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Abstract 

Context: Thyrotoxic periodic paralysis (TPP) characterized by acute weakness, hypokal-
emia, and hyperthyroidism is a medical emergency with a great challenge in early diag-
nosis since most TPP patients do not have overt symptoms.
Objective: This work aims to assess artificial intelligence (AI)-assisted electrocardiog-
raphy (ECG) combined with routine laboratory data in the early diagnosis of TPP.
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Methods:  A deep learning model (DLM) based on ECG12Net, an 82-layer convolutional 
neural network, was constructed to detect hypokalemia and hyperthyroidism. The devel-
opment cohort consisted of 39 ECGs from patients with TPP and 502 ECGs of hypokal-
emic controls; the validation cohort consisted of 11 ECGs of TPP patients and 36 ECGs of 
non-TPP individuals with weakness. The AI-ECG–based TPP diagnostic process was then 
consecutively evaluated in 22 male patients with TTP-like features.
Results:  In the validation cohort, the DLM-based ECG system detected all cases of hypo-
kalemia in TPP patients with a mean absolute error of 0.26 mEq/L and diagnosed TPP 
with an area under curve (AUC) of approximately 80%, surpassing the best standard 
ECG parameter (AUC = 0.7285 for the QR interval). Combining the AI predictions with the 
estimated glomerular filtration rate and serum chloride boosted the diagnostic accuracy 
of the algorithm to AUC 0.986. In the prospective study, the integrated AI and routine la-
boratory diagnostic system had a PPV of 100% and F-measure of 87.5%.
Conclusion:  An AI-ECG system reliably identifies hypokalemia in patients with paralysis, 
and integration with routine blood chemistries provides valuable decision support for 
the early diagnosis of TPP.
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Acute muscle weakness to paralysis in patients with normal 
consciousness is frequently encountered in the emergency 
department (ED) and can be caused by neuromuscular, 
metabolic, and psychologic disorders. Among metabolic 
causes, hypokalemia with paralysis (HP) is the most 
common life-threatening disorder with potentially fatal 
cardiac arrhythmias and respiratory failure [1, 2]. Before 
determining blood potassium (K+), HP may be misattrib-
uted to other neurological diseases such as Guillain-Barré 
syndrome, myasthenia gravis, transverse myelitis, or auto-
immune myositis [3]. In general, HP can be simply div-
ided into hypokalemic periodic paralysis (HypoKPP) due 
to acute K+ shift into cells [4] and non-HypoKPP due to 
chronic massive K+ deficit [5]. Although K+ supplemen-
tation can foster muscle recovery and reduce the risk of 
cardiac arrhythmia [6] in both groups, the dosage of K+ 
supplementation in patients with HypoKPP (without K+ 
deficit) should be minimized to avoid the common sequelae 
of rebound hyperkalemia on recovery [7]. Early recognition 
of HP with distinction of HypoKPP from non-HypoKPP is 
clinically important for appropriate management [8].

Among the etiologies of HypoKPP, familial periodic 
paralysis and nonfamilial thyrotoxic periodic paralysis 
(TPP) are the most common causes in Western and Asian 
countries, respectively. TPP is characterized by the pres-
ence of hyperthyroidism with acute hypokalemia and 
occurs with overwhelming male predominance (male-to-
female ratio = 100:1) in approximately 2% of hyperthy-
roid Asians. With globalization, TPP is not limited to Asia 
and is increasingly seen around the world [9]. Although 
hyperthyroidism is a prerequisite for the diagnosis of TPP, 

rapid diagnosis of TPP is a great challenge because most 
TPP patients do not have overt symptoms and signs of 
hyperthyroidism [10]. Using Wayne’s score of symptom-
atology, only approximately 20% of TPP cases have been 
shown to be clinically thyrotoxic and only 35% identify 
a clear precipitating factor [11]. Early measurement of 
thyroid function with point-of-care or STAT thyrotropin 
(TSH) testing is the lynchpin for diagnosing TPP in the ED. 
However, timely diagnosis is still challenging when rapid 
TSH measurement is not available.

