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Abstract

Heat is known to cause illness and death not only at extreme temperatures, but also at moderate 

levels. Although substantial research has shown how summer time temperature distributions have 

changed over recent decades in the United States, less is known about how the heat index—a 

potentially more health-applicable metric of heat—has similarly evolved over this period. 

Moreover, the extent to which these distributional changes have overlapped with indicators of 

social vulnerability has not been established, despite the applicability of co-varying climatic and 

sociodemographic characteristics to heat-related health adaptations. Presented here is an analysis 

of trends in the median, 95th percentile, and ‘warm-tail spread’ (i.e., intra-seasonal range between 

the upper extreme and median) of warm-season (May-September) maximum heat index between 

1979and 2018 across the conterminous US. Using40 years of data from the North American 

Regional Reanalysis dataset, it is shown that most of the US has experienced statistically 

significant positive trends in summertime heat, and that both the magnitude of trends and the 

shape of the frequency distributions of these measures vary regionally. Comparisons with data 

from the Social Vulnerability Index show that the most socially vulnerable counties appear to be 

warming faster than the least vulnerable, but that opposite patterns hold for trends in warm-tail 

spread. These findings may be applicable to further studies on climate change, heat adaptations, 

and environmental justice in the US.
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1. Introduction

The relationship between moderate-to-extreme heat and risk of mortality is well established 

[1], as is the observation that global mean surface temperatures have increased significantly 

over the last century [2]. However, there is substantial spatial heterogeneity not only in these 

warming trends, but also in the underlying population characteristics that affect 

susceptibility to heat health effects [3]. In the context of adapting to the epidemiologic 

impacts of climate change, there is consequently interest in identifying the locations that are 

currently experiencing the greatest rates of moderate-to-extreme summertime warming and 

to determine the extent to which such warming intersects with population-scale indicators of 

social vulnerability.

Since heat-related mortality risks increase starting at relatively modest temperatures[4], the 

overall health burden on the ‘warm tail’ of a summertime temperature distribution is 

characterized both by high-frequency, low-impact days at moderate levels and by low-

frequency, high-impact days at the upper extreme. However, previous assessments of health-

relevant climatic trends tend to focus on the latter and quantify changes in terms of days 

exceeding an a priori threshold, such as record-breaking high ambient temperatures[5, 6], or 

changes to the frequency of ‘heat-wave days’ [7–9] or other extreme climatic indices[10]. 

Since these analyses exclude a large portion of health-applicable heat, trends in the changes 

to the full distribution of moderate-to-extreme values are preferable for understanding how 

populations have experienced climate change and its health effects.

The role of variability changes emerges as an important additional consideration, not only 

because within-season temperature variability itself has been associated with increased 

mortality risks [11, 12], but also because changes to the mean and extreme values of a 

distribution are interrelated and affected by alterations to the shape of the distribution [13]. 

While there is debate as to whether global temperatures have experienced increased 

variability over the last century [14–16], there appears to be regional heterogeneity [17]. In 

the US, Rhines et al [18] found substantial spatial differences by season in the direction and 

magnitude of the spread of upper and lower extremes of ambient temperatures. Gross et al 
[19] expanded this globally and reached similar conclusions about the seasonally and 

regionally dependent nature on changes to temperature extremes relative to changes in the 

mean. Looking specifically at summertime temperatures, McKinnon et al [20] also found 

substantial regional heterogeneity in ambient temperature trends and suggested that 

distributional changes in most places were largely explained by shifts, though changes to 

variability also played a role in some places.

It remains unclear, however, whether these distributional changes also apply to the heat 
index, a measure of apparent temperature that approximates human thermal comfort by 

incorporating both ambient temperature and relative humidity [21], and which is widely 

used both in epidemiologic research (e.g., Kim et al [22], Bell et al [23], Michelozzi et al 
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[24], and Wellenius et al [25]) and in operational contexts for the issuance of heat warnings 

[26]. Although Grotjahn and Huynh [27] found increases in summertime maximum heat 

index for much of the US in recent decades, they did not consider distributional changes, 

which may differ from those of temperature yet are of interest for similar reasons.

