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Abstract Objectives Artificial intelligence (AI), including predictive analytics, has great poten-
tial to improve the care of common chronic conditions with high morbidity and
mortality. However, there are still many challenges to achieving this vision. The goal of
this project was to develop and apply methods for enhancing chronic disease care
using AI.
Methods Using a dataset of 27,904 patients with diabetes, an analytical method was
developed and validated for generating a treatment pathway graph which consists of
models that predict the likelihood of alternate treatment strategies achieving care
goals. An AI-driven clinical decision support system (CDSS) integrated with the
electronic health record (EHR) was developed by encapsulating the prediction models
in an OpenCDSWeb servicemodule and delivering themodel outputs through a SMART
on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast
Healthcare Interoperability Resources) web-based dashboard. This CDSS enables
clinicians and patients to review relevant patient parameters, select treatment goals,
and review alternate treatment strategies based on prediction results.
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Introduction

Predictive modeling and artificial intelligence (AI) have great
potential to improve care in a wide range of clinical areas1–3

including diagnosis,3–6 risk assessment,7–9 lifestyle manage-
ment,10andhomemonitoring.11,12SuchAI-drivenapproaches
to improving care could have significant impact if applied
effectively in the care of common chronic diseases with high
morbidity andmortality such as diabetesmellitus.13 In partic-
ular, clinical decision support (CDS) is a promising approach to
informing the care of chronic conditions leveraging AI.14–16

Indeed, machine learning (ML)-based CDS tools have been
explored for providing pharmacotherapy recommenda-
tions17,18 and predicting the risk of complications19,20 in the
contextofchronicdisease. Interoperability standardshavealso
beenexploredasameans to facilitate thedisseminationofCDS
tools for common chronic diseases,21 including for providing
AI-driven care recommendations.

Despite its great promise, AI-based CDS for improving the
care of chronic diseases, especially for the purpose of treat-
ment selection support, is still in early stages. At least two
important challengesmust be overcome to fulfill this promise.

The first challenge is accurate and robust prediction of
expected treatment outcomes based on real world data.
Despite their successful application in other clinical areas,
ML algorithms such as Random Forest22 (RF) and Gradient
Boosting Tree23 (GBT) can lead to biased estimations in the
context of predicting treatment outcomes.24 Also, ML
approaches are able to learn only the patterns encountered
in the training dataset. Thus, models produced using ML
approaches may give rise to unexpected results in new
clinical contexts and may therefore be unacceptable to
clinicians practicing in those settings.

A second important challenge is integrating the AI-driven
CDS into clinical workflows. Even when underlying compo-
nents such as predictive models are effective and accurate, an
AI-driven clinical decision support system (CDSS) may not be
suitable for use in busy clinical settings unless they are
efficiently integratedwith clinicalworkflows. This integration
with clinicalworkflows and the electronic health record (EHR)
should ideallyusea technical architecture thatenablesdeploy-
ment at scale.

Objectives

This paper proposes AI-driven CDS methods for chronic
disease management to help clinicians select treatment

strategies more rationally and with confidence during
their workflow. This paper makes the following
contributions:

• We propose a novel prediction method, Treatment
Pathway Graph (TPG)-based Estimation (TPGE), in which
a TPG is used to predict the likelihood of alternate
treatment strategies achieving care goals. Our approach
outperforms baseline ML models in treatment outcome
prediction tasks in the context of real world EHR datasets.

• We describe a standards-based approach to integrating
predictive models with the EHR using widely adopted
interoperability standards and open-source tools. This
EHR-integrated CDSS facilitates shared decision making
by clinicians and patients as they decide on an optimal
treatment strategy that considers predictive modeling
results in conjunction with other relevant data such as
costs and side-effect profiles.

In this study, we selected type-2 diabetesmellitus (T2DM)
as the target disease due to its significant morbidity and
mortality as well as the trial-and-error nature of the current
standard of care as it relates to pharmacotherapy. The
established clinical guideline in this area—the American
Diabetes Association (ADA)’s Standards of Medical Care in
Diabetes25—provides evidence-based guidance for pharma-
cotherapy regimens.26,27 However, about half of patients
with T2DM are unable to achieve the treatment target of
controlling hemoglobin A1c (HbA1c) levels to less than
7%,25,28 due to the lack of adherence of patients,25,29 clinical
inertia,29–33 and a trial-and-error approach to treatment
selection.26,27 Our goal was to develop an EHR-integrated
CDSS that overcomes the challenges described above and
supports personalized, AI-supported pharmacotherapy for
T2DM.