Hypokalemia and hyperthyroidism in TPP both 
significantly affect the cardiovascular system. 
Electrocardiography (ECG) as a prompt and noninvasive 
bedside tool universally used in the ED may detect these 
electrical changes. The main ECG changes associated 
with hypokalemia include decreased T-wave amplitude, 
ST-segment depression, T-wave inversion, prolonged 
PR interval, and increased corrected QT interval [12]. 
The ECG findings associated with hyperthyroidism in-
cluded sinus tachycardia, atrioventricular (AV) block, 
prominent U waves, and high QRS voltage [13, 14]. In 
our previous report, we found that sinus tachycardia, 
AV block, and high QRS voltage were significantly more 
common among TPP than non-TPP patients. However, 
these findings were evident in only 45%, 45%, and 74% 
of TPP patients, respectively [13]. Hence, the manual use 
of ECG features to make an early diagnosis of TPP is still 
limited. Currently, artificial intelligence (AI) techniques 
based on deep learning models (DLMs) [15] have been 
shown to achieve human-level performance and effect-
ively detect cardiac diseases with large annotated ECG 
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data sets [16-28]. Using big ECG-annotated data set ana-
lysis, we first successfully applied DLM to develop ECG-
based detection of hypokalemia, so-called ECG12Net, 
in the ED [29]. However, the clinical application of 
AI-enhanced ECG for the detection of hypokalemia and 
hyperthyroidism to early-diagnose HP and TPP has not 
been evaluated.

In this study, we explored AI-enhanced ECG interpret-
ation to rapidly diagnose TPP in the ED. Owing to the 
limited number of TPP patients, better diagnostic accuracy 
may be achieved by integrating AI-enhanced ECG with 
simple blood chemistry. A prospective application was also 
performed to test the feasibility of this AI-ECG diagnostic 
process for HP and TPP in patients with acute symmetrical 
muscle weakness.

Materials and Methods

Population and Data Source

This study was performed at Tri-Service General Hospital, 
an academic medical center with 1800 beds and approxi-
mately 100 000 ED visits per year. The study was ap-
proved by the institutional review board of Tri-Service 
General Hospital (IRB No. A202005151). Patients with 
TPP were diagnosed by the following criteria: 1)  muscle 
weakness and/or muscle paralysis, 2)  serum K+ concen-
tration less than or equal to 3.0 mEq/L with low urinary 
K+ excretion, 3) thyrotoxicosis confirmed by thyroid func-
tion tests, and 4)  exclusion of renal and nonrenal causes 
of hypokalemia. The study included a development cohort 
for training the DLM, a validation cohort for initial assess-
ment of the DLM’s performance, and a prospective cohort 
for clinical validation. Only male patients were enrolled 
because no females had TPP. Patient characteristics and la-
boratory results were collected using an electronic health 
record system. The nearest laboratory data were assigned 
for each ECG record. Estimated glomerular filtration rate 
(eGFR) was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration formula [30].

Development and Validation Cohorts

The development cohort consisted of ECGs performed 
within 1 hour of a central laboratory report obtained from 
TPP patients and hypokalemic controls (K+ ≤ 3.0 mEq/L) 
with or without paralysis (non-TPP) between January 1, 
2012 and December 31, 2018. ECGs from reevaluations 
during a visit or subsequent visits on a different date could 
be used to increase sample size for augmenting DLM per-
formance. There were 39 ECGs from 31 TPP patients and 
502 ECGs from 414 hypokalemic controls. The validation 

cohort consisted of 11 ECGs from 11 TPP patients and 36 
ECGs from 36 non-TPP controls (hypokalemic paralysis 
without hyperthyroidism) between January 1, 2019 and 
December 31, 2019, to better simulate the clinical scen-
ario. The patients in the development cohort were excluded 
from the validation cohort.

