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Temporal stability of stimulus representation
increases along rodent visual cortical hierarchies
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Cortical representations of brief, static stimuli become more invariant to identity-preserving
transformations along the ventral stream. Likewise, increased invariance along the visual
hierarchy should imply greater temporal persistence of temporally structured dynamic sti-
muli, possibly complemented by temporal broadening of neuronal receptive fields. However,
such stimuli could engage adaptive and predictive processes, whose impact on neural coding
dynamics is unknown. By probing the rat analog of the ventral stream with movies, we
uncovered a hierarchy of temporal scales, with deeper areas encoding visual information
more persistently. Furthermore, the impact of intrinsic dynamics on the stability of stimulus
representations grew gradually along the hierarchy. A database of recordings from mouse
showed similar trends, additionally revealing dependencies on the behavioral state. Overall,
these findings show that visual representations become progressively more stable along
rodent visual processing hierarchies, with an important contribution provided by intrinsic
processing.
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he visual system of mammals supports discrimination and

categorization of objects despite variation in their

appearance, resulting from, e.g., translations, rotations, and
changes of scale!-3. Decades of research on nonhuman primates
have shown that this ability (known as invariant object recogni-
tion) results from processing in the ventral visual stream, a
hierarchy of cortical areas along which invariance to object
transformations emerges progressively from largely feedforward
computations’*>. While neurons at early stages of this pathway
(e.g., simple cells in primary visual cortex; V1) are highly sensitive
to variation in the appearance of their preferred stimuli (e.g., the
position of oriented edges), units at the apex of the hierarchy (the
anterior inferotemporal cortex; IT) maintain their tuning for
visual objects despite, e.g., position and scale changes. Thus, IT
neurons better support invariant object recognition as compared
to lower-level areas®~10. However, these conclusions mainly
derive from studies relying on presentation of brief, static visual
stimuli, designed to engage feedforward processing while mini-
mizing the influence of recurrent and top-down processes and
adaptation. Thus, it remains unknown how invariance along the
ventral stream emerges under naturalistic viewing conditions
involving dynamic stimuli (e.g., natural movies lasting several
seconds).

Under naturalistic stimulation, an increase of invariance along
the ventral stream (as tested with static objects) should translate
into an increase of temporal stability of neuronal responses,
possibly complemented by increases of stability due to broader
temporal tuning of neurons in higher areas!!"12. The link between
invariance and temporal stability can be understood by con-
sidering an idealized invariant object detector (Fig. 1). Such a unit
would respond to its preferred object (e.g., a “rat head”) within its
receptive field (RF; Fig. la, yellow shape) regardless of the posi-
tion, size or orientation. Thus, the unit should start firing to
report the presence of the object when it enters its RF, and should
keep firing at roughly the same rate while the object smoothly
transforms (e.g., translates/rotates) within the RF (Fig. 1b top,
green trace). By contrast, a poorly invariant, lower-level unit (e.g.,
a Vl1-like edge detector) should fire transiently (Fig. 1b bottom,
green trace), given that features matching its selectivity will
quickly enter and exit its much smaller RF (orange circle in
Fig. 1a), as the movie unfolds. The relationship between invar-
iance and temporal stability (or slowness) is at the base of many
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Fig. 1 Effect of adaptation on the response timescale of high- vs. low-
level feature detectors (cartoon). a Dynamical visual stimulus (movie
frames). Orange dot, yellow shape: idealized receptive field of a low-level
feature detector neuron (“edge detector,” orange) and a high-level feature
detector (“rat head detector,” yellow). b Single-trial response of the two
example neurons, when adaptation is absent (green trace) and when
adaptation is strong (blue trace). Note how adaptation shortens the
timescale of the response.

theoretical accounts of invariance along the ventral stream, where
temporal continuity of the visual input is exploited by unsu-
pervised  learning  mechanisms to  build invariant
representations!3-22, This relation between invariance and tem-
poral stability is also consistent with any feedforward processing
hierarchy (e.g., convolutional neural networks?3), in which the
instantaneous response of units to the current input only depends
on the input itself and not on previous activity of the unit or the
current state of the network. In this scenario, an object smoothly
transforming within a dynamic scene is treated and processed as a
sequence of static, independent snapshots, so that object invar-
iance translates into temporal stability. Of course, increasing
temporal stability can also arise from other mechanisms, such as a
broader temporal tuning of neurons in higher areas. In this case, a
hierarchical grow of temporal scales would be observable inde-
pendently of whether object identity remains stable while the
dynamic stimulus unfolds over time.

An alternative scenario is one where nontrivial history- and
state-dependent computations significantly modify the temporal
dynamics of neuronal responses, when tested with naturalistic
dynamic inputs. For instance, adaptation has been shown to
depress visual cortical responses to repeated presentation of per-
ceptually similar visual stimuli in both monkeys and humans?*-29,
resulting in reduced discriminability of the adapted stimuli%’.
fMRI evidence in humans suggests that the impact of adaptation
mechanisms may increase along the ventral stream?8-30 and that
neural responses in higher areas of the hierarchy may be driven
more strongly by transient than sustained stimuli3%31. Similarly,
in rats, adaptation has been shown to increase in magnitude along
the cortical shape-processing hierarchy3?, attenuating the
responses to predictable stimuli®3. Finally, in primates, adaptation
is at least partially preserved across object transformations (e.g., a
smaller object can adapt the response to a larger object), as shown
in both neurophysiological>#-3¢ and behavioral studies7-38,
Together, these effects could counteract increases in response
persistence from increased invariance or broader temporal tuning,
as shapes that are temporally stable (e.g, a translating or
expanding object) could strongly and continuously adapt neuronal
responses until a new, surprising stimulus (i.e., a novel object)
enters the neurons’ RFs. This is illustrated in Fig. 1b (blue curves),
where the idealized “rat” detector unit, after an initial, transient
response to its preferred object (the “rat head”), stops reporting
the presence of the object within its RF, thus behaving similarly to
a lower-level, edge-detector unit. More broadly, the predictive
coding framework posits that, within certain cortical circuits, only
error or surprise signals are encoded, their temporal dynamics
naturally depending on a top-down signal carrying the input
prediction3®-41. This leads to an alternative hypothesis that the
timescale and persistence of neural responses do not increase
across the cortical hierarchy, as each area encodes surprising
features of the response of the previous area (example cartoon in
Fig. la, b). Some of these intuitions can be formalized by a
computational model of adaptation*?, such that response time-
scales to dynamic stimuli become progressively shorter as a
function of the strength of adaptation (see Supplementary Text).