Methods

In this study, we developed a novel approach to predictive
modeling, applied this TPGE approach to develop predic-
tive models for T2DM treatment outcomes, evaluated the
performance of these models, and integrated them with
the EHR using a standards-based and user-centered
approach. The methods used are described below. This
study was approved by the Institutional Review Boards
of both the University of Utah and the Research & Devel-
opment Group of Hitachi, Ltd.

Results The proposed analytical method outperformed previous machine-learning
algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic
EHR at the University of Utah.
Conclusion A predictive analytics-based CDSS was developed and successfully inte-
grated with the EHR through standards-based interoperability frameworks. The
approach used could potentially be applied to many other chronic conditions to bring
AI-driven CDSS to the point of care.
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Treatment Pathway Graph-Based Estimation
Recently, Metalearners have been proposed as a framework
to estimate conditional average treatment effects usingML.34

One Metalearners approach known as T-learner estimates
the conditional expectations of the outcomes separately for
units under control and those under treatment, then it takes
the differences between them as conditional average treat-
ment effects. The outcome estimations are conducted by two
ML models independently constructed from the data of
treatment group and the control group, respectively. This
contrasts with other ML-based approaches, such as Causal
Tree,35which build a single model from combined treatment
and control data to predict an expected effect. This feature of
T-learner enables it to predict two types of outcomes for the
control group and treatment group simultaneously. Based on
the idea of T-learner, we propose TPGE to predict multiarm
treatment outcomes for treatment selection.

The key idea is to construct a TPG representing the treat-
ment transition structure fromrealworlddataand to construct
predictionmodelsstratifiedby the transitionsof thegraph. The
structure of the graph can provide possible treatment
strategies for a patient empirically. Each prediction model
can estimate the treatmentoutcome for a treatment transition.
Also, each model can predict the impact of concurrent weight
loss on the treatment outcome. TPGEmethod consists of three
processes: data shaping, graph construction, and model
construction.

Data Shaping
This process generates analytics-ready vector data from
accumulated EHR records to construct the graph andmodels.

Each vector data corresponds to one case and contains
treatment types, HbA1c levels before and after treatment
changes, and other relevant information.

To start, records are extracted for patientswith twoormore
HbA1cmeasurements. Second, sets of vectors consistingof the
baseline and posterior HbA1c values are constructed for every
patient. The two HbA1c measurements must have occurred
within 90�30 days for 3-month predictions and within
180�30 days for 6-month prediction since T2DM patients
are generally followed up every 3 to 6 months. Third, three
types of medication information are extracted for each HbA1c
pair: proportionofdays covered fororiginallyprescribeddrugs
(PDC-OPDs), proportion of days covered for newly prescribed
drugs (PDC-NPDs), and total days covered for drugs prescribed
in the past (TDC-PPDs). PDC-OPD is the proportion of days
covered (PDC) by diabetes medications in 90 days before the
baselineHbA1cmeasurement. PDC-NPD is thePDCbydiabetes
medications between the baseline and the posterior HbA1c
measurements. TDC-PPD is the total prescription days of
diabetes medications prior to 90 days before the baseline
HbA1c measurement. These calculations are conducted for
the medication classes shown in ►Table 1. Finally, other
relevant information including patients’ demographics (age
andgender), laboratory test results (e.g., sodium, triglycerides,
estimated glomerular filtration rate), vital signs (body weight,
body mass index, and blood pressure), and diagnoses are
extracted as additional features. Additional features such as
the patient’s insurance status were evaluated but were not
included in thefinalmodel due to their limited contribution to
the explanatory power of the predictive models.