The extent to which any of these indicators of climatic change could affect heat mortality, 

however, depends on the extent to which the changes overlap with sociodemographic factors 

that alter the heat-mortality relationship, such as age and pre-existing medical conditions [3]. 

These factors, which affect the ability to prepare for, respond to, and recover from hazards 

that can cause harm, are reflective of social vulnerability [28, 29]. Despite the importance of 

this intersection to climate change adaptations, the literature appears to lack an assessment 

of the co-occurrence of heat index warming trends and vulnerability.

To address the knowledge gaps identified above, the analysis presented here will answer two 

questions: (1) To what extent is there regional variability in the distributional changes of 

warm-season (May-September, MJJAS) maximum heat index (HImax) in the contiguous 

United States (CONUS) and (2) Are the most socially vulnerable counties experiencing 

distributional changes in HImax that are different from the least-vulnerable counties? We 

hypothesized that CONUS observed significant increases in the median and upper extremes 

of HImax with strong regional heterogeneity both in the magnitude of warming and in the 

sign of variability changes. We further hypothesized that these spatially differential 

distributions resulted in significant differences in heat trends between the most- and least-

vulnerable counties.

We tested these hypotheses by calculating recent trends (1979–2018) in the distribution of 

warm-season HImax throughout CONUS and assessing how these changes intersect with 

county-level indicators of social vulnerability. We calculated rates of change in the annual 

warm-season median and 95th percentile of HImax to respectively characterize changes in 

the central tendency and upper extreme of heat, and we assessed trends in the annual 

seasonal difference between the 95th percentile and median values of HImax to identify 

systematic changes in intra-seasonal warm-tail variability. We then compared these rates by 

National Climate Assessment (NCA) regions to identify regional heterogeneity in trends. 

Finally, we pooled the climatic changes at the county scale by levels of the Social 

Vulnerability Index [30] and compared by top and bottom deciles to identify differences.

2. Methods

2.1. Datasets

2.1.1. Climate data—The North American Regional Reanalysis (NARR) product [31, 

32] was used in the assessment of observed historical trends of heat index. The NARR data 

are available for all of North America at three-hourly increments from 1 January 1979 

through present, with a horizontal grid spacing of approximately 32 kilometers. The data 

were subset to the months of May-September (‘warm season’) for all available years (1979–

2018) and to the area of interest, CONUS (figure 1).

Spangler and Wellenius Page 3

Environ Res Commun. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1.2. Social vulnerability data—We used the Social Vulnerability Index (SVI) from 

the Centers for Disease Control and Prevention [30] to measure relative differences in 

sociodemographic indicators of vulnerability. This dataset provides percentile rankings of 

census tracts and counties across the United States based on population proportions of 

characteristics believed to be correlated with negative health outcomes from exposure to 

hazards and catastrophes [34]. An SVI of 0 reflects the location with the lowest relative 

vulnerability in the US and a value of 100 reflects the highest relative vulnerability. The 

overall SVI contains all of the variables that can be further divided into four themes: Theme 

1 is socioeconomic status, including variables on poverty, unemployment, per-capita income, 

and lack of higher education; Theme 2 is on household characteristics, including age 

(elderly or children), disability, and single parenthood; Theme 3 is on race, ethnicity, and 

language, including variables on the population proportion of racial or ethnic minorities and 

proportion with limited English-language proficiency; and Theme 4 is on housing and 

transportation, including variables on multi-unit structures, mobile homes, overcrowding, 

lack of access to personal vehicle, and group quarters. See Flanagan et al [34] for a full 

description. We used the county-level SVI values to align more closely with the 32-km 

resolution of the climate data and the 2016 product to most closely reflect present-day social 

vulnerability.

2.2. Calculating heat metrics

We calculated daily maximum heat index (HImax) from the eight observations available for 

each day between 1 May and 30 September (MJJAS) for 1979–2018. For each of the eight 

three-hourly observations, we calculated HImax using the weathermetrics R package, which 

applies the algorithm employed by the US National Weather Service, described elsewhere 

[21]. Two-meter (i.e., near surface) ambient air temperature (T) and relative humidity (RH) 

served as inputs to these calculations. The seasonal (MJJAS) median and 95th percentile 

values (approximately the seventh-hottest day of the warm season) of HImax were derived 

from these daily measures for each pixel in each of the 40 years in the dataset.