More generally, mechanisms that alter the current state of the
visual pathway in an activity-dependent way can have other types
of effect on the temporal dynamics of the neural code, regardless
of whether they tend to make representations more temporally
sparse (like adaptation) or more stable (like temporally extended
integration of synaptic stimuli or recurrent excitation within local
circuits!1#3), In presence of noise, the existence of such
mechanisms can be revealed by measuring the temporal span
over which fluctuations of the firing rate are correlated (e.g.,
across repeated presentations of the same sensory input). This is
typically called the intrinsic timescale of the recorded activity*4.
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Fig. 2 Functional identification of rat visual cortical areas. a Left: overlay of a fluorescence image on a bright-field image of a coronal slice of rat visual
cortex, from which neuronal recordings were obtained using a single-shank silicon probe with 32 recording sites, spanning 1550 um. Before being inserted
obliquely into cortex (to target lateral extrastriate areas LI and LL), the probe was coated with a red fluorescent dye that allowed reconstructing its

insertion track (red stain). The close-up view shows the geometry of the probe (white lines) alongside the insertion track and the relative positions of the
recording sites (white dots), from the tip (site # 1) to the base (site # 32) of the probe. Right: firing intensity maps showing the RFs of the units recorded
at selected recording sites along the probe (indicated by the numbers under the RF maps). The reversal in the progression of the retinotopy between sites
16 and 17 marks the boundary between areas LI and LL (shown by a dashed line on the left panel). b, ¢ Retinotopic progressions of the RFs recorded in two
other example sessions. One session featured a single reversal between LL and LI within a span of the recording sites of 1550 pm (b). The other session
featured two reversals, one between V1 and LM and another one between LM and LI, which were made possible by the larger depth spanned by the probe

(3100 pm).

Interestingly, it was found that intrinsic timescales increase along
various cortical hierarchies in primates and rodents*44>, How-
ever, the interaction between invariant encoding of object infor-
mation and intrinsic processing along the ventral stream is not
understood, and we do not know whether the net result is an
ordered progression of temporal scales of neural processing. In
addition, it is unknown how these processes interact with
top—down modulation signals that reflect the attentive, motiva-
tional, or locomotory state of a subject#0->! and whose influence
on the processing of dynamic visual stimuli is still largely
unexplored.

To address these questions, we must perform neurophysiolo-
gical recordings along an object-processing hierarchy during
presentation of dynamic stimuli, ideally from the bottom to the
top stage of the processing chain. The primate ventral stream
would be the ideal target for such investigation, but the anatomy
and size of the monkey brain makes it difficult to compare more
than a pair of visual cortical areas in a single study (e.g., see
refs. 78°2). By contrast, the small size of the rodent brain, the
spatial contiguity of rodent visual cortical areas, and the possi-
bility of using a much larger number of animals than in monkey
studies make it easier to probe and compare multiple visual
regions (e.g., see refs. >3-2%). Critically, during the last decade, a
number of functional and anatomical studies in mice and rats
have convincingly shown that visual information is processed in a
hierarchical fashion across the many extrastriate visual areas that,
in rodents, surround V1°34 In particular, it has been shown
that, along the progression of visual areas that run laterally to rat
V1, many key tuning and coding properties evolve according to
what is expected for a ventral-like, object-processing
pathway32:335>-57 including the ability to support invariant
visual object recognition—a finding that has been recently
replicated in mice>S,

Based on this wealth of evidence, we decided to compare the
timescales of cortical processing of dynamic visual stimuli across
the rat analog of the ventral stream—i.e., V1 and the progression
of extrastriate areas located laterally to V1: the lateromedial (LM),
laterointermediate (LI), and laterolateral (LL) areas. To maximize
the stability and duration of the recording sessions, as well as the
number of repeated presentations of the movies used to probe
these areas, neuronal recordings were performed under
anesthesia®>>7>%, We found that neural activity displays a hier-
archy of temporal scales, as expected for a processing pathway
where invariance is built through a cascade of feedforward
computations. At the same time, we found that intrinsic temporal
scales also become longer, and intrinsic correlations become more
important in determining the overall temporal persistency of the
neural representations, as one progresses from primary visual
cortex (V1) toward higher-level areas. We checked the generality
of these findings by analyzing two additional, existing datasets
where visual cortex of awake rodents was probed with natural
movies!2%0. Interestingly, the trends found in our experiments
were replicated (and even sharper) in awake, head-fixed mice that
were running on a wheel, but they were attenuated during epochs
in which the animals remained still, and were fully absent in
awake, head-fixed rats that were body-restrained.

Results

To investigate the temporal structure of neural representations of
dynamic visual scenes, we used 32-channel silicon probes to
record from cortical areas V1, LM, LI, and LL in anesthetized rats.
These areas are arranged in an anatomical progression that
allowed us to reach each sequentially, with a single diagonal
penetration, stopping at a desired location, so as to distribute the
recording sites across two or three adjacent regions (example
session in Fig. 2a left, where the probe targeted LI and LL).
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To infer the cortical area of each sampled unit, we used a
functional identification procedure that is standard in electro-
physiology and imaging studies of rodent visual cortex>>>4. That
is, we tracked the progression of the RFs recorded along the
probe, mapping reversals of retinotopy that delineate borders
between adjacent areas>>>7. To this end, before the main sti-
mulus, we run an RF mapping procedure, by displaying drifting
bars with four different orientations over a grid of visual field
locations. Figure 2a (right) shows the outcome for an example
session, where the RFs recorded along the linear probe shown on
the left are displayed as firing intensity maps over the visual field
spanned by the monitor. Tracking this progression from the base
(channel 32) to the tip (channel 1) of the probe revealed a reversal
of the retinotopy (channels 16-17) corresponding to the
boundary between areas LI and LL. Figure 2b shows the same
reversal for another session, while Fig. 2c shows a session where
the probe spanned three areas (V1, LM, and LI), resulting in two
reversals of retinotopy.

In each session, RF mapping was followed by presentation of
nine 20-s-long movies, including six natural dynamic scenes, and
three synthetic movies (a random sequence of white-noise pat-
terns and Fourier phase-scrambled versions of two of the natural
movies—see “Methods” and Supplementary videos). Four of the
natural movies (termed “manual” below) were obtained by
sweeping a hand-held camera at two speeds (“slow” and “fast”)
across an arena filled with 3D-printed geometrical shapes painted
either black or white (example frames in Fig. 3a). The other two
movies (termed “ratcam” below) were obtained by placing a
camera on the head of a rat freely exploring an arena with the 3D-
printed objects and another rat. Overall, 294 well-isolated units
recorded in 18 rats were used in our analysis (see “Methods” for
selection criteria): 168 from V1, 20 from LM, 36 from LI, and 70
from LL.

Cortical representation timescales are stimulus- and area-
dependent. We first characterized the temporal structure of visual
stimuli®!. Briefly, for each movie, we computed the correlation
coefficient between pixels belonging to image frames separated by
a given lag. We fit the resulting dependence of the average cor-
relation on the lag (Fig. 3b, solid line) with a decaying exponential
(shaded areas). The exponential time constant defined the time-
scale of the movie (see “Methods”). This analysis showed that the
dynamics of our stimuli spanned a range of timescales, from ~30
ms for the white-noise movie to ~600ms for the slowest
natural movie.