The latest laboratory test results and the latest vital signs
before the baseline HbA1c measurement are extracted and
converted to clinically meaningful categorical values (e.g., low,
normal, and high). When the applicable value is missing, it is
expressed as a single categorical value (i.e., “missing”). ICD9/
ICD10 codes associatedwith the visits within the past year are
extracted as diagnosis features. The diagnosis codes are cate-
gorized into135 categories using the second-level categories of
the Clinical Classification Software36 (CCS) and then converted
to binary vectors where each element represents the presence
or absence of a corresponding CCS in the past year. ►Table 2

shows an example of analytics-ready vector data. The relevant
predictive features consist of two demographics, eight labora-
tory test results, four vital signs, and 135 CCS codes.

Table 2 Vector data format to construct treatment outcome prediction model

Posterior
HbA1c

Baseline
HbA1c

PDC-OPDs PDC-NPDs Laboratory
tests

Vital
signs

Diagno-
sis/
pro-
blems

MET SUL … MET SUL … eGFR … BMI … …

7.5 8.3 0 0 … 0 1.0 … … … …

8.8 9.7 0.7 0 … 1.0 1.0 … … … …

9.5 10.3 0.6 0 … 1.0 1.0 … … … …

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; MET, metformin; NPDs, newly prescribed
drugs; OPDs, originally prescribed drugs; PDC, proportion of days covered; SUL, sulfonylureas.

Table 1 Medication classes

Class Abbreviation

Metformin MET

Sulfonylurea SUL

Dipeptidyl peptidase-4 inhibitor DPP-4

Sodium-glucose co-transporter-2 inhibitor SGLT2

Thiazolidinediones TZD

Glucagon-like peptide-1 receptor agonists GLP-1

Long-acting insulins INS
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Graph Construction
TPG consists of nodes and directed edges. Each node
describes one treatment strategy (i.e., a combination of
drugs), and each directed edge describes a treatment transi-
tion from one to another. ►Fig. 1 shows an example TPG. In
this example, the “no medication” node has two directed
edges, the one returning to itself and the other progressing to
the “metformin” node. The graph describes a situationwhere
a patient without any diabetesmedications is likely to either:
(1) stay in the same state or (2) progress to the next stage,
taking metformin as the first prescription. TPG construction
is performed by stratifying the analytics-ready vector data by
their treatment transitions consisting of OPDs and NPDs. The
OPDs and NPDswith the PDC equal to or greater than 80% are
extracted and used for the stratification.

For each transition, the frequencyof transitionand thevalid
range of HbA1c levels are calculated and registered based on
the data distribution. This information is used to help identify
whether a transition is a feasible option for a patient based on
his/her OPDs and baseline HbA1c level when generating

personalized treatment outcome predictions for a patient.
►Fig. 2 shows how the valid HbA1c range is calculated for a
treatment option. The HbA1c distribution belonging to the
transition is smoothed by applying an average filter that sums
the number of records. After smoothing, the bins where
sample sizes are larger than 10 are merged into the valid
range. The averaging kernel size is set to 10 where the HbA1c
level is less than 10% and 20 where the HbA1c level is greater
than or equal to 10%. Only bins with a size of at least 10 are
considered valid.

Model Construction
Treatment outcome prediction models are constructed for
every treatment transition in the graph (►Fig. 3). Eachmodel
is constructed from vector data belonging to the same
transition. Models that are the same color can be regarded
as comparable since these models share common OPDs. The
target variable of each model is the probability of achieving
treatment targets such as controlling HbA1c to less than 7.0%
within 3 or 6 months. We selected the probability as the

Fig. 1 Treatment pathway graph.

Fig. 2 Valid HbA1c range calculation process. HbA1C, hemoglobin A1c.
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prediction target rather than a continuous HbA1c level
because the variance of the point-estimations of HbA1c
levels is very large. Also, we felt that the probability of
reaching the treatment goal would be easier for patients to
understand than an estimatedmean value with a confidence
interval, especially when comparing multiple alternate
treatment options side-by-side.

To enable robust predictions evenwhen the sample size is
not large, models are constructed as stacked ML models that
consist of support vector regression37 (SVR) and logistic
regression38 (LR) (►Fig. 4). The SVR models the nonlinear
relationship between the baseline HbA1c and the posterior
HbA1c since the baseline HbA1c is a dominant predictor of
treatment outcome. The LR considers the effect of other
auxiliary predictors of treatment outcome. The LR also
converts outputs to probabilities.