To quantify the rate of change in recent historical observations of heat, we fit ordinary least-

squares (OLS) regression models for each individual pixel on the seasonal (MJJAS) median 

(50th percentile) HImax values of each year, and then repeated the process separately for the 

seasonal 95th percentiles. As a way to measure trends in the intra-seasonal warm-tail 

variability, additional regressions were fit on annual trends in the difference between the 

95th and 50th percentiles within each year (HI95-med); a positive trend would indicate greater 

variability (i.e., more spread between an upper extreme and median), a negative trend would 

reflect decreasing variability (i.e., less spread between the median and extreme), and a lack 

of trend would indicate either the absence of climatic change or commensurate changes in 

the median and extreme (i.e., a shift of the distribution with no change in shape). The OLS 

models resulted in regression coefficients (i.e., slope) and standard errors for each pixel 

across CONUS that indicated the average change over time in the seasonal median, 95th 

percentile, and intra-annual difference between them (95th—median) for maximum heat 

index. For ease of interpretation, trends are reported in units of °C per decade.
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Since slopes of best-fit lines are particularly influenced by values at the beginning and end 

of the time series, we varied the start and end years by five years each, for a total of 25 

permutations of time periods. The shortest period was 32 years (1983–2014) and the longest 

was 40 years (1979–2018). We then used standard meta-analytic methods [35] to pool the 

results from the 25 separate regression models in each pixel using the meta for R package 

[36]. Pixels with meta-analytic p-values < 0.05 were considered statistically significant. 

Hereafter, ‘1979–2018’ refers to the meta-analysis of the 25 models spanning this period.

2.3. Assessing county-level differences

We estimated county-level trends in the warm-season heat metrics by assigning the 

regression coefficient from the pixel located at the 2010 population centroid for each county, 

as provided by the US Census Bureau [37]. We assigned county-level trends in this way 

primarily to maximize the applicability to human exposures: while most counties are 

relatively small compared to the resolution of the reanalysis data, many counties in the 

western US are large and sparsely populated; identifying the trends occurring at the location 

of the population centroid may therefore provide a better estimate of the potential changes 

actually experienced by human populations. To determine whether the most-vulnerable 

counties have experienced different rates of change in the heat metrics compared to the least-

vulnerable counties, we performed two-tailed Welch’s t-tests [38] on the regression 

coefficients for each heat variable in the top- and bottom-decile counties (SVI ≥ 90th and 

SVI ≤ 10th percentile nationally) (figure 2). The Welch’s t-test determines whether the 

difference in means between two groups is statistically significant and, unlike the traditional 

Student’s t-test, does not assume equal variance or sample sizes between the comparison 

groups [39]. Finally, for the purpose of creating a preliminary visualization of the 

intersection between SVI and trends in HImax, we used min-max standardization to 

transform each value onto a consistent scale from 0–1 and then computed averages. Values 

closer to one would indicate counties with both relatively high social vulnerability and rates 

of warming and vice versa for values closer to zero.

3. Results

3.1. Warm-season heat trends

Virtually all of the conterminous US has observed statistically significant warming trends in 

both the median and 95th percentiles of annual warm-season HImax between 1979–2018 

(figure 3). Although the sign of the trend is mostly homogenous throughout CONUS, there 

is substantial spatial variability in the degree of warming between regions (figure 3). The 

northern Great Plains show the least amount of warming, with either no statistically 

significant trend or a very small positive or negative trend. By contrast, parts of northern 

Minnesota and the south-central US (Louisiana, Mississippi, and Arkansas) around the 

Mississippi Alluvial Plain (see again: figure 1) have amongst the fastest rates of change in 

both of the heat metrics assessed. The remaining parts of CONUS have somewhat differing 

magnitudes in the trends, depending on the variable assessed; for example, the northeastern 

US has relatively faster warming in the 95th percentile of HImax than the median and vice 

versa for the coastal southeastern US.
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Differences in the magnitude of warming trends in the median and extreme values suggest 

that climatological changes do not always manifest as simple rightward shifts in the 

distribution of maximum warm-season heat index at more-localized scales. Although many 

parts of CONUS have observed commensurate changes in the median and 95th percentile 