The activity in each neuronal population was stimulus-
modulated, consistently across recorded neurons, for both fast
and slow movies (Fig. 3c, where each line color-codes the
response intensity of a LL (red) or V1 (green) unit to two
movies). Thus, the overall population-averaged activity (green
and red traces) was also strongly stimulus-modulated. To
characterize how the temporal structure of the stimulus-locked
responses depended on the visual input, we measured the
population response timescale for each visual area and each
movie by applying the same metrics defined above for the movie
stimuli to the time-binned (bin width: 33 ms) and trial-averaged
population response vectors®!. Referring to Fig. 3¢, we computed
correlation coefficients between vertical slices (bins of spike
counts) that were separated by a given lag (yellow frames), and
then averaged the resulting coefficients to measure signal
correlation®” as a function of lag (Fig. 4a, solid lines; below we
will term this “response correlation”). We fit the response
correlation with an exponentially damped oscillation or a simple
exponential based on a systematic model selection procedure
(black dashed lines; see “Methods”), and the decay constant of the

exponential envelope was taken as the timescale of the response
modulation. Next, we regressed the characteristic timescale of the
response against the characteristic timescale of the stimulus,
separately for each area, using a linear model with a common
slope across all areas and an area-dependent intercept (Fig. 4b).
The intercept is the baseline temporal timescale for stimulus-
driven responses in each area. This baseline was clearly higher in
the extrastriate areas (LM, LI, LL) than in V1, with smaller,
statistically insignificant differences between LM, LI, and LL (p =
0.4 for both LM vs. LI, and LI vs. LL; two-tailed ¢-test, t=0.8,
—0.8, df =31). Therefore, we repeated the regression analysis
after aggregating these three areas (gray line). This revealed that
response timescales in all areas depended strongly on the stimulus
timescale (slope: 0.71 + 0.14, significantly different from 0 at p =
le — 5, two-tailed t-test, t =5.2, df = 33), and that the response
timescale was significantly longer in extrastriate cortex than in V1
(intercept difference: 56 22 ms; p = 0.015, two-tailed t-test, t =
2.6, df = 33). Overall, these results show that the characteristic
temporal scale of the population representation of dynamic
stimuli depends on the temporal scale of the visual input, and that
representations in extrastriate cortex unfold over longer temporal
scales than in V1.

Intrinsic processing timescales increase along the ventral-like
pathway. As above, our results suggest that the timescale of sti-
mulus-locked, trial-averaged neural representations increases
from V1 to extrastriate cortex. The temporal scale of intrinsic
neural processing may also increase across cortical hierarchies at
the single cell** and population levels*>. We tested whether this
occurs in rat lateral visual areas by using the method described by
ref. 44, which is mathematically similar to the procedure used
above to compute the timescale of the population response vec-
tors, but considers the responses of a single cell across multiple
trials, rather than the average responses of multiple neurons
(“Methods” and Supplementary Fig. 1). This allowed us to cap-
ture the largely stimulus-independent, within-trial temporal
correlations in the spiking activity of a neuron, which were then
averaged over all the units of a population. The time dependence
of the resulting correlation function (solid lines in Fig. 4c) was fit
with an exponential or an exponentially damped oscillation,
based on systematic model selection performed independently for
each condition (black dashed lines; see “Methods”). The temporal
scale was characterized as the decay constant of the exponential
envelope of the fit. Finally, we linearly regressed the intrinsic
timescale of neural activity with the timescale of the movie sti-
mulus and the cortical area (Fig. 4d), as we did above for the
stimulus-driven response (Fig. 4b). The intercepts of the linear fit
revealed a clear hierarchical organization of the timescale of
intrinsic activity (V1: 36 £ 14 ms; LM: 120 + 14 ms; LI: 203 + 14
ms; LL: 213 £ 14 ms), with all extrastriate areas being significantly
different from V1 (p =5e — 7, 1le — 13, 2e — 14, respectively, for
LM, LI, LL, two-tailed t-test, t = 6.3, 12.6, 13.3, df = 31). We also
found mild dependence on the timescale of the movie (slope: 0.17
+0.07, p=0.02, two-tailed t-test, t = 2.4, df = 31), much weaker
than observed for the stimulus-driven response (compare Fig. 3b,
d). Interestingly, the range of intrinsic timescales recorded in our
experiment quantitatively matched that reported for sensory
cortex in behaving monkeys by ref. 44 and in behaving mice by
ref. 4°. Overall, these results show that the temporal scale of the
intrinsic  activity increases along rat lateral extrastriate
visual areas.

Temporal representation stability grows over the ventral-like
pathway. Temporal stability of a neuronal representation sup-
ports stable perception of visual input that unfolds smoothly over
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Fig. 3 Visual stimuli and example neuronal recordings. a Six consecutive example frames from one of the movies used as visual stimuli in our study. The
numbers on the bottom right of each panel give the time at which each frame appears. b Quantification of the characteristic timescale of the individual
visual stimuli (movies). The Manual and Ratcam labels refer, respectively, to movies that were taken either by moving a hand-held camera across an arena
filled with 3D-printed objects (some of them visible in @), or by installing a small camera over the head of a rat that was allowed to roam inside an arena
containing the 3D-printed objects and another rat. The PS label refers to Fourier phase-scrambled versions of the corresponding movies (see “Methods” for
details). In each panel, the black line shows the average correlation of pairs of image frames within a movie as a function of their temporal lag, while the
shaded area shows the best exponential fit. € Examples of population responses to two of the movie stimuli. In the color matrices, each row color-codes the
intensity of the trial-averaged response (computed in 33-ms time bins) of a neuron belonging to either the LL (red) or V1 (green) population. The color-
code is truncated to the 98th percentile of the firing rate distribution within each area for ease of display. The trace on top of each matrix shows the
corresponding population-averaged response. The yellow frames illustrate the procedure to compute the characteristic timescale over which the
population activity unfolded, in response to a given movie (see Fig. 4a, b). Source data are provided as Source Data files.

vector, as correlation coefficients behave like a dot product or a
cosine similarity measure. This is not necessarily the right notion
of similarity for discrimination problems. Thus, we sought a
direct test of the temporal stability of discrimination based on
neural population responses.