Prospective cohort

The prospective cohort consisted of male patients with 
acute symmetrical neuromuscular weakness who re-
ceived ECGs and laboratory studies between January 1 
and October 31, 2020. They were consecutively evaluated 
using AI-based ECG to predict both hypokalemia and TPP. 
The inclusion criteria stipulated normal consciousness and 
symmetrically decreased muscle power with reduced deep 
tendon reflexes on physical examination. Patients who had 
a history of TPP or exhibited abnormal neurologic findings, 
such as increased peripheral reflexes, unilateral paralysis, 
or altered consciousness, were excluded. Thyroid function 
tests were also determined.

Deep Learning Model Development and Training

The ECGs were recorded using Philips 12-lead ECG ma-
chines (PH080A), which also provided 8 basic ECG 
morphology parameters. We devised the ECG-TPP prob-
ability score by DLM, which was based on ECG12Net, 
an 82-layer convolutional neural network to detect hypo-
kalemia from our previous study [29]. We used 3 training 
strategies—no match, age-matched, and age-K+–matched—
to derive 3 DLMs and 3 ECG-TPP probability scores—1, 2, 
and 3, respectively (Supplementary Fig. 1) [31]. The details 
of our DLM implementation are described in the supple-
mentary materials [31].

Statistical Analysis and Model Performance 
Assessment

Patient characteristics are presented as means and SDs or 
percentages where appropriate. The t test and chi-square 
test were used to test the difference in means and per-
centages, respectively. Statistical analysis was carried out 
using R version 3.4.4 with a significance level of P less 
than .05. The receiver operating characteristic (ROC) 
curve and area under the curve (AUC) were used to 
measure their effects. We compared the AUCs of DLM 
and ECG morphologies and the difference between the 
3 DLM training strategies. We further selected some in-
tegration models for diagnosing TPP with or without 
laboratory information. An integrated TPP diagnostic 
process was developed based on our validation cohort. 
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The sensitivity, specificity, positive predictive value 
(PPV), and F-measure were used for quantifying the diag-
nostic value.

Results

Patient Characteristics in the Development and 
Validation Cohorts

As shown in Table 1, patients with TPP had the hall-
mark findings of suppressed TSH and high free thyroxine. 
They were significantly younger, weaker, and had fewer 
comorbidities both in the development and validation co-
horts compared to hypokalemic controls. Among the la-
boratory findings, TPP patients also exhibited significantly 
lower serum K+, creatinine concentrations (higher eGFR), 
higher serum chloride (Cl–), and higher total calcium levels. 
There were no significant differences in ECG morpholo-
gies between TPP and hypokalemic controls aside from in-
creased PR interval. Approximately 10% of hypokalemic 
controls presented with muscle weakness and/or paralysis 
in the development cohort. Hyperthyroid patients may also 
have chronic hypokalemia due to total K+ deficit, of which 

there were 2 and 3 in the development and validation co-
horts, respectively.

Electrocardiography-Enabled Deep Learning 
Model Development and Training

We have successfully developed an ECG-DLM to estimate 
serum K+ concentration. Moreover, 3 additional DLMs 
using different training strategies were created in the de-
velopment cohort. Based on these DLMs, each ECG can 
be interpreted to a K+ value and 3 scores. Building on this 
body of work, we therefore used these AI-ECG estimations 
to evaluate their accuracy in an independent validation 
cohort.

Comparison Between Deep Learning Model and 
Electrocardiography Parameters to Diagnose 
Thyrotoxic Periodic Paralysis

To evaluate the detection of hypokalemia by AI-ECG, we 
first explored the difference between AI-ECG–predicted 
and laboratory-based K+ concentration (Fig. 1). The mean 