HImax, other areas show either convergent or divergent trends (figure 4(g)): places with no 

trend in the difference between annual 95th percentile and median HImax (indicated by 

cross-hatching) experienced no statistically significant change in the spread of warm-tail 

MJJAS HImax, while places with positive values (green) saw increasing spread, and places 

with negative values (purple) saw decreasing spread. The density plots in figure 4(a–f) 

compare the frequency of all daily MJJAS HImax values for the first decade of the period 

(1979–1988, blue curves) to the final decade (2009–2018, red curves) at select pixels as 

clarifying illustrations; places with no significant trend in HI95-med have approximately 

equal widths between the median (solid vertical line) and 95th percentile (dashed vertical 

line) for the earlier and later decades (blue and red, respectively), places with significant 

positive trends in the HI95-med have increasing widths, and places with significant decreasing 

trends have decreasing widths.

There appears to be an east-west component in the trends of HI95-med: most of the eastern 

US has increasing trends (tendency toward greater spread of HImax), while there is more 

heterogeneity of values west of the Mississippi River. A notable exception is the coastal 

Southeast, which has a fairly strong negative trend. Although there are some localized 

instances of statistically significant decreases in either median or 95th percentile of HImax 

(see again figure 3), the vast majority of CONUS experienced increases in one or both of 

these metrics. Therefore, the trends in HI95-med suggest that, in general, the Southern Great 

Plains, coastal Southeast, and parts of the west coast have experienced faster increases in the 

median HImax than in 95th percentiles, while the Northeast, Midwest, and Mississippi 

Alluvial Plain have experienced faster increases in 95th percentiles than medians of HImax 

(figure 5).

3.2. Heat trends by social vulnerability index

Comparisons of climatic heat trends between the top and bottom deciles of SVI by county 

show that, on average, the most-vulnerable counties (those with SVI values in the top 10% 

nationally) are warming statistically significantly faster than the least-vulnerable counties 

(those with SVI values in the bottom 10%) for both median and 95th percentile of HImax, 

with the former difference approximately triple the latter (figure 6(a)). The t-tests show that 

the differences in means for the trends between the top and bottom deciles of county SVI are 

0.18°C/decade (95% CI [0.15, 0.20]) for median HImax and 0.06°C/decade (95% CI [0.02, 

0.10]) for 95th percentile HImax. However, the most-vulnerable counties, on average, have 

experienced no change in warm-tail spread (0.004°C/decade) while the least-vulnerable 

counties have experienced an increase (0.126 °C/decade); the t-test difference in these means 

is −0.12 °C/decade (95% CI [−0.15, −0.10]).

The relationships hold when considering differences in SVI between the most- and least-

warming counties (figure 6(b)): the difference in mean SVI values between the most- and 

least-warming counties is 34.8 percentage points (95% CI [30.6, 39.0]) for median HImax 
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and 18.0 percentage points (95% CI [13.5, 22.5]) for 95th percentile HImax. By contrast, the 

mean SVI in counties with the greatest increase in warm-tail spread is 39.7 percentage 

points, compared to 61.5 percentage points in the least-variable decile; the t-test difference 

in these means is −21.8 percentage points (95% CI [−25.8, −17.7]).

Substantial spatial heterogeneity in the intersection of SVI and HImax trends can be seen 

both for changes in the median and 95th percentile (figure 7(a)) and in the warm-tail spread, 

albeit to a lesser degree (figure 7(b)). In both cases, the Southeast appears to have the 

greatest coincidence of SVI and HImax trends, and the Mississippi Alluvial Plain region 

appears to have particularly high values across all metrics.