To this end, we imagined a task where an observer learns to
discriminate between visual input appearing at a time f, and that

time. For instance, if an object (e.g., a triangle) sweeps across the
visual field, a temporally stable representation will support dis-
crimination of this object from other objects (e.g., squares)
despite changes in its appearance. Correlation between neural
activity at different times does not by itself assess such stability of
discrimination, because population firing vectors can have a fixed
amount of correlation and yet be discriminable to different

degrees, depending on how they are organized with respect to a
discrimination boundary. Moreover, a correlation measure
assumes that deviations in the neural code are most important
along directions that are orthogonal to the current population
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times. Now consider responses at a pair of time points shifted by
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Fig. 4 Characteristic timescale of the stimulus-driven population responses and of the intrinsic neuronal activity. a Correlation between pairs of
population response vectors (as those highlighted by the yellow frames in Fig. 3c) as a function of their temporal lag for two example movies (solid, colored
lines). These curves were fitted with either an exponential decay or a damped oscillation function (fits are shown as black dashed lines). The time
constants of these fits were taken as the characteristic timescales of the population responses. The solid gray lines show the correlation functions of the
corresponding movies, reported from Fig. 3b for comparison. b Timescales of the population responses as a function of the timescales of the corresponding
movie stimuli (colored markers). Each colored line is the linear fit prediction of the relationship between such timescales for a given area (same color-code
as in the key; note that the lines for LM and LL are partially overlapping). The gray line is the linear fit prediction obtained by pooling together the data of
the three extrastriate areas (i.e., LM, LI, and LL). Error bars: standard error of the intercept of the linear fits for V1 and the pooled extrastriate areas from
regression analysis (see main text), N =36 independent combinations of movies and areas. *p = 0.015, two-tailed t-test, no multiple test correction (see
main text and “Methods" for details). ¢, d Same as a and b, but for the intrinsic timescales of neuronal activity (see main text for details). ***p =5e — 7, Te
— 13, 2e — 14, respectively, for LM, LI, LL. Source data are provided as Source Data files.

a small lag Af, namely t, + At and tg + At. If the relevant part of
the representation of the input is temporally stable over this lag,
the trained classifier should perform as well on responses at the
lagged time points as it did at the original times (schematic in
Fig. 5a). Averaging over all ¢, and tp for each lag At will assay
how well the population responses support temporally stable
discrimination of visual inputs.

Thus, we implemented a linear classifier on pseudopopulations
of 20 randomly selected units (see “Methods”). Results for larger
populations (50 units) from areas where these were available (V1
and LL) are reported in Supplementary Fig. 2. The classifier was

trained to distinguish population activities, represented as 20-
dimensional spike-count vectors (bin width 33 ms), evoked by a
movie at two different times. Critically, only a subset of trials was
used for training (gray boxes in Fig. 5a). The temporal stability of
the population code was then assessed by testing performance of
the decoder at times shifted by a lag At (Fig. 5a). To isolate
contributions of the direct drive from the visual stimulus to
overall temporal stability, we tested the classifier only on held-out
experimental trials that were not used in training (green boxes).
This ensured that intrinsic temporal correlations (Fig. 4d)
between lagged frames would not affect similarity between
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Fig. 5 Temporal stability of neuronal representations, as assessed through decoding analysis. a Schematic of the classifier analysis, aimed at assessing
the temporal stability of the population representation. A linear classifier is trained to distinguish the population activity recorded at two different time
points of the movie (spike counts computed from the gray time bins) and tested at other time points that follow (or precede, not shown) the training points
by a certain lag. The classifier is tested on a held-out set of trials (green boxes), as well as on the same experimental trials that were used for training
(orange boxes). The cartoons of the movie frames shown on top or below each time bin are for illustration purpose only: they highlight the fact that, in
general, two nonoverlapping segments of a movie (from which the population activity is decoded) will contain different, transforming (e.g., translating,
rotating, etc.) objects. For clarity, in this illustration, the size of the spike-count windows (i.e., gray, orange, and green boxes) was set to 100 ms, while 33-
ms wide bins were used in the actual analysis. The spike patterns shown in the cartoon correspond to those actually fired by a randomly selected
pseudopopulation of 20 units in V1 at two time points during the presentation of one of the movies (only three trials shown out of 30). b Classifier
performance on held-out trials for two example movie stimuli and one example pseudopopulation per area (colored curves). The performance is plotted as
a function of the lag between training bin (gray boxes in a) and test bin (green boxes in a), and is fitted with either an exponential decay or a damped
oscillation function (fits are shown as black dashed lines). € Timescale of response discriminability, measured as the time constant of the exponential decay
of the classifier performance on the held-out trial set, as a function of the timescale of the movies. Each dot corresponds to a distinct pseudopopulation of
20 units. The solid lines are linear regressions with common slope and different intercept across the four areas. The inset shows the difference of the
intercept for areas LM, LI, and LL vs. area V1 (error bars are standard errors of the differences in the linear regression analysis). N =36 independent
combinations of movies and areas (*p = 0.03, ***p<le — 4 for LI, p=2e — 4 for LL, one-tailed bootstrap test, 104 bootstrap samples, no multiple test
correction). d Amount of classifier performance due to intrinsic correlations (4,, Eq. (1)) as a function of the timescale of such correlations (i.e., the intrinsic
timescale of neuronal activity shown in Fig. 4d). Source data are provided as Source Data files.

activity vectors used in training and testing. This analysis was
repeated for each population and movie, and for all possible
choices of pairs of training time points (see “Methods”). The
results were averaged over these pairs to measure mean
discrimination performance as a function of the lag (Fig. 5b;
colored lines), and then fit with the same functional form as

above for the temporal correlations of neural responses (black
dashed lines). Linear regression revealed that the decoder’s
performance depended significantly on the timescale of the movie
stimulus (Fig. 5¢; common slope: 0.22, 68% CI [0.15-0.32],
nonzero at p = 8e — 4, one-tailed bootstrap test). In addition, the
intercept of the fit was significantly larger in the three extrastriate
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areas than in V1 (V1 intercept: 74 [55-82]ms; difference with
respect to V1 for the other areas: LM 40 [17-70] ms, nonnegative
p=0.03; L1 65 [48-89] ms, p < le — 4, LL 44 [32-59] ms, p = 2e
— 4, one-tailed bootstrap test). This difference indicates that
neural representations in higher areas of the ventral hierarchy
support percepts of dynamic stimuli that are stable over longer
timescales as compared to V1.

Intrinsic correlations extend within-trial temporal repre-
sentation stability. Intrinsic correlations in neural firing fluc-
tuations at different times quantify the tendency of neurons to
sustain a given firing rate regardless of sensory input. As such,
intrinsic correlations are argued to be a hallmark of longer sti-
mulus integration times, or to act as “stabilizers” of neuronal
representations to better support reading of the latter by down-
stream decision areas?$4>63 In vision, intrinsic temporal corre-
lations (Fig. 4d) could stabilize the neural code against changes in
visual input, maintaining a memory trace of objects moving
across the visual field, thus stabilizing their perception.

To test this possibility, we repeated the analysis of the previous
section. This time, however, we measured performance of the
trained classifier at lagged time points in the same trials as used
for training (orange boxes in Fig. 5a; performance curves in
Supplementary Fig. 3a). In this case, fluctuations in test response
vectors at times t4 + At and tz+ At will be correlated with
fluctuations in the training vectors at 4 and tg. In fact, a neuron
responding to a given movie frame in a given trial, with more or
fewer spikes than its mean response across trials, will also tend to
over- or under-fire in the following frames within the same trial.
To quantify the contribution of such intrinsic correlations to
discrimination stability, we focused on performance of the
classifier at a lag of 33 ms (one video frame) from the training
bin, and computed the performance gain from intrinsic
correlations as follows:

Ap :ptrain _ptest (1)

Here pirain and peg; are performances of the classifier at lag 33
ms, when evaluated on the training trials (orange boxes in Fig. 5a)
or on the held-out trials (green boxes), respectively.