Table 1.  Patient characteristics in the development and validation cohorts

Development cohort Validation cohort

 TPP (n = 39) HypoK control (n = 502) P TPP (n = 11) non-TPP (n = 36) P

Sex, male 39 (100.0%) 502 (100.0%)  11 (100.0%) 36 (100.0%)  
Age, y 34.7 ± 8.4 47.1 ± 10.5 < .001 35.9 ± 7.8 52.8 ± 13.1 < .001
ECG-K+, mEq/L    2.6 ± 0.6 3.0 ± 0.5 .106
Weakness 39(100.0%) 50(10.0%) < .001 11(100.0%) 36(100.0%)  
ECG morphology       
  Heart rate 95.1 ± 17.5 91.5 ± 21.7 .306 100.0 ± 10.1 85.3 ± 14.6 .003
  PR interval 176.0 ± 33.2 162.1 ± 37.1 .025 166.1 ± 57.3 166.6 ± 40.5 .674
  QRS duration 101.6 ± 10.8 102.3 ± 17.9 .806 96.5 ± 11.1 110.2 ± 26.0 .094
  QT interval 384.3 ± 76.0 395.1 ± 55.8 .257 364.6 ± 29.3 399.2 ± 47.4 .023
  Correct QT interval 476.1 ± 81.2 480.0 ± 50.4 .662 470.2 ± 43.2 471.4 ± 46.0 1.000
  P waves axes 65.0 ± 60.6 54.8 ± 30.7 .074 51.5 ± 68.6 53.1 ± 32.4 .905
  RS waves axes 57.2 ± 23.3 47.5 ± 49.6 .227 47.9 ± 28.7 47.4 ± 35.9 .950
  T waves axes 47.5 ± 79.9 42.8 ± 63.5 .670 17.7 ± 50.8 49.3 ± 77.3 .407
Laboratory test       
  TSH, μIU/mL 0.0 ± 0.1 1.3 ± 1.2 < .001 0.0 ± 0.0 1.8 ± 1.4 .004
  Free T4, ng/dL 2.5 ± 0.6 1.0 ± 0.3 < .001 2.7 ± 0.5 1.1 ± 0.1 .003
  eGFR, mL/min 146.2 ± 54.6 90.4 ± 59.5 < .001 156.1 ± 43.7 91.3 ± 45.6 < .001
  Cr, mg/dL 0.8 ± 0.6 1.7 ± 2.3 .019 0.7 ± 0.2 1.6 ± 2.3 < .001
  BUN, mg/dL 18.0 ± 15.2 18.8 ± 15.5 .748 11.7 ± 3.7 19.9 ± 16.3 .117
  K+, mEq/L 2.5 ± 0.6 2.8 ± 0.2 < .001 2.5 ± 0.5 2.7 ± 0.3 .027
  Na+, mEq/L 139.2 ± 2.2 136.1 ± 5.0 < .001 139.3 ± 1.2 137.6 ± 5.0 .454
  Cl–, mEq/L 106.7 ± 2.3 99.4 ± 7.6 < .001 108.0 ± 2.1 101.3 ± 7.4 .005
  Ca++, mg/dL 8.8 ± 0.7 8.5 ± 0.8 .024 8.9 ± 0.6 8.1 ± 0.9 .003
  Mg++, mg/dL 1.9 ± 0.3 1.9 ± 0.4 .334 2.0 ± 0.2 1.8 ± 0.5 .541

Abbreviations: BUN, blood urea nitrogen; Ca++, total calcium; Cl–, chloride; Cr, creatinine; ECG, electrocardiography; ECG-K+, K+ estimated via electrocardiog-
raphy; eGFR, estimated glomerular filtration rate; Free T4, free thyroxine; HypoK, hypokalemia; K+, potassium; Mg++, magnesium; Na+, sodium; TSH, thyrotropin; 
TPP, thyrotoxic periodic paralysis.
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absolute errors among TPP (n = 11) and non-TPP patients 
(n = 36) were 0.259 and 0.326  mEq/L, respectively. To 
evaluate the detection of TPP by ECG, we compared the 
diagnostic value of traditional ECG morphologies with 
the ECG-based DLMs trained using 3 different weighting 
strategies. As shown in Fig. 2, the most important ECG 
morphologies were QT interval (AUC = 0.7285) and 
heart rate (AUC = 0.7273). Combining all ECG morph-
ologies in logistic regression actually had a worse AUC 
(0.5379). The ECG-based DMLs demonstrated higher 
AUCs than traditional ECG morphologies with similar 
performance among the 3 training strategies; the AUC 
of scores 1, 2, and 3 were 0.8131, 0.7753, and 0.7677, 
respectively.