4. Discussion

In this paper, we presented an analysis of recent trends in warm-season (MJJAS) daily 

maximum heat index by median, 95th percentile, and intra-annual warm-tail spread (the 

within-season difference between the 95th and 50th percentiles) for all of the contiguous 

United States between 1979–2018. While these data showed that virtually all of CONUS has 

experienced statistically significant HImax warming trends over this period, regional 

heterogeneity in magnitudes was apparent: on average, rates of change in median HImax 

were highest in the Southeast and lowest in the Northern Great Plains, while trends in 95th 

percentile HImax were highest in the Midwest and lowest in the Northwest. Strong spatial 

patterns were also observed in the within-season warm-tail variability: The Northeast and 

Midwest had particularly high increases in spread, while the Southern Great Plains, coastal 

Southeast, and parts of the west coast had decreases. Finally, on average, the most-

vulnerable counties were shown to be warming faster than the least-vulnerable counties 

(particularly for median HImax), but the latter has experienced an increase in warm-tail 

spread, while the former has not. These findings are novel both for showing distributional 

changes in the heat index (rather than ambient temperature) and for showing a potential 

relationship between recent summertime warming trends and indicators of social 

vulnerability. In the discussion that follows, we contextualize the trend findings in the 

broader literature on moderate-to-extreme heat changes and explains the significance of 

these trends—in tandem with the co-occurrence with SVI—to heat-health effects and 

climate adaptation.

Comparing the findings presented here to existing studies is challenging, since conclusions 

drawn from climatic trend analyses can differ substantially based on the years assessed, 

variables of interest, geographic extent, months considered, dataset employed, and 

methodologies applied [40]; nonetheless, some qualitative comparisons are made here. In a 

recent paper, Grotjahn and Huynh [27] assessed trends in mean and maximum heat index for 

the June-August (JJA) months of three time periods over the 20th Century and compared 

these trends between gridded observational datasets and several reanalysis products. For 

their most-recent period (1979–2011), the observational datasets showed warming across 

most of CONUS for JJA HImean and all but one of the reanalysis products showed warming 

over the majority of CONUS for HImax (although two of the reanalyses showed large areas 

of non-significant cooling trends in the central US). Although the reanalyses had different 

patterns and magnitudes, they mostly all agreed on warming in the eastern US, which the 
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authors note is ‘intensified’ relative to changes in maximum ambient temperature, in some 

places reversing a cooling trend. These findings are consistent with our results for heat-index 

warming, which appears particularly amplified in the moist eastern US. Although the 

literature appears to lack an analogous assessment of a continuous measure of extreme heat 

index (e.g., seasonal 95th percentile), several studies have found regionally varying increases 

in heat waves using criteria based on the heat index (e.g., Lyon and Barnston [7] and Smith 

et al [9]). Although the arbitrary nature of heat wave definitions makes comparisons 

difficult, the finding in Smith et al [9] that the southeastern US appears to have amongst the 

highest rates of increase from 1979–2011 across most of the heat wave definitions 

considered is qualitatively consistent with our finding showing particularly strong warming 

in both the median and 95th percentile of HImax around the Mississippi Alluvial Plain.

To visualize distributional changes in warm-season heat, we additionally quantified trends in 

the within-season difference between the extreme and median values of HImax. This 

assessment complements the broader literature on ambient temperature distributional 

changes, which also finds regional differences in the signs of variability and other statistical 

moments. Rhines et al [18] calculated trends from 1979–2014 in the 5th and 95th 

percentiles, as well as the spread between them, by season across CONUS for Tmin and Tmax 

using an observational dataset. During JJA, they found decreasing Tmax trends (i.e., reduced 

spread) for the coastal Southeast, Southwest, and the northern Great Plains, and they found 

increasing trends (i.e., expanded spread) for the south-central US and part of the Northwest. 

McKinnon et al [20] also found substantial regional heterogeneity in station-observed 

ambient Tmax trends (1980–2015) in the US and suggested that the distributional changes in 

most places were largely explained by shifts, though decreasing variability was also shown 

for all of CONUS except for the south-central US, which showed an increase. Increased 

skewness and kurtosis were also shown for the Northeast, Midwest, and parts of the western 

US. Finally, Gross et al [19] assessed global ‘excess change’ between the mean and 98.5th 

percentile of temperature anomalies by season since the mid-20th Century. For maximum 

temperature, their analysis of the observational data showed extreme maximum temperatures 

in JJA increasing faster than the mean in the south-central, northern-Midwest, and part of the 

northeastern US, while the west coast and southeast largely had greater increases in the 

mean relative to the upper extreme. This pattern of differential warming qualitatively 

concurs with our findings here that showed increasing warm-tail HImax variability in the 

Midwest and Northeast but decreasing variability for the coastal Southeast and west coast. 