As expected, given the progressively longer intrinsic correla-
tions along the cortical hierarchy (Fig. 4d), A, increased from V1
to LL (Fig. 5d. Slope of the fit: 0.13 +0.01, nonzero p = 2e — 18,
two-tailed t-test, t =10.5, df = 115; intercept: 0.023 +0.002, p =
6e — 24, two-tailed f-test, t =12.8, df =115), being, on average,
almost twice as large in LL as in V1 (i.e., 0.051 £0.002 in LL vs.
0.03 +£0.001 in V1). This revealed that intrinsic correlations play
an increasing role in overall temporal stability of the neural code
along the cortical progression. These findings show that the
relative importance of intrinsic dynamics for population codes in
visual cortex increases along the ventral-like, object-processing
hierarchy.

Temporal stability as a signature of invariance of neural
representations. The decoding analysis in Fig. 5 indicates that
representations in rat lateral extrastriate areas remain stable over
longer timescales than in V1. However, in terms of decoding
performance, V1 surpassed all other areas, at least at time lags
close to the training bin (Fig. 5b). In other words, the increase of
invariance that is expected to take place along an object-
processing hierarchy was observable only in relative terms (i.e.,
decoding performance changed less over time in LM, LI, and LL),
rather than in absolute terms (since decoding performance was
better in V1). This result can be understood on the basis of our
previous study of rat lateral extrastriate cortex using static

objects®>, and by considering the movie segments that were used
to carry out the decoding analysis in Fig. 5.

In ref. >°, we showed that LI and LL afford better decoding of
object identity than V1 and LM under various transformations,
but this effect only emerges when the objects to discriminate have
similar luminosity across transformations. Otherwise, objects are
actually better discriminated based on V1 than LL representa-
tions. This is because information conveyed by neural responses
about low-level visual properties, such as luminosity and contrast,
decreases substantially from V1 to LL. Such information pruning
is consistent with ventral-like processing but has the unexpected
effect of making it easier for V1 neurons to discriminate objects
when their average luminance (across transformations) is
different.

Given the stimulus set used in ref. > (bright, isolated shapes
against a black background), it was possible to restrict decoding
to object pairs with similar luminance, thus revealing the larger
invariance of LL. This was not possible with our current, more
naturalistic stimuli. Thus, differences in luminance and other
low-level properties likely played a major role in allowing V1 to
afford the best decoding performance. In fact, given the
continuous nature of our dynamic stimuli, luminance and
contrast differences between movie frames used to train a
classifier would be preserved in the preceding and following
frames. They would only vanish at long time lags from the
training bins.

To verify correctness of this interpretation, we repeated our
analysis with 21 pairs of movie segments of identical duration
(967 ms, or 29 movies frames) that contained a single object
(either black or white) moving roughly horizontally, either from
left to right or from right to left (examples in Fig. 6a). This
allowed defining four types of classification tasks, based on
whether the color and/or motion direction of the objects to
discriminate were (or not) the same (Fig. 6a, b). We expected
that, at least for tasks where the difference in object luminance
was small, extrastriate areas would reach the same absolute
performance as V1 and possibly surpass it at sufficiently long lags
from the training bin.

This new decoding analysis also allowed us to measure stability
of visual representations in a scenario where object identity did
not change within a movie segment. In fact, in our previous
analysis (Fig. 5), segments fed to the classifiers were from all
possible locations in the movie. Thus, every segment could
contain multiple objects, and these could appear and disappear
(being replaced by other objects) while the movie unfolded over
time (e.g., Fig. 3a). While this analysis is ideal to obtain an overall,
unbiased assessment of the stability of the cortical representation
of a given movie, it does not allow measurement of temporal
persistence of representations of individual objects undergoing
identity-preserving transformations. It is the latter kind of
stability that is expected to be equivalent to invariance measured
with static objects and, as such, is expected to grow along an
object-processing pathway. Therefore, the time constants of the
decoding curves in Fig. 5 are likely an underestimate of the actual
persistence (or invariance) of object representations in the four
visual areas.

Our new analysis (Fig. 6b) largely confirmed these intuitions.
In terms of decoding performance, V1 surpassed other areas at
short time lags. However, the performance afforded by V1
neurons decayed abruptly over time, being matched and even
surpassed by other areas at longer time lags. Notably, when
objects had identical color but opposite direction (rightmost
panel), the greater position invariance of extrastriate areas
emerged clearly, with V1 performance substantially below that
of the other areas at lags >300 ms. This confirmed that in tasks
requiring invariant processing (e.g., for objects swapping position
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Fig. 6 Classifier analysis restricted to hand-matched pairs of movie segments. a Frames of four example pairs of movie segments (each pair is
representative of one of the four classification conditions that were tested in our analysis). Each movie segment was exactly 29 frames long, and the frames
shown here are frames number 1, 8, 15, 22, and 29 (left to right). As indicated by the black/white arrows in each quadrant, each pair of movie segments
was distinguished from the others, based on whether the objects in the segments had the same color and whether they moved along the same direction. b
Classifier performance vs. lag from the training bin for each of the four conditions. Solid line: average over all pairs tested in the task. Shaded area: s.e.m. ¢
Timescales extracted from the decoding performances of all pairs of movies segments tested in any given classification task and for each area (two outlier
data points are not shown: 3.65 s for same color/same direction, and 2.73 s for same color/opposite direction). d Amount of classifier performance due to
intrinsic correlations (difference between performance on training trials and on test trials; as defined in Fig. 5d) for each movie pair and each area. *p=Te
—7,7e—10, 3e — 9 for LM, LI, LL, respectively, paired t-test on each area vs. V1. Source data are provided as Source Data files.

in the visual field) and less prone to solution based on luminance
differences (e.g., objects with identical color), lateral extrastriate
areas emerge as most invariant>.

Restricting the decoding analysis to segments with single
objects resulted in a much slower dynamics (compare perfor-
mance curves in Figs. 5b and 6b). This increased temporal
stability of object representations was pronounced for high-order
extrastriate areas (LI and LL), and less so for LM. In V1, instead,
the representation unfolded much faster. Fitting exponentially
damped oscillations to performance curves yielded time constants
(Fig. 6¢) that, in LI and LL, were up to five times larger than
obtained in our previous, unconstrained analysis (Fig. 5c).
Importantly, time constants in LI and LL were ~2x as large as
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in V1, revealing substantially slower unfolding of higher-order
representations. A statistical test based on categorical linear
regression (see “Methods”) confirmed that time constants in LI
and LL were higher than in V1 (difference with respect to V1:
LM, 210 £ 140 ms; LI, 550 + 140 ms; LL, 390 + 140 ms; p values,
two-tailed t-test: LM 0.13, LI 0.0001, LL 0.006).