Integration of Laboratory Data to Augment the 
Accuracy of Artificial Intelligence–Thyrotoxic 
Periodic Paralysis Prediction

Although AI-ECG–based prediction of TPP performed 
satisfactorily, integration with some readily available 
clinical data further improved diagnostic performance. 
Supplementary Fig. 2 [31] shows the importance ana-
lysis of various patient characteristics. Age, serum K+, Cl– 
levels, and eGFR were significantly associated with TPP in 
multivariable models. We then used these clinical features 
to augment the TPP diagnostic process and select an ECG-
TPP score. As shown in Fig. 3, the iterative addition of age, 
K, eGFR, and Cl– to the DLMs successively improved the 
diagnostic accuracy and the combination of these 4 fea-
tures with score 3 reached an AUC 0.9860. Therefore, we 

used score 3 as the ECG-TPP score in our TPP diagnostic 
process.

Prospective Evaluation of the Artificial 
Intelligence–Electrocardiography–Assisted 
Thyrotoxic Periodic Paralysis Diagnostic 
Algorithm

We had developed a diagnostic process based on the 
cutoff points from ROC curves to apply in a prospective 
study. As shown in Fig. 4, there were 22 patients with 
TPP-like features. Six (non-HP disorders) had neither 
AI-ECG–predicted hypokalemia nor laboratory hypo-
kalemia. Their final diagnoses included Guillain-Barré 
syndrome (n = 3), severe hyperkalemia associated with 
uremia (n = 1), rhabdomyolysis (n = 1), and transverse 
myelitis (n = 1). Sixteen patients (HP) with AI-ECG–pre-
dicted hypokalemia (2.51 ± 0.43 mEq/L) also had signifi-
cant laboratory hypokalemia (2.35 ± 0.44 mEq/L). Our 
AI-ECG system achieved perfect performance (F-measure 
100%) on the task of hypokalemia detection in them. 
Using an ECG-TPP score threshold greater than 50%, 
12 of 16 AI-ECG HP patients were predicted to have 
TPP with a sensitivity of 88.9%, specificity of 69.2%, 
PPV of 66.6%, and F-measure of 76.2%. As shown in 
Supplementary Table 1 [31], the ECG-TPP score exhib-
ited much better performance compared to the ECG 
parameters manually and electronically. Combining the 
AI with laboratory eGFR and serum Cl–, our diagnostic 
system achieved PPV 100%, sensitivity 77.8%, and 
F-measure 87.5%.

Figure 1.  Comparison between electrocardiography (ECG)-based potassium (K+) prediction and laboratory (LAB) K+ in the validation cohort. Each 
line represents a hypokalemia case. The patients with absolute error (AE) greater than 0.3 are colored red, and the others are colored green. The t test 
shows the mean AE (MAE) differences are not significantly different for thyrotoxic periodic paralysis (TPP) vs non-TPP (P = .409).
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Figure 3.  Receiver operating characteristic (ROC) curves for combining patient characteristics with deep learning models in the validation cohort. 
The ROC curves for clinical characteristics were made by logistic regression. The combination models were generated for each score with the listed 
clinical characteristics. Score 1 was trained using the raw data set; score 2 was trained using an age-matched strategy; and score 3 was trained using 
an age- and K+-matched strategy.

Figure 2.  Performance comparisons of electrocardiography (ECG) morphologies and deep learning models trained using 3 different weighting strat-
egies in the validation cohort. The receiver operating characteristic curves were made by the predictions of the deep learning model (DLM) or each 
ECG morphology. The ECG morphology curves were generated from logistic regression using the development cohort. The DLM score 1 was trained 
using the raw data set; score 2 was trained using an age-matched strategy; and score 3 was trained using an age- and K+-matched strategy.
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Illustration of Artificial Intelligence–
Electrocardiography Diagnostic Process 
for Thyrotoxic Periodic Paralysis (TPP) 
and non-TPP

Six patients with HP, 3 TPP and 3 non-TPP from the pro-
spective study, are presented as Supplementary Cases 1 to 6 
[31] to further illustrate our AI-assisted diagnostic process.