Signs are opposite, however, for Texas and the nearby Mississippi Alluvial Plain.

Additional research is needed to explain the differences between our findings and some of 

the trends in the temperature-based analyses found elsewhere. Particularly noteworthy is the 

lack of cooling that appears in the trends of weather-station based assessments of 

summertime Tmax in some studies (e.g., Rhines et al [18] and McKinnon et al [20]). This 

could be due partly to inhomogeneities in weather station observations over this period, such 

as those introduced by the transition from liquid-in-glass thermometers to thermistor-based 

instruments in the 1980s that prompted an average cooling of 0.4°C to daily maximum 

temperatures [41]. In contrast to the widespread cooling seen in the unadjusted station-based 

assessments, NOAA Climate Division (NCD) data—which account for a variety of 

inhomogeneities [42]—presented in Grotjahn and Huynh [27] show that only one climate 
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division in the Midwest had a cooling trend of JJA Tmax between 1979–2011, though a 

larger area in the Midwest showed no trend. The use of NARR data, which is a reanalysis 

product and thus assimilates a variety of observational data [31], may be less sensitive to this 

potential bias. While there is some debate regarding limitations in the use of reanalysis data 

for trend analyses [43, 44], the principle concern of inhomogeneities from the assimilation 

of new data sources is mostly allayed for the post-satellite era after 1979 [45]. Moreover, 

others have demonstrated that NARR agrees well with temperature trends of annual mean 

temperatures across CONUS [46, 47]. Nonetheless, our findings we presented here should 

be interpreted with the caveat that other datasets, methodologies, and period of interest could 

produce different results [40].

Of course, differences between changes in heat index and ambient temperature are 

attributable, in part, to atmospheric moisture content. Specifically, the stronger trends in 

median and extreme heat index observed in the eastern United States are likely partly 

indicative of the underlying humidity climatology because: (1) the eastern US has much 

more atmospheric moisture than the western US on average [48], meaning that a particular 

increase in temperature would yield a greater increase in the heat index, given the 

nonlinearity of the heat-index algorithm [21]; and (2) others have observed that the central 

and eastern US experienced increasing trends in relative humidity over the last quarter of the 

20th Century [49]. Less certain, however, are the drivers of the regional heterogeneity in the 

changing spreads of the warm-tail distributions. While a comprehensive assessment of the 

myriad geophysical causes of our findings is outside the scope of this analysis, it should be 

noted that the role of soil moisture in land-atmosphere interactions and climate feedbacks, 

particularly for extreme heat, has been extensively documented in the literature (see 

Seneviratne et al [50] for a review). The influence of anomalously dry soils, which can affect 

the overall distribution of ambient temperatures by reducing the cooling effect of latent heat 

of evaporation and increasing the warming effect of sensible heat fluxes [51], has been 

shown to play a particularly dominant role in extreme heat events (e.g., Brabson et al [52] 

and Whan et al [53]). Given that soil moisture affects both ambient temperature and relative 

humidity [54], it follows that a change in soil moisture could also play a role in changing 

heat index distributions. However, the extent to which such changes in warm-season soil 

moisture content are regionally covariable with the HImax distributional changes observed in 

this paper remains an open question.

Regardless of the causes, the spatial heterogeneity observed in these heat metrics is 

applicable to adaptation broadly and to heat-related health interventions specifically. Others 

have noted that distributional changes to the extremes versus the mean present different 

challenges to adaptation [55]. In particular, increases in variability can push conditions 

outside the ‘coping range’ [56], which is compounded by co-occurring warming. Those 

places that have simultaneously experienced increases in the median, 95th percentile, and 

spread (particularly the Midwest, Mississippi Alluvial Plain, and the Northeast) constitute an 

example of this because the changing summertime heat patterns are not only warmer on 

average, but also more extreme and more variable, making it more difficult for populations 

to adapt to these changes. We posit that such communities would need to build the greatest 

amount of adaptive capacity (the ability to take actions that reduce harm from climate 

change [57]), to minimize the resultant heat-related health effects. Acclimatization, the 
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physiological processes that enable the human body to adapt to changing temperatures on 

both sub-seasonal and interannual timescales[58, 59], is one mechanism by which this could 

be achieved. However, temperature-related mortality may be greatest when it is ‘unusual’ 