In Fig. 6b, ¢, as previously done in Fig. 5b, ¢, the generalization
ability of classifiers was tested on held-out trials not used for
training. To gauge the impact of intrinsic temporal correlations in
stabilizing object representations, we measured generalization at
lagged time points in the same trials as used for training (same
analysis as in Fig. 5d). As before, the performance increment A
(Eq. (1)) afforded by intrinsic correlations was substantially and
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significantly higher in lateral extrastriate areas than in V1 (Fig. 6d;
mean A,: V1, 0.030 £0.001; LM, 0.052 +0.003; LI, 0.054 +0.002;
LL, 0.052 £ 0.002; paired t-test p values for the difference with
respect to V1: LM p=1e—7, LI 7e—10, LL 3e—9). This
confirmed the increasingly important role played by intrinsic
correlations in determining the overall temporal stability of object
representations along the cortical progression.

Temporal stability of visual cortical representations in awake
mice. The results in previous sections are based on recordings in
anesthetized rats. To validate in awake animals, we analyzed a
large Allen Institute dataset of neural responses recorded from
many visual areas of awake mice using Neuropixels probes!2.
These recordings also provided the opportunity to test our con-
clusions in a different rodent species. Furthermore, the ranking of
mouse visual areas in terms of hierarchical processing has been
carefully established anatomically®%> and quantified by the
definition of an anatomical hierarchy score®. This score is related
to several functional measures of hierarchical processing, thus
checking consistency between anatomy and physiology!2.

Thus, we sought to establish whether, in the Allen dataset,
temporal stability of neural responses to dynamic stimuli
increased as a function of the hierarchy score of mouse visual
areas. To this end, we focused on two natural movies (one lasting
30, presented 20 times; the other lasting 120, presented 10
times) that were part of the visual stimulus battery tested in
ref. 12. The shorter clip was discarded, given that its pixel
correlations displayed a strongly irregular pattern (see “Methods”
and Supplementary Fig. 4a, left), likely because the clip is a
sequence of highly static scenes. We thus carried out our analyses
on the longer clip, whose pixel correlation function has an
exponential decay (Supplementary Fig. 4b, green curves) that is
fully comparable with our stimuli (see Fig. 3b). We extracted the
neuronal responses to repeated presentations (trials) of this movie
recorded in the first 17 sessions of the Allen dataset from the
lateral geniculate nucleus (LGN) in the thalamus (571 cells), V1
(876 cells), and five higher-order, extrastriate visual cortical areas:
LM, AL, RL, PM, and AM (506, 511, 796, 565, and 687 cells
respectively). For each area, we computed the correlation function
of the population response vectors (same analysis as Fig. 3c), as
well as the population-averaged intrinsic correlation function,
capturing within-trial fluctuations of the firing rate (same analysis
as Supplementary Fig. 1).

The resulting correlation functions are shown in Fig. 7a, b
(solid lines), with best exponential fits to the data (dashed lines;
same procedure as Fig. 4a, c; see “Methods”). The fits gave time
constants of the exponential decays across the seven areas and we
regressed these against the corresponding hierarchy scores. For
both stimulus-driven (Fig. 7c¢) and intrinsic (Fig. 7d) time
constants, we found a clear, significant linear relationship
(respectively, p =0.001, t=5.8, and p =0.01, ¢ = 3.3; one-tailed
t-test, df = 5). That is, we observed increased temporal stability
across the visual hierarchy of awake mice that was very similar to
our finding across the object-processing pathway of anesthetized
rats.

On the whole, the time constants measured for the Allen
dataset were substantially larger than those in our experiments.
This is unsurprising, given that the Allen movie clip unfolded
over time with much slower dynamics than the movies used in
our recordings (compare Supplementary Fig. 4 to Fig. 3b) and,
based on trends in Fig. 4b, d, we expected the dynamics of the
response to track that of the stimulus. As shown in Fig. 7e, f, the
latter conclusion was confirmed when the time constants
obtained in our recordings (green dots; same data of Fig. 4b, d)
and those extracted from the Allen dataset (red dots; same data of

Fig. 7c, d) were plotted against time constants of the
corresponding movies. The dependence between response and
stimulus dynamics inferred from our recordings extrapolated well
to the Allen dataset, with the red dots being very close to values
expected based on a linear regression (dashed green line)
performed on the green dots only. This is striking, considering
the narrow span of temporal scales in our movies (0-0.25s),
compared to the time constant of the Allen clip (2.8 s).

Dependence of temporal stability on the behavioral state of the
animal. The results above indicate that our conclusions are robust
across rodent species (i.e., rat vs. mouse), the processing hierarchy
under exam, and the state of the animal (i.e., anesthetized or
awake). However, awake states can be further separated into a
spectrum of finer states, depending on alertness, motivation,
appetite, or activity of the animal#®48-51  In particular, recent
studies have shown that locomotion increases response magni-
tude and spatial integration in mouse visual cortex%48, Impor-
tantly, during active wakefulness, mouse visual cortical
representations of natural movies have been found to be more
similar to those measured under anesthesia than during quiet
wakefulness*°.

Motivated by this, we noted that mice in the recordings were
head-fixed but were free to either rest or run on a spinning wheel,
whose angular velocity was part of the data. We used this to
identify epochs of neural response during which the mouse was
either resting or running (see “Methods”). We then computed
response and intrinsic timescales separately for resting and
running states. The trends changed slightly depending on the
number of trials N; (i.e., stimulus repetitions) in the analysis and
the minimal duration L of resting (or running) epochs shared
among the chosen trials. Given that these two parameters were
inversely related (“Methods” and Supplementary Fig. 5), we
considered all combinations of four choices of N (i.e., 3, 4, 5, and
6 trials) and five choices of L (i.e., 2.5, 3.3, 4.1, 5.0, and 6.6 s).

Overall, we found that the temporal stability increase observed
across the mouse visual hierarchy was weaker in the resting than
the running state. Figure 8 (leftmost plots) shows an example for
one choice of N, and L: the slope of the linear fit through time
constants is smaller in the resting state, especially for intrinsic
dynamics (Fig. 8b). Figure 8a (right) shows that for response
timescales, the reduction of the fit slope from the resting to the
running state is observed across most of the 4 x 5 combinations of
the parameters N; and L, yielding a significant difference (two-
tailed, paired f-test; p = 0.002, t = 3.6, df = 19). The effect is even
stronger for intrinsic timescales (Fig. 8b, right), where the slope of
the fit decreases by more than half in the resting as compared to
the running state across all combinations of N, and L, yielding a
highly significant difference (two-tailed, paired t-test; p = 2e — 8,
t=92, df=19).

Overall, this analysis shows that, during quiet wakefulnes,
temporal stability increase across the visual processing hierarchy
is substantially reduced as compared to the state of active
wakefulness, especially for intrinsic correlations. To further study
this phenomenon, we analyzed a third dataset of neural responses
to natural movies collected in head-fixed and body-restrained
awake rats in a previous study of the rat object-processing
pathway®0. In this study, neural responses were obtained from
two of the regions also sampled in our recordings, i.e, V1 (44
cells) and LI (40 cells), plus a third visual area, named TO (38
cells), that follows LL in the anatomical progression of lateral
extrastriate areas and that a previous study indicates as a part of
the rat ventral-like pathway>°.

In this head-fixed rat dataset, autocorrelations of the stimulus-
driven responses displayed exponential decays with time
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the intrinsic correlations. € The time constants of the exponential fits to the correlation functions shown in (a) are plotted against the anatomical hierarchy
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Source data are provided as Source Data files.
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constants similar in high-order areas (i.e., LI and TO) and in V1
(Supplementary Fig. 6a, b). In addition, the dependence between
the temporal scales of the response and of the movie was weak
and not significant (regression slope: 0.07 £ 0.07, p = 0.3, t = 1.04;
intercept difference extrastriate-striate: —0.015 + 0.020, p = 0.46,
t=—0.74; df =57; see “Methods”). The intrinsic correlations
were also weaker than in our recordings and in the Allen data,
and did not display a monotonic decrease with time (compare
Supplementary Fig. 6¢ to Figs. 4c and 7b). We nevertheless fit
exponential decays to the tails of these autocorrelation functions.
The resulting time constants did not increase from V1 to higher-
order areas (Supplementary Fig. 6d; regression slope: 0.0 £ 0.2, p
=0.99, t=—0.02; intercept difference with respect to V1: LI
—0.02+0.06, p=0.7, t=—0.36; TO —0.01 £ 0.06, p=10.89, t =
—0.15; df =56), thus behaving differently from our recordings
(Fig. 4d) and the Allen data (Figs. 7d and 8b, left).

Given that the movies in ref. ©® were much shorter (5s) than
those in our experiments (20s) and in the Allen study (120s),
and fewer trials were collected (10) as compared to our recordings
(30), we checked whether these results could be explained by a
lack of statistical power in the head-fixed rat dataset to detect
trends in our recordings and the Allen data. Thus, we replicated
our analysis in Fig. 4b, d, after subsampling the number of
available trials and progressively reducing the duration of the
responses included in the analysis (see Supplementary Informa-
tion and Supplementary Fig. 7). We found that shortening the

movie (and, to a lesser extent, the trial number) strongly reduced
sensitivity to dependence of the response timescale on that of the
movie, as well as to increase of response stability across the visual
hierarchy (see Supplementary Fig. 7a, b). Conversely, sensitivity
to differences between intrinsic temporal scales of extrastriate
lateral areas and those of V1 was only marginally reduced (see
Supplementary Fig. 7d—f). This suggests that the lack of increase
in the intrinsic timescales from V1 to LI/TO in the head-fixed rat
dataset is a genuine difference with our recordings in anesthetized
rats and with the Allen experiments in awake, behaving mice—a
difference that is fully consistent with the reduced increase of
intrinsic temporal scales observed in the Allen data when mice
rested rather than running (Fig. 8b).

Discussion

We tested the stability of neural representations along the rodent
analog of the ventral stream in anesthetized rats viewing natur-
alistic and synthetic movies. We asked whether the temporal
stability of visual cortical representations increased along the
hierarchy under dynamic stimulation, as suggested by the build
up of invariance observed using static stimulil->»?21. Any effect of
this kind could be suppressed by adaptive and top-down
mechanisms (e.g., prediction error signals) in visual cortex6:67
that favor encoding of surprising or transient inputs over pre-
dictable or sustained ones!2-30-3340.68 The potential role of such
mechanisms in representing dynamic inputs can be studied by
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simulating a recent model of neural adaptation*?, which we
extended by adding neuronal noise and intrinsic integration
(see Supplementary Information). The model suggested that
adaptive mechanisms could in principle suppress increases in
timescale expected for more persistent stimuli, thus possibly
equalizing response dynamics along the visual cortical hierarchy
(Supplementary Fig. 8e). However, we found that, in all tested
visual areas, the temporal scale of visual encoding depended not
only on characteristic stimulus timescales, but also increased
significantly from V1 to extrastriate visual cortex (Figs. 4a, b and
5b, ¢). This increase was particularly strong when assayed in
terms of the ability of cortical representations to sustain dis-
crimination of movie segments of similar duration containing
single objects translating along either similar or opposite trajec-
tories within the visual field (Fig. 6b, c). This implies that the
increase of invariance afforded by feedforward computations
along the rat ventral pathway! is not washed out by possible
adaptive, recurrent and top—down processes (see “Introduction”).
Thus, when the pathway is probed with dynamic stimuli, a
functional hierarchy of representational timescales is observed
that parallels the hierarchical buildup of invariance revealed by
brief presentation of static stimuli®>°6,

An alternative explanation might be that this trend exclusively
reflects a systematic increase of the width of the filters describing
the temporal integration of low-level visual features by neurons
along the hierarchy. In the Allen dataset!?, the authors estimated
spike autocorrelation functions of recorded neurons during
responses to flash stimuli, from which they extracted a char-
acteristic time constant by fitting a decaying exponential. They
found that the resulting time constants increase along the visual
hierarchy. Could this increase explain the growth of the response
timescale to movies that we analyze, given that the two temporal
scales are significantly correlated (see Supplementary Fig. 9a; r =
0.75; p<0.01, one-tailed f-test), and even though they do not
necessarily measure the same quantity? To test this, we modeled
each recorded neuron in the Allen dataset as a linear filter, with
spatial kernel given by its RF profile and increasingly broad
exponential temporal kernels defined by time constants estimated
in ref. 12. By convolving the input signal (i.e., the 120-s movie)
with these spatiotemporal linear filters, we obtained a crude
simulation of responses of the units to the movie. The resulting
response timescales, estimated as in our analyses, did not differ
much between areas. Thus, we did not observe any monotonic
increase as a function of the anatomical hierarchy score (Sup-
plementary Fig. 9b, c). This suggests that the temporal filtering
properties of rodent visual neurons are not sufficient to explain
the observed hierarchical increase of response timescales under
dynamic stimulation. This conclusion is supported by the
observation that cortical representations were up to five times
more stable when rat high-level neurons (in LI and LL) were
tested with movie segments containing single objects (Fig. 6b, c)
than random movie segments (Fig. 5b, c). Given that the neurons
compared in these analyses were the same, they necessarily had
identical time filtering properties. This suggests that the fivefold
increase of stability is a result of nonlinear processes, such as
those underlying invariance, that maximally display their power
to stabilize cortical representations when neurons are probed with
single objects undergoing identity-preserving transformations
(Fig. 6).