To predict the impact of weight loss as well as pharmaco-
therapy, the likely impact of 5% weight loss is embedded
into each model between the two models. The effect is
calculated by the following equation, which was introduced
based on a systematic reviewof prospectiveweight loss trials
in patients with T2DM39:

DHbA1c¼ áþ â ·DWeightþ ã · (BaselineHbA1c�7.7) ·DWeight

where á¼�0.084, â¼0.101, ã¼0.025, and DWeight
represents a percent change.

Personalized Prediction
When TPGE performs predictions, the OPDs of the target
patient are used to identify the patient’s position in the TPG.
Based on the set of edges connected to the patient’s node, the
valid treatment options are extracted. The prediction algo-
rithm then performs outcome prediction for every treatment

option indicatedbypredictionparameters. If a specifiedoption
is not included in the valid transitions or the patient’s HbA1c
level is out of the valid range corresponding to the option, an
exception is returned to signify that there are not enough past
records to perform a valid prediction for the option. This
approach is designed to prevent excessive extrapolations
that may lead to speculative and inaccurate predictions.

While the general T-learner approach focuses on the differ-
ence of the expected outcomes between treatment units and
control units, TPGEmainly focuses on theexpectedoutcomeof
each treatment option and uses it as an output value. The
reason is that the comparable treatment transitions on TPG
share the same control group and retain the magnitude
relation between their expected outcomes with or without
comparison to the outcome of the control condition.

Model Evaluation
We applied TPGE to actual patient care data from University
of Utah Health and compared its performance with other
baseline ML methods. The dataset contained information on
27,904 patients with T2DM who were cared for in the
primary care clinics of University of Utah Health. The inclu-
sion criteria of the data and the evaluation processes are
shown in ►Fig. 5. The dataset encompassed January 2012
through June 2017.

A total of 30,364 and 30,109 records belonging to 10,921
patientsmeeting the criteriawere extracted for 3-month and
6-month predictions, respectively. They were randomly
divided into a training set and a testing set in a ratio of
7:3, with records from the same patient being distributed to
only one of the datasets. ►Table 3 shows the data character-
istics for the 14 analyzed features besides diagnoses and
medications. These features were selected based on (1)
correlation analysis between the features and the posterior

Fig. 3 Model construction on treatment pathway graph.

Fig. 4 Stacked model.
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HbA1c levels, (2) review and discussion of sample patient
cases by the project team, which includes two practicing
primary care physicians (M.F. and F.H.S.) and a practicing
clinical pharmacist (K.M.T.), and (3) availability of support
for the data in standard EHR–FHIR interfaces.

As a qualitative evaluation, we conducted a fivefold cross
validation for hyperparameter tuning on the training dataset,
then conducted the final evaluation using the testing dataset.
The Brier Score40 (BS) was used to evaluate the accuracy of
predicted probabilities for both the validation and final evalu-
ation. As baselineMLmodels, RFandGBTwere evaluatedusing
the same evaluation process. Both algorithms were applied to
the analytics-ready vector directly. Hyperparameters of all the
models are available in the ►Supplementary Table S1 (avail-
able in the online version only). To transform the outputs of RF
and GBT into probability distributions, two types of models,
one without any calibrations and the other one with Platt
calibration,41 were trained simultaneously in the validation
process. Then, the better performing model was selected for
each algorithm. For summarized performance evaluation, we
evaluated the overall BSs for all supported transitions. In this
evaluation process, when the number of records on each
treatment transitionwassmaller than10,wedidnot construct
the correspondingmodel for that transitionanddropped those
records from the evaluation framework. As described below,
this means that all possible transitions are not covered by this
evaluation. The treatment transitions supported by TPGE are
investigated in terms of potential transitions and associated
number of records.

Fig. 5 Model training, testing, and validation process.