(i.e., anomalous given the time of year or the location), suggesting that increases in 

variability may be of greater public health concern than just an increase in average 

temperatures [60], perhaps because it could stymie acclimatization. Therefore, regions 

trending toward greater warm-tail variability may face greater challenges to adaptation, 

while those with reduced warm-tail variability could potentially be better equipped to adapt 

to changes in heat.

Critically important to this assessment of adaptation, however, is the underlying social 

vulnerability of the populations experiencing the changes. We showed here that, across 

CONUS, the most-vulnerable decile of counties is warming faster than the least-vulnerable 

decile, especially for median HImax. Given that populations with higher social vulnerability 

are less able to prepare for, and recover from, natural hazards [28, 29], it follows that the 

combination of enhanced warming and greater vulnerability may have a compounding effect 

on climatic sensitivity, i.e., ‘the degree to which a system or species is affected, either 

adversely or beneficially, by climate variability or change’ (IPCC [61, p 1772]; see also: 

Smit et al [55]), resulting in reduced adaptive capacity. That warming trends differ by level 

of social vulnerability implies spatially varying inequities in climate change impacts. 

However, this disparity may be somewhat narrowed by the opposite relationship with warm-

tail variability, since the most-vulnerable counties have seen an increased spread of HImax 

while the least vulnerable have not, on average. Nonetheless, we can observe that some 

locations—such as the Mississippi Alluvial Plain—not only have relatively high rates of 

HImax warming by median and 95th percentile, but also have both increasing warm-tail 

spread and amongst the highest values of the Social Vulnerability Index nationally. 

Analyzing warm-season heat changes through this lens of climatic sensitivity may have 

utility both in identifying the communities most severely affected and in determining how 

best to facilitate effective and equitable adaptation.

The interaction between these components—differential warming, changes in heat 

variability, and higher social vulnerability—may have its most direct implications on public 

health. There is existing evidence of heat-health mortality carrying greater risks for socially 

vulnerable sub-populations such as the elderly, young, and those with pre-existing medical 

conditions (e.g., Reid et al [3] and Reid et al [62]), so it would be expected that, all else 

constant, heat mortality would be greatest in places with the highest social vulnerability. 

However, many other factors influence the epidemiologic impact of heat, including the 

aforementioned acclimatization that renders cooler climates more sensitive to extreme heat, 

on average[60, 63]. While others have noted that the rate of reductions in overall heat-related 

deaths during the past several decades [4, 64, 65] has likely exceeded the rate of mean 

temperature changes [66], there is a dearth of literature isolating the role of climate change 

directly in these temporal epidemiologic trends [67]. The recognition that higher statistical 

moments, such as within-season variability, have discrete health effects [11, 12] suggests the 

need for more-nuanced analyses of climate-change induced effects on heat mortality, 

considering not only changes in mean states, but also in the extremes and within-season 

variability. It is plausible, for example, that the rate of decline in heat-related deaths was less 
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steep in places with greater warming and greater variability, such as in the Northeast or 

Midwest. Future work should therefore attempt to disentangle the complicated interplay 

between specific climatic changes and social vulnerability to identify the most effective 

adaptive interventions.

5. Conclusion

The findings presented here suggest regional heterogeneity across CONUS in recent trends 

(1979–2018) of median and 95th percentiles of maximum daily heat index (HImax) during 

the warm season (May-September [MJJAS]), with particularly strong warming across the 

eastern half of the country. Although CONUS overall appears to have experienced 

substantial warming of HImax (i.e., rightward shift of the distribution), our data show only a 

very small increase in intra-seasonal warm-tail spread of HImax (as measured by the trend in 

the seasonal difference between the 95th and 50th percentiles) nationally. However, the sign 

and magnitude of warm-tail spread differs strongly between regions: the Midwest and 

Northeast show positive trends, apparently driven by the faster rate of change in extreme 