Our study also addresses the role of activity-dependent pro-
cesses that can extend persistence of neural representations along
an object-processing pathway, affecting temporal spans over
which firing rate fluctuations are correlated within single trials. In
both primates and rodents, temporal scales of these intrinsic
fluctuations increase along various cortical hierarchies!!43-45,
Mechanistically, the nature of these intrinsic processes remains

unclear, but most authors attribute them to temporally extended
input integration or recurrent computations, meant to sustain the
neural representation over timescales that guide perception and
behavior44>63, Experimentally, however, most work in the
ventral stream has focused on static stimuli, and thus it is not
known whether intrinsic dynamics contribute to the structure of
population codes for stimuli that are themselves varying in time.

Our experiments found strong evidence that intrinsic time-
scales increase along rat lateral extrastriate areas (Fig. 4c, d), and
that this increase helps to stabilize neural representations of visual
inputs along the cortical hierarchy (Figs. 5d and 6d). We also
found weak but significant dependence of the intrinsic timescales
on stimulus dynamics (Fig. 4d)—consistently with the magnitude
of intrinsic timescales measured in awake mice (Fig. 7f). This
means that intrinsic fluctuations of neural firing are correlated
over a time span related to the overall rate of change of the visual
input. Thus, although our experiments did not investigate
mechanisms behind such intrinsic, activity-dependent processes,
they clarify their possible functional role and relationship with the
overall dynamics of the visual input.

To achieve control and repeatability of stimuli within each
neuron’s RF over extended periods (1.5/2h), we performed acute
recordings under anesthesia. We expected, in view of previous
work in anesthetized animals?®©1, that spatiotemporal character-
istics of population activity that we measured would be similar in
awake animals. To verify, we repeated our assessment of the
temporal stability of neural firing during presentation of natural
movies using the Allen dataset!2. These data allowed us to test a
different species (mouse), the awake state, and another anatomi-
cally well-established visual hierarchy. This hierarchy plays a
broader functional role than the rat lateral progression, encom-
passing both object- and motion-processing areas®3>428:6566_ In
addition, by partitioning responses into resting and running
epochs, we compared dynamics of neural firing during active and
quiet wakefulness. We found that the increase of timescales for
stimulus-driven responses and intrinsic fluctuations is reproduced
along the mouse visual hierarchy (Fig. 7c, d). The hierarchical
increase of response timescales was actually more evident than in
rat lateral extrastriate areas. This is likely because the Allen
dataset also includes LGN (a subcortical region) and encompasses
a larger number of visual cortical areas, thus allowing tests of the
temporal response scale across a deeper processing hierarchy.
Interestingly, the fact that this hierarchy underlies both ventral-
and dorsal-like functions suggests that increasing the temporal
stability of visual representations is an overarching goal of the
whole visual system. This is consistent with the fact that hier-
archical growth of invariance is necessary to support perceptual
constancy not only of object identity but, generally, of any visual
attribute, such as color or motion direction and speed®.

We found that the increase of temporal scales was attenuated
(especially for intrinsic dynamics) during quiet wakefulness, as
compared to active wakefulness (Fig. 8). To investigate the state
dependence of our findings, we analyzed a third dataset of
recordings in awake, body-restrained rats®, and found no evi-
dence of an increase of response and intrinsic timescales from V1
to extrastriate lateral areas (Supplementary Fig. 6). The failure to
detect a growth of the response timescales could be explained in
part by low statistical power (Supplementary Fig. 7), but we
showed that this was not the case for intrinsic timescales.
Therefore, the fact that they remained stable across the lateral
processing hierarchy appears to be a result of the enforced
immobilized state—a finding that is compatible with the
attenuation of the hierarchical growth of intrinsic timescales
observed in the Allen dataset during resting bouts (Fig. 8b).

Our results fit previous studies reporting weakened processing
of the visual input by rodent visual neurons (e.g., in terms of
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response magnitude, spatial integration, sparseness, reproduci-
bility, and discriminatory power) during quiet wakefulness, as
compared to active wakefulness and the anesthetized state#0:48:49,
The shortened temporal processing scales observed in our study
adds to this list of attenuated visual processes under quiet
wakefulness. Future studies at the circuit/synaptic level should
aim to clarify whether these phenomena have a common
mechanistic origin or whether one causally implies the other. At
the functional level, these observations have led some authors to
conclude that during quiet wakefulness visual cortex may be
perceptually disengaged or detached from the visual environment,
even relative to the anesthetized state?®4%, The reduced (Fig. 8b)
or canceled (Supplementary Fig. 6¢, d) hierarchical growth of the
intrinsic timescales observed in our analyses during, respectively,
voluntary or enforced stillness, is consistent with this inter-
pretation. In fact, during quiet wakefulness, there is arguably no
need to regulate the temporal span over which the incoming
visual signal is integrated to guide perceptual decisions and motor
behavior, especially during enforced body restraint. As such, it
may be computationally and metabolically efficient for the brain
to turn off those activity-dependent, intrinsic processes that set
the proper timescales of signal integration across the various
stages of the visual processing hierarchy.

What roles could these intrinsic dynamics play in behavior?
Intrinsic processing may be crucial for perception in a noisy,
changing environment. For example, maintenance of sensory
information by stimulus-independent temporal correlations in
population activity can lead to better behavioral performance,
when consistent estimates of a quantity are needed*>3, Alter-
natively, intrinsic processing may support predictive coding3®41,
allowing neural circuits to use feedforward inputs to predict and
represent what will happen next, an ability with obvious utility for
behavior. In order to play these roles effectively, the dynamics of
intrinsic processing should be adapted to the temporal structures
that are encountered in natural environments. Previous work has
shown (or at least suggested) that many aspects of spatial and
temporal processing in the early visual system are indeed adapted
to the structure of natural scenes. Examples are histogram
equalization’? and on-off circuit asymmetries in the retina’l,
development of V1 simple and complex cells®®72-7, texture
perception’, and eye movements’”. The idea that intrinsic pro-
cessing could be similarly adapted deep into the cortical hierarchy
could be causally tested by altering the animals’ visual environ-
ment during development or while learning a task, and then
measuring neural population activity across the cortical hierarchy
with ethologically relevant, dynamic stimuli.

Methods

Animal preparation and surgery. All animal procedures were in agreement with
international and institutional standards for the care and use of animals in research
and were approved by the Italian Ministry of Health: project N. DGSAF 22791-A,
submitted on September 7, 2015 and approved on December 10, 2015 (approval N.
1254/ 2015-PR). Eighteen male Long Evans rats (Charles River Laboratories) with
age 3-12 months and weight 300-700 g were anesthetized with an intraperitoneal
(IP) injection of a solution of 0.3 mg/kg of fentanyl (Fentanest®, Pfizer) and 0.3 mg/
kg of medetomidine (Domitor®, Orion Pharma). Body temperature was kept
constant at ~37° with a