
of the current state-of-the-art deconvolution methods by using
a noise constraint threshold to prevent floating point errors
jointly with the RFE process, improving the known robustness of
the v-SVR to collinearity. Consequently, it reduces the number
of false cell type detections and estimation bias, providing an
accurate estimation of the cell types composition of the ITME.
After proving MIXTURE’s superior performance against pub-
lished methods using simulated and benchmark flow cytome-
try derived immune cell type content on bulk tissue data and
on pure cancer cell lines-expression profiles, it was applied to
publicly available datasets from the TCGA and from published
cohorts of patients treated with immunotherapy and correlated
the immune infiltrate with known biomarkers of prognosis and
response to treatment.

First, we interrogated the TCGA-BRCA dataset to evaluate
the impact of different immune cell types in the clinical
outcome of BRCA patients on each molecular subtype, revealing
that M2 and M0 macrophages proportions correlated with
poor prognosis regardless of the BRCA molecular subtype
contrasting with M1 macrophages, activated memory CD4 T
cells and γ δ-T cells. Interestingly, only the Her2 molecular
subtype presented a better outcome associated with CD8 T
cells and Tregs. Several M2-macrophage targeting strategies
such as depletion, reprogramming and targeting functional
molecules have been proposed [30]. The potent effector function,
the broad range of activity, and safety profile of γ δ-T cells
make them an ideal cellular therapy to enhance current
immunotherapy strategies and improve targeted therapy
efficacy [55]. In addition, the association between activated
memory CD4 T cells and good prognosis may be related to
the antitumor properties of this population in breast cancer.
Memory T cells have numerous functional properties such as
the ability to respond to lower antigen concentrations, faster
proliferation and the ability to recognize and reject tumor
tissue [56].

Second, PD-L1 expression and genomic features such as
mutations in oncogenic drivers, TMB, and MSI have been
proposed as biomarkers of response to ICB [53]. Our study
confirms that genomic alterations are associated with different
immune profiles. By applying MIXTURE on stratified LUAD
biopsies by PD-L1 mRNA expression or TMB levels, we found
an increased infiltrate of CD8 T cells and M1 macrophages on
high PD-L1 expression as well as high-TMB tumors. High-TMB
tumors also have predicted lower infiltrate of monocytes, as
recently shown [57].

Third, our MIXTURE analysis on SKCM and HNSC biopsies
reveal that high ITH is immunosuppressive as tumors present
high infiltrate of M2 or M0 macrophages and resting memory
CD4 T cells and low infiltrate of CD8 T cells and activated mem-
ory CD4 T cells, among other cell types. These results highlight
that ITH modulates the ITME and supports its role as a potential
biomarker of response to immunotherapy. We also observed that
a high-cytolytic score is associated with an inflamed ITME in
SKCM patients, propounding that it could be considered together
with the other biomarkers to better select patients for ICB treat-
ment. Our study also revealed that both TMB and ITH modulate
the total immune infiltrate of melanoma biopsies as well as
the cell type composition. We found that, when using ITH or
TMB as standalone biomarkers for stratifying patients, there
were no differences in the total immune infiltrate of responder
and non-responder patients to anti-PD-1 therapy. On the other
hand, when patients were stratified combining both biomarkers,
we found a higher immune infiltrate in patients that achieved
clinical benefit only in the subgroup with high-TMB and low-
ITH. These results confirm the importance of combining as
many biomarkers of response to ICB as possible to better select
patients [53].

represents the immune infiltrate composition analyzed with MIXTURE using the LM22 signature in tumor biopsies from patients on-treatment (n = 54), the cytolytic

score and the iRECIST criteria CR/PR (n = 13), SD (n = 18) and PD (n = 23) are presented for each patient. CR/PR and SD were considered as a responder while PD was

considered as a non-responder patient. (F) The bar plots represent the proportions of CD8 T cells, M2 Macrophages and naïve B cells in biopsies on treatment from

patients grouped as responders (n = 31) and non-responders (n = 23) with the same criteria as in B. (G) The bar plots represent the immune infiltrate absolute score

calculated by MIXTURE using the LM22 signature on tumor biopsies from the Liu cohort (n = 120). Patients were grouped as ‘high’ or ‘low’ TMB and ‘high’ or ‘low’

ITH. Both variables were used to define the groups (High_ITH + High_TMB, n = 16; R = 9 / NR = 7; Low_ITH + Low_TMB, n = 17; R = 11 / NR = 6; High_ITH + Low_TMB,

n = 44; R = 18 / NR = 26; Low_ITH + High_TMB, n = 43; R = 26 / NR = 17). (H-I) The stacked bar plots show the proportion of patients with or without naïve B cells infiltrate

calculated by MIXTURE on pre- treatment biopsies from the Van Allen cohort (H; n = 15 R, n = 27 NR) and in tumor biopsies on- treatment from the Riaz et al. cohort (I;
n = 31 R, n = 23 NR). To compare between groups, two-sided Mann Whitney–Wilcoxon test was used. ns = no statistical significance, ∗ = P ≤ 0.05, ∗∗ = P ≤ 0.01, ∗∗∗ = P ≤ 0.001.
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Figure 6. MIXTURE reveals the modulation of the ITME after first-line therapy with anti-CTLA-4 blockade. (A-B) The heatmap represents the immune infiltrate

composition analyzed with MIXTURE using the LM22 signature in tumor biopsies from patients (A) before anti-PD1 treatment naïve to Ipilimumab (n = 102) or (B)

progressive to Ipilimumab (n = 159) from Auslander (n = 9), Riaz (n = 49) and Liu (n = 107) cohorts. Patients are grouped as responders and non-responders according

to the iRECIST criteria where PR, CR, MR and SD where considered as a responder patient while PD was considered as a non-responder patient. (C) The bar plots

represent the proportions of CD8 T cells, M2 Macrophages, resting memory CD4 T cells, γ δ T cells, naïve and memory B cells on biopsies from responders and non-

responders patients Ipi-naïve (upper panel) or Ipi-Prog (lower panel). (D) The bar plot represents the CD8 T cells, M1 Macrophages and Plasma cells on tumor biopsies

from Responding (upper panel) and non-Responding (lower panel) patients; Ipi-Naïve versus Ipi-Prog biopsies are compared. To compare between groups, two-sided

Mann Whitney–Wilcoxon test was used. ns = no statistical significance, ∗ = P ≤ 0.05, ∗∗ = P ≤ 0.01, ∗∗∗ = P ≤ 0.001.
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Fourth, an additional example of improved subject stratifi-
cation by incorporating the MIXTURE immune estimation is the
use of MSI. Our ITME estimation on the TCGA colorectal cancer
cohort confirms that MSI-H tumors exhibit the highest cytolytic
score accompanied by higher proportions of CD8 T cells and M1
macrophages. This supports the notion of predictive potential
of MSI biomarker for anti-PD-1 therapy in colorectal cancer
due to its capacity to generate a more immunogenic tumor
with an inflamed immune infiltrate more likely to respond to
immunotherapy.

Fifth, melanoma biopsies from anti-PD-1 responding patients
showed higher proportions of CD8 T cells, naïve B cells, mem-
ory B cells and memory resting CD4 T cells along with lower
proportions of γ δ-T cells and M2 macrophages, suggesting that
patients whose tumors display a pro-inflammatory microenvi-
ronment have better chances to achieve clinical benefit. These
results reveal the importance of the immune infiltrate compo-
sition in mechanisms underlying response and resistance to
therapy as well as how the tumor microenvironment is mod-
ulated during treatment. For example, vast evidence indicates
that M2-macrophages are key players of the immunosuppres-
sive tumor microenvironment [58] and several M2-macrophage
targeting strategies have been proposed to enhance the effi-
cacy of the immune checkpoint inhibition [30]. We found that
the number of patients showing infiltration of naïve B cells in
the tumor microenvironment is higher in responder patients
compared to non-responders both in anti-PD-1 and anti-CTLA-
4 therapies. This could facilitate the generation of the recently
described TLS associated with improved survival and response
to immunotherapy in melanoma [54]. This finding supports the
novel and relevant role of B cells in the tumor microenviron-
ment as biomarkers of response to immunotherapies as well as
potential therapeutic targets.

Last, our analysis on anti-PD-1 responding patients showed
that the increase in immune infiltrate after Ipilimumab treat-
ment is enriched in CD8 T cells, memory resting CD4 T cells,
naïve and memory B cells and a decrease in M2 macrophages.
These results may explain the clinical benefit achieved in Ipi-
progressive patients and show that the better response rates
depend not only on a higher immune infiltrate but on the nature
and type of immune cells. These changes were not observed in
the Ipi-naïve group. Moreover, when analyzing the differences
between Ipi-naïve and Ipi-Progressive patients separately, the
responders of the Ipi-progressive group showed an increase in
CD8 T cells, M1 macrophages and plasma cells proportions com-
pared to responders of the Ipi-naïve group while there were no
differences between non-responder groups. These results high-
light the impact of first-line treatments on subsequent response
to second- and third-line therapies.

We conclude that MIXTURE performance and accuracy is
highly relevant for the study of tumor biopsies to infer novel
associations of the immune infiltrate with response to therapy
and to propose novel predictive biomarkers and therapeutic
targets. Our study shows that CD8 T cells and M2 macrophages,
which are key cells with opposite roles in tumor biopsies, infil-
trate differently in responders and non-responders to ICB. Accu-
rate immune deconvolution is particularly important in the
clinical setting because tumor genomic alterations used to select
targeted therapies also delineate the ITME, and thus impact
the response to ICB. Finally, immunotherapies provide improved
survival for only a subset of cancer patients and the mechanisms
of intrinsic resistance and acquired resistance remain to be
elucidated, as well as the role of the immune infiltrate in these
clinical scenarios.
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Key Points
• We developed MIXTURE—a noise-constrained recur-

sive feature selection algorithm for the accurate esti-
mation of the immune cell types and proportions
present in a tumor sample outperforming competing
methods.

• MIXTURE outperforms current state-of-the-art
deconvolution methods and also provides increased
robustness to cell type identification and proportion
estimation, and is available to the wider scientific
community.

• We showed the efficacy of applying MIXTURE on
real data to describe the association between known
biomarkers and immune infiltrate differences.

• By applying MIXTURE to patient biopsies, we iden-
tified novel associations between immune infil-
trate and response to anti-PD-1 and anti-CTLA-4
immunotherapies.
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