(relative to median) HImax, while the western US, Northern Great Plains, and Southeast 

show the opposite relationship. The most-vulnerable decile of counties, on average, appears 

to be warming at a faster rate than the least-vulnerable decile of counties at both the median 

and 95th percentile, suggesting an inequitable distribution of climatic sensitivity. However, 

we did not observe the same relationship in the warm-tail spread, since the most-vulnerable 

counties were seen to have virtually no change while the least-vulnerable counties have 

trended toward increased spread. Future inquiries are needed not only to determine the 

geophysical drivers of these spatially differential changes in HImax distributions, but also to 

discern the net impact on heat mortality from covarying changes in social vulnerability, 

atmospheric warming, and distributional variability.
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Figure 1. 
Map of the contiguous United States (CONUS) with major rivers, divided into National 

Climate Assessment (NCA) regions. Cross-hatching indicates the Mississippi Alluvial Plain 

in the Southeast (data from the U.S. Environmental Protection Agency [33]). Background 

mapping and river data provided by ArcWorld and ArcWorld Supplement from Esri®.
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Figure 2. 
Map showing the distribution of county-level overall 2016 Social Vulnerability Index (SVI) 

values. The top- and bottom-decile counties are outlined and in red and blue, respectively. 

Background mapping provided by ArcWorld and ArcWorld Supplement from Esri®.
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Figure 3. 
Linear trends (°C/decade) in May-September (MJJAS; warm season) daily maximum heat 

index (HImax) for the median (a) and 95th percentile (b) for 1979–2018. Cross-hatching 

indicates that the trend is not statistically significant (meta-analytic p-value ≥ 0.05). Solid 

red lines on histograms represent the median value for the contiguous US (CONUS), while 

the dashed red lines indicate the first and third quartiles. Background mapping provided by 

ArcWorld and ArcWorld Supplement from Esri®.
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Figure 4. 
Trends in annual difference between the 95th percentile and median heat index (HI95-med) 

for 1979–2018 (g). Purple indicates places where the median and 95th percentile values have 

gotten closer together (decreasing within-season ‘warm-tail’ variability), green indicates 

where they have diverged (increasing spread), and cross-hatching indicates that the trend is 

not statistically significant (meta-analytic p-value ≥ 0.05). Density plots show examples at 

selected pixels of how these distributional changes can manifest, with red curves 

representing HImax values for 2009–2018 and blue curves representing the earlier decade of 

1979–1988 (a–f). Solid lines on the density plots are median values for that decade and the 

dashed lines reflect the 95th percentiles. Background mapping provided by ArcWorld and 

ArcWorld Supplement from Esri®.

Spangler and Wellenius Page 18

Environ Res Commun. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Density plots showing frequency of decadal trends (1979–2018) in warm-season (MJJAS) 

maximum heat index (HImax) across CONUS by seasonal median and 95th percentile (left 

plots) and warm-tail spread (seasonal 95th percentile minus median; right plots) across the 

seven National Climate Assessment (NCA) regions. Solid lines on individual plots indicate 

mean values and dashed lines across plots indicate the CONUS average. Plots reflect 

frequency of NARR pixels containing at least 25% land. Asterisk (*)indicates one pixel in 

the Northwest that goes beyond the scale of the x-axis (values of this outlier: −0.67°C/

decade [median] and −1.13°C/decade [95th percentile]).
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Figure 6. 
Plots showing the frequency of county-level trends (1979–2018) in MJJAS median and 95th 

percentile of HImax (left) and in the intra-seasonal spread (95th–median, right) between the 

top and bottom deciles of county SVI (a), and plots showing the frequency of county-level 

SVI values within the top-10% fastest warming and bottom-10% slowest warming counties 

(b).
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Figure 7. 
Maps showing the spatial intersection of the Social Vulnerability Index and min-max 

standardized values of recent trends in HImax. In (a), the SVI is averaged with the mean of 

the standardized trends in the median and 95th percentile, while in (b) the SVI is averaged 

with the standardized value of the warm-tail spread (measured by the change in the seasonal 

95th percentile minus median). Background mapping provided by ArcWorld and ArcWorld 

Supplement from Esri®.
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