Discussion

We have established an AI-ECG system to help recognize 
TPP by applying DLMs to a development cohort. In the 
validation cohort, the AI-ECG system achieved predic-
tions of hypokalemia with mean absolute error vs serum 
K+ concentration of only 0.26 mEq/L and TPP with AUC 
of approximately 80%. Combining the AI predictions 
with laboratory-derived eGFR and serum Cl– levels, the 
AUC curve reached 98.6%. In the prospective study, our 
AI-ECG system demonstrated perfect performance on 
hypokalemia detection and good diagnostic performance 
for TPP with PPV of 100% and F-measure of 87.5% 
when integrated with laboratory eGFR and serum Cl–. 
To the best of our knowledge, this is the first study of 
an AI-ECG system to assist in the diagnosis of TPP in 
the ED.

TPP comprised approximately one-third of our HP cases 
and paralysis due to massive K+ deficit (non-HypoKPP) 
approximately the other 60%. This distinction is critical 
because the dose of K+ supplementation in TPP should 
be kept low to avoid rebound hyperkalemia on recovery, 
which happens in approximately 40% to 60% of TPP pa-
tients [7]. Our previous studies have shown that the total 
dosage of K+ supplementation for TPP should be less than 
1 mEq/Kg to avoid rebound hyperkalemia, but 3 to 4 mEq/
Kg may be necessary in non-HypoKPP [7]. The appro-
priate management, therefore, hinges on an early diagnosis 
of TPP. However, TPP is frequently unrecognized or mis-
diagnosed because most TPP patients do not have overt 
symptoms and signs of hyperthyroidism [11]. Furthermore, 
rapid determination of thyroid function is unavailable in 
most EDs. Although the simultaneous assessment of blood 
acid–base status and urine electrolytes may help suggest the 
diagnosis of TPP [32, 33], it is still time-consuming and re-
quires adept interpretation of the data.

ECG is a prompt and noninvasive bedside tool to de-
tect cardiac electrophysiological activity. In TPP, hypo-
kalemia and hyperthyroidism both can significantly affect 
the heart and contribute to ECG changes. Previously, we 
had manually examined the ECG changes in 34 patients 
with TPP and showed that hyperthyroidism-related 

Figure 4.  The prospective integrated artificial intelligence–electrocardiography (AI-ECG) diagnostic algorithm for actively identifying potential 
thyrotoxic periodic paralysis (TPP) cases. Male patients with metabolic paralysis after physical examination were included. The boxes at each step 
denotes the patients who progressed toward a diagnosis of TPP.
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sinus tachycardia, first-degree AV block, and left ven-
tricular hypertrophy pattern coupled with hypokalemia-
associated ST depression and U waves were present in 
less than 50% of TPP patients [14]. In this study, again, 
standard ECG morphologic analysis poorly differenti-
ated TPP from hypokalemic and non-TPP disorders. In 
contrast, DLM can automatically extract useful features 
and relationships from the ECG [15], and our AI-enabled 
ECG analysis provided not only perfect detection of 
hypokalemia in weak patients but also achieved sensi-
tivity of 88.9% and specificity of 69.2%% with AUC 
of approximately 80% for the diagnosis of TPP. An im-
portant human benefit of an AI system stems from the 
fact that TPP is not on most clinicians’ differential for 
patients with weakness. A prompt from a computer is a 
needed reminder when this diagnosis may be appropriate.

Although the AI-ECG system had better diagnostic per-
formance than manual ECG alone, there was still room for 
improvement, potentially related to our limited data set of 
training TPP cases. Of note, patients with TPP exhibited 
some other clinical features that are significantly different 
from hypokalemic controls. The significantly higher eGFR 
and serum Cl– concentration in TPP could be used to aug-
ment the AI-ECG-TPP score. The higher eGFR, as an index 
of relatively lower serum creatinine, has been associated 
with increased cardiac output and glomerular filtration rate 
in thyrotoxicosis [34]. The elevated serum Cl– concentra-
tion is thought to be the renal physiologic response to the 
increased protein catabolism and respiratory alkalosis ob-
served in hyperthyroidism, as well as the K+ shift into cells 
in exchange with intracellular protons [35]. The relatively 
higher serum Cl– in TPP is even more striking since most 
hypokalemic controls had hypochloremic metabolic alkal-
osis [36].