Table 3 Data characteristics for model features besides
diagnoses and medications

Category Item Valuea

Demographic
data

Age 60.7 y old

Gender Male 46.6%,
Female 53.4%

Vital signs Body weight 95.5 kg

Body mass index 33.7 kg/m2

Systolic blood
pressure

127.9mm Hg

Diastolic blood
pressure

74.6mm Hg

Laboratory
tests

HbA1c 7.4%

Sodium 138.6mmol/L

Aspartate
transaminase
(AST)

27.7 U/L

Low-density
lipoprotein
(LDL)

90.8mg/dL

Total protein 7.3 g/dL

Fasting glucose 143.5mg/dL

Triglycerides 182.4mg/dL

Estimated glomerular
filtration rate (eGFR)

71.0mL/min/
1.73 m2

aMean for numeric items, ratio for categorical items.
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In addition to the qualitative evaluation, we conducted a
simulation study to evaluate the potential advantage of TPGE
with regard to robustness of prediction.We created simulated
patient records for every treatment transition in the testing
dataset by setting their values to the population median of
each treatment transition, duplicating these records, and
setting the baseline HbA1c level to values spanning 6.5 to
10.5% in increments of 0.1%. We applied all models to predict
the probability of achieving HbA1c of less than 7.0% within
3 months. We then compared the prediction results to the
actual rate of goal achievement for patients with similar
characteristics in the testing dataset.

EHR Integration
Our vision was to integrate a CDS tool with the EHR to
seamlessly support T2DM pharmacotherapy decisions that
leverage the experience of past patients through predictive
analytics. We developed an EHR-integrated, AI-driven CDSS
encapsulating the prediction models. The CDSSwas developed
based on the Health Level Seven International (HL7) Substitut-
able Medical Applications and Reusable Technologies on Fast
Healthcare Interoperability Resources42 (SMART on FHIR)
framework, which is a framework for integrating web-based
applications into the native EHR user interface that is gaining
significant adoption among EHR vendors.43,44

►Fig. 6 provides an overview of the CDSS that consists of
three primary components: a Python-based prediction
module, an OpenCDS-based web service for encapsulating
the predictionmodule and providing guidance, and a SMART
on FHIR web-based dashboard built on Ratpack.45 The
prediction module was built on Flask,46 a Python-based
web application framework.

OpenCDS is a standard-based web service framework for
CDS that includes a CDSHooks47 interface for receiving patient
data as FHIR resources, processing the data using discrete

knowledge modules, and providing CDS guidance back to the
EHR.48 In this study,we encapsulated the predictionmodule as
an OpenCDS knowledge module. The CDSS uses this CDS web
service to process FHIR patient resources that serve as predic-
tion parameters through the CDS Hooks interface.

The dashboard uses the HAPI-FHIR49 application
programming interface (API) to obtain and manipulate
FHIR Draft Standard For Trial Use Release 2 (DSTU2) data
from the EHR, and SMART is used to integrate the CDSSwith
the EHR user interface. The dashboard can provide the
relevant important information (►Table 4) as well as
prediction results to help clinicians and patients select the
personalized treatment strategy by mutual agreement. The

Fig. 6 Overview of clinical decision support system.

Table 4 Information provided in dashboard

Category Information provided

Current
state

Relevant laboratory results (e.g., HbA1c)
and vital signs (e.g., weight)a

Medication treatment historya

Allergies to diabetes medicationsa

Treatment
goal

HbA1c goal in 3 or 6 mob

Treatment
options

Success rate of medication optionsc

Benefits and side effects of medication optionsd

Rule-based guidance for medication optionsd

Medication cost information, including
coverage by the patient’s insurance providerd

Review Previous treatment goala

Summary of treatment plan

Abbreviations: CDS, clinical decision support; EHR, electronic health
record; HbA1c, hemoglobin A1c.
aExtracted from EHR.
bInput on dashboard.
cPrediction result.
dComputed using EHR data and CDS knowledge base.
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patient’s insurance information is pulled from EHR as an
FHIR coverage resource. The covered drug list was compiled
by a clinical pharmacist. Information on the benefits and
risks was compiled from the ADA Standards of Diabetes
Care.25 The medication cost provided is the National Average
Drug Acquisition Cost (NADAC) provided by the Center for
Medicare and Medicaid Services.50

The EHR used was Epic. The native EHR infrastructure for
SMART on FHIR was generally used, with the exception of
additional FHIR interfaces that were implemented by
the project team to support the Goal and insurance Coverage
FHIR resources on a proxy server that augmented the
FHIR interfaces provided natively by the EHR. The standard
EHR-supported FHIR resources used included resources for
patient, medication, medication order, observation, and
allergy intolerance.

User Centered Design Process
The methods used to design the dashboard were iterative and
conducted over many months. The team consisted of two
physicians, two pharmacists, two cognitive psychologists, as
well as the technical team.Methods beganwith team reviewof
prototypes, followedbya formal heuristic reviewof thedisplay,
and,finally, a formal user-basedvignette-based study involving
six users. The simulation study focused on three levels: (1)
basic usability, including visibility, clarity, navigation, and
understandability; (2) assessment of usefulness and adequate
functionality for making clinical decisions, including informa-
tion needs, task sequencing, error recovery, and query tools;
and (3) perceived satisfaction, learnability, and effort. At each
stage, the dashboard was modified based on results. A fuller
reviewof the user experience, design, and formative evaluation
is currently in progress.

Results

Model Evaluation
Through the TPG construction, 67 treatment transitions were
extracted for 3-month predictions. Thirty-two transitionswere
for adding or changing drugs and 35 transitions were for
keeping the OPDs. Sixty-one treatment transitions were
extracted for 6-month predictions. Twenty-eight transitions
were for adding or changing drugs and 33 transitions were
for keeping the OPDs. The coverages of treatment paths for
3-month and 6-month predictions were 93.7 and 95.1% with
regard to thenumberof records, respectively.All thetransitions,
their validHbA1crange, andthenumberof recordsareavailable
in ►Supplementary Tables S2 and S3 (available in the online
version only).

►Tables 5 and 6 show the performance of all methods for
3- and 6-month predictions, respectively. With the valida-
tion dataset, TPGE resulted in the best performance for all
treatment targets and prediction durations. With the testing
dataset, TPG resulted in the best performance for all five
treatment targets for 3-month predictions and for three of
five targets for 6-month predictions. TPGE resulted in the
best performance for the average of all treatment targets for
both prediction durations.

Table 5 Predictionperformance for3-month treatmentoutcomes.
Parentheses denote standard deviations in cross validation

Target Model Validation BS Testing BS

<6.5% RF 0.2294 (0.0256) 0.1634

GBT 0.1684 (0.0198) 0.1430

TPGE 0.1315 (0.0025) 0.1389

<7.0% RF 0.1949 (0.0237) 0.1939

GBT 0.1961 (0.0243) 0.1616

TPGE 0.1437 (0.0032) 0.1576

<7.5% RF 0.2741 (0.0569) 0.1682

GBT 0.1727 (0.0067) 0.1448

TPGE 0.1319 (0.0027) 0.1405

<8.0% RF 0.2197 (0.0828) 0.1307

GBT 0.1317 (0.0102) 0.1121

TPGE 0.1059 (0.0022) 0.1098

<8.5% RF 0.0944 (0.0040) 0.1030

GBT 0.0945 (0.0040) 0.0854

TPGE 0.0809 (0.0018) 0.0850

Average RF 0.2025 (0.0386) 0.1518

GBT 0.1527 (0.0130) 0.1294

TPGE 0.1188 (0.0025) 0.1264

Abbreviations: BS, Brier Score; GBT, Gradient Boosting Tree; RF, Random
Forest; TPGE, Treatment Pathway Graph-based Estimation.

Table 6 Predictionperformance for 6-month treatmentoutcomes

Target Model Validation BS Testing BS

<6.5% RF 0.2042 (0.0308) 0.1612

GBT 0.1886 (0.0320) 0.1587

TPGE 0.1532 (0.0026) 0.1560

<7.0% RF 0.2842 (0.0869) 0.1896

GBT 0.1912 (0.0330) 0.1645

TPGE 0.1526 (0.0023) 0.1617

<7.5% RF 0.1835 (0.0511) 0.1600

GBT 0.1841 (0.0518) 0.1387

TPGE 0.1318 (0.0031) 0.1392

<8.0% RF 0.1390 (0.0384) 0.1206

GBT 0.1390 (0.0384) 0.1066

TPGE 0.1020 (0.0016) 0.1067

<8.5% RF 0.2244 (0.1525) 0.0897

GBT 0.1077 (0.0436) 0.0792

TPGE 0.0763 (0.0015) 0.0777

Average RF 0.2070 (0.0719) 0.1442

GBT 0.1621 (0.0398) 0.1295

TPGE 0.1232 (0.0022) 0.1283

Abbreviations: BS, Brier Score; GBT, Gradient Boosting Tree; RF, Random
Forest; TPGE, Treatment Pathway Graph-based Estimation.
Note: Parentheses denote standard deviations in cross validation.
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►Figure 7 shows the simulation results for one treatment
transition from MET to METþ SUL. The prediction curves of
all models exist within the confidence interval of the actual
target-achievement ratio. TPGE shows the smoothest
response along changes in patients’ baseline HbA1c level.
RF and GBT have regions in which the probability does not
respond to changes in HbA1c levels, especially those over
8.5%. These regions in the RF and GBT models may deliver
information that do not make sense to clinicians and
patients, as increases in baseline HbA1c levels should—but
do not—decrease the probability of reaching the treatment
goal under these models.

Integration with EHR
The CDSS utilizing the prediction models was successfully
integrated with the Epic EHR of University of Utah using
SMARTon FHIR, and iterative enhancements have beenmade
based on clinician feedback. ►Figure 8 shows the Options
Comparison tab of the dashboard. This tab enables clinicians
and patients to compare up to three potential treatment
options as well as weight loss with regard to: (1) the
predicted success rate of achieving treatment goals, (2)
risks, benefits, and medication costs, and (3) relevant
medications from the drug class included in formulary of
the patient’s insurance plan. The treatment goal can be set at
3 or 6 months for a target HbA1c value of 6.5, 7.0, 7.5, 8.0 or
8.5%. The relevant data are pulled from the EHR as FHIR
patient, observation, medication order and goal resources.

The CDSS is available in the production EHR system at
University of Utah Health. The application has been accessed
by 70 users for 554 patients between October 1st, 2018 and
December 31st, 2020.

Discussion

Summary of findings: To help address the significant burdens
associatedwith themanagement of T2DM, this project sought
to develop AI-driven CDS methods. A novel analytical method
that we refer to as TPGEwas developed for treatment outcome
predictions. Using a dataset of 27,904 patients with diabetes,
models for predicting the outcomeof T2DMpharmacotherapy
were developed, and these models were found to outperform
baseline ML models using GBT and RF methods. We also
successfully integrated the predictive models into the EHR
through a SMART on FHIR dashboard that complements the
predictive models with rule-based knowledge and leverages
the open-source and standards-based OpenCDS platform.

Fig. 7 Predicted curves for simulated patients: Three methods were
applied to simulated patients on the transition from MET to METþ
SUL. Target achievement probabilities are predicted for controlling
HbA1c less than 7.0% in 3 months. Actual ratios were calculated by
grouping records on the transition by 1.0%. The error bars show 95%
confidence intervals of the actual ratio. MET, metformin; SUL,
sulfonylureas.

Fig. 8 Options comparison tab in the dashboard: The clinician and patient can review potential treatment options in detail using this view.
Comparative data are provided for three treatment options. The “success rate” shows the predicted probability of treatment success for each
potential treatment regimen. The effect of 5% body weight loss is also shown for the current medication regimen. The predictions are specific to
the current patient and are based on the various data points that have been pulled in from the EHR. Clinicians and patients can also review the
benefits and risks of eachmedication option. In addition, cost information is provided, including the National Average Drug Acquisition Cost. The
patient’s insurance information is pulled in from the EHR, and coverage information specific to the patient’s insurance is provided (All synthetic
data). EHR, electronic health record.
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Strengths: A key strength of this study is that we have
described a novel approach to developing predictive models
for treatment outcome predictions that has several benefits
over traditional ML approaches such as GBT and RF. These
advantages include enhanced predictive performance; predic-
tions that are more aligned with clinical intuition on how
treatment success should change with patients’ baseline
values; high coverage for treatment patterns encountered in
actual clinical practice; and a systematic approach to identify-
ing when there is insufficient data to provide an accurate
prediction. Second, to our knowledge, this manuscript repre-
sents the first description of an application integrated with a
major commercial EHR system that directly supports treat-
ment selection in chronic disease management by using
predictive modeling. In particular, the use of SMART on FHIR
increases the dissemination potential of the application given
thesignificantdegree towhichmajor commercial EHRvendors
including Epic and Cerner are supporting this approach to
enable an app-based ecosystem for innovation and care
improvement. Third, while there are undoubtedly significant
potential benefits for employing ML in the management of
common chronic conditions, it is not always clear how best to
integrate the insights generated from these computational
techniques into busy primary care practices. Thus, this study
provides useful information on how such ML-based insights
can be interwoven with other information that primary care
clinicians find valuable.

Limitations: One limitation of this study is that confounders
may exist outside of the explanatory variables included in the
models. However, we did include many variables, the models
have strong predictive power, and additional variables were
initially explored, even if not ultimately included in the final
models. We are also considering, but have not yet, used
methods such as propensity scoring51 to adjust for this
confounding. A second limitation of this study is that our
CDSS is currently unable to predict the impact of dosage
changes, changes in therapeutic agents within a drug class,
or rare pharmacotherapy regimens with a small sample size.
Thesolution to these limitationswill be to increase thescopeof
the dataset used formodel development, and active efforts are
underway to do so. As a third limitation, not all information
that is desired by clinicians and patients to decide on T2DM
management is available in the CDSS. For example, users have
asked for additional information, in particular the actual
patient co-pay costs for different medications rather than
estimates of costs. We anticipate including this type of infor-
mationasAPIsmature forobtainingsuchfinancial information
at the point of care. As a fourth limitation, the full implication
of providing ML results to clinicians and patients has not
been fully explored. Theremay bebias in how the information
is interpreted, cliniciansmay be uncertain about how to apply
the information, and there may be issues ofmatching the data
to the clinical question that have not been fully clarified. To
evaluate the actual effectiveness of our methods, a formative
evaluation of our CDSS has been conducted through prospec-
tive evaluation at theUniversity of Utah. Fifth, external valida-
tion is needed for the model training approach as well as
resulting predictive models, and evaluation is needed on the

extent to which models trained in this manner require local
adaptation prior to use. Active work is currently underway in
this area. Sixth, the models, model training tools, and SMART
on FHIR app are not currently publically available. We are
exploring potential options for disseminating these artifacts.
Finally, we have not yet deployed the SMART on FHIR app
across health systems and EHR platforms. While many of the
requirements of the app are widely supported across health
systems and EHR platforms (e.g., SMART on FHIR approach to
app integration, FHIR resources included in the U.S. Core Data
for Interoperability), and some core FHIR data such as medi-
cations and conditions are already mapped to standard codes
in EHR systems, there are several areas where additional local
adaptations may be required. For example, the FHIR Coverage
resource is not a part of the U.S. Core Data for interoperability,
as such, providing insurance-based financial guidance will
require broad adoption of the FHIR resource across EHR
platforms or the augmentation of the EHR platform to support
this information, as was done in our implementation. Such
augmentation may not be technically possible in all EHR
platforms. Furthermore, local data (e.g., laboratory data)
may need to be mapped to standard terminologies such as
Logical Observation Identifiers Names and Codes (LOINC)
where not already done. However, the data points requiring
mapping are finite, and with appropriate tools and processes,
such mappings can be completed efficiently and accurately.
Thus, while challenges certainly exist, we remain optimistic
that the core functionality of the SMART on FHIR CDSS app
described in this manuscript can be widely deployed.

Implications: This study shows that machine learning
insights can be introduced to the point of care using
approaches including treatment outcome modeling, SMART
on FHIR for EHR integration, a patient-friendly user interface,
and the incorporation of supplemental information impor-
tant to the decision-making processing. If individualized
predictions are misaligned with population-based recom-
mendations from standard clinical practice guidelines, it is
essential that clinicians and patients are provided with all
the information needed to make an informed decision
together.

Future directions: Moving forward, we are in the process of
conducting a prospective evaluation of our methods. More-
over, we are seeking to use larger datasets to enable predic-
tions basedon individualmedications (rather thanmedication
classes), dosage history, and less frequently prescribed medi-
cation regimens.

Conclusion

A novel approach to developing predictive models for treat-
ment outcomes of chronic diseases was proposed and found
to outperform traditional ML approaches. These predictive
models were then successfully integrated with the EHR
through a SMART on FHIR CDSS for T2DM. The approach
used could potentially be applied to many other chronic
conditions to bring AI-driven CDSS to the point of care. A
formal prospective evaluation is underway for evaluating the
impact of the developed system on patient outcomes.
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