Table 1.
Method | Procedural | Non-Procedural | A | Macro | Weighted | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | wP | wR | wF1 | ||
RandomForest | 0.738 | 0.913 | 0.816 | 0.747 | 0.443 | 0.556 | 0.740 | 0.743 | 0.678 | 0.686 | 0.741 | 0.740 | 0.721 |
MultinomialNaïveBayes | 0.717 | 0.965 | 0.823 | 0.852 | 0.344 | 0.491 | 0.737 | 0.785 | 0.655 | 0.657 | 0.767 | 0.737 | 0.701 |
LinearSVM | 0.706 | 0.964 | 0.815 | 0.835 | 0.308 | 0.450 | 0.723 | 0.770 | 0.636 | 0.633 | 0.753 | 0.723 | 0.681 |
LogisticRegression | 0.678 | 0.981 | 0.802 | 0.861 | 0.199 | 0.323 | 0.694 | 0.770 | 0.590 | 0.562 | 0.745 | 0.694 | 0.626 |
FastText | 0.821 | 0.846 | 0.833 | 0.720 | 0.683 | 0.701 | 0.786 | 0.771 | 0.765 | 0.767 | 0.784 | 0.786 | 0.785 |
FastText[bal] | 0.824 | 0.846 | 0.835 | 0.722 | 0.689 | 0.705 | 0.788 | 0.773 | 0.767 | 0.770 | 0.786 | 0.788 | 0.787 |
1D-CNN | 0.889 | 0.834 | 0.861 | 0.742 | 0.821 | 0.780 | 0.829 | 0.816 | 0.828 | 0.820 | 0.835 | 0.829 | 0.831 |
1D-CNN[bal] | 0.881 | 0.851 | 0.866 | 0.758 | 0.803 | 0.780 | 0.833 | 0.819 | 0.827 | 0.823 | 0.836 | 0.833 | 0.834 |
BiLSTM | 0.894 | 0.896 | 0.895 | 0.820 | 0.817 | 0.818 | 0.867 | 0.857 | 0.856 | 0.857 | 0.867 | 0.867 | 0.867 |
BiLSTM[bal] | 0.887 | 0.910 | 0.898 | 0.837 | 0.801 | 0.819 | 0.870 | 0.862 | 0.855 | 0.859 | 0.869 | 0.870 | 0.869 |
BERT | 0.875 | 0.916 | 0.895 | 0.843 | 0.775 | 0.808 | 0.864 | 0.859 | 0.845 | 0.851 | 0.863 | 0.864 | 0.863 |
BERT[bal] | 0.867 | 0.922 | 0.894 | 0.850 | 0.757 | 0.801 | 0.862 | 0.859 | 0.840 | 0.847 | 0.861 | 0.862 | 0.860 |
ClinicalBERT | 0.886 | 0.915 | 0.900 | 0.845 | 0.797 | 0.821 | 0.872 | 0.866 | 0.856 | 0.860 | 0.871 | 0.871 | 0.871 |
ClinicalBERT[bal] | 0.874 | 0.922 | 0.897 | 0.851 | 0.8771 | 0.809 | 0.866 | 0.862 | 0.846 | 0.853 | 0.865 | 0.866 | 0.865 |
“[bal]” indicates training on a 50–50 balanced dataset (upsampling)
Bold values indicate the highest values of the Macro-F1 and Weighted-F1 for each category of classification method considered