In the prospective study, 6 of 22 patients with pre-
sumed metabolic weakness did not have AI-ECG–predicted 
hypokalemia and no laboratory hypokalemia (non-HP 
disorders). The other 16 patients with AI-ECG–predicted 
hypokalemia also exhibited laboratory hypokalemia, 
indicating excellent performance on hypokalemia detec-
tion in patients with HP with an F-measure of 100%. This 
result was probably related to the young age with few 
comorbidities and confounding effects on the hearts of 
these patients. Using the ECG-TPP score alone to detect 
hyperthyroidism, 12 of 16 AI-ECG HP patients had TPP 
with a PPV of 66.7% and F-measure of 76.2%. However, 
combining eGFR and serum Cl– in the diagnostic algorithm 
achieved a PPV of 100% and F-measure 87.5%. Despite a 
single misclassified patient with TPP (who had coexisting 
hypertension, gout, and chronic kidney disease), this pro-
spective study supports the value of our integrated AI-ECG 
system in the rapid diagnosis of TPP.

This study also compared 3 training strategies based on 
epidemiological perspectives. A series of matching strategies 
were tried to avoid the DLMs’ learning spurious correl-
ations and maximize useful ECG features. TPP patients are 
often younger and exhibit lower serum K+ in the ED [37]. 
Previous studies had shown correlations between age [38], 
K+ [29], and ECG, raising the possibility of confounding 
effects on both the ECG and TPP [39]. To the best of our 
knowledge, this is the first deep learning study to consider 
the potential effects of confounders during training.

This AI-assisted ECG interpretation system easily plugs 
into the busy workflow of the ED to provide early detection 
of hypokalemia and TPP. In our prospective study, every 
ECG was uploaded in real time to a server that calculated 
the ECG-K+ and ECG-TPP score in the background within 
10 seconds. Our system was configured to then send a text 
message to the ordering physician if an ECG was flagged 
as suspicious. This AI-assisted ECG interpretation system 
may be particularly valuable to EDs without urgent TSH 
measurement.

There were some limitations of this study. First, all TPP 
patients with annotated ECG data were recruited from a 
single center, although this ensured the quality of the data. 
Second, the number of TPP patients was still small. More 
TPP patients from a larger data set could enhance the diag-
nostic accuracy of the system. Third, this AI system was 
trained only on the available male patients. Female TPP pa-
tients should be included for a more generalizable DLM. 
Fourth, point-of-care TSH determination helpful in the 
diagnosis of TPP was not performed in this study. A com-
parison between our AI-ECG system and urgent TSH 
measurement in the diagnosis of TPP should be evaluated. 
Finally, this study focused on the diagnostic value of using 
AI-ECG for TPP. Clinical benefit, cost, and utilization of the 
new intervention strategy were not evaluated and should be 
warranted in further investigations compared to conven-
tional diagnostic and therapeutic approaches.

Conclusion

Besides taking a detailed history and careful physical 
examination, we have developed an AI-assisted ECG to 
help diagnose HP and distinguish TPP from non-TPP 
causes. Rapid identification of hypokalemia and integra-
tion of AI ECG-TPP score with routine laboratory values 
achieved high precision for the early diagnosis of TPP 
prior to the results of thyroid function tests. This blood-
less AI-ECG system may also provide decision support 
and almost real-time monitoring of ECG-based K+ levels 
during K+ supplementation to help physicians avoid re-
bound hyperkalemia. Further large-scale patient studies 
with multicenter data sets and validation are warranted 
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to confirm the diagnostic value and clinical impact of 
AI-enabled ECG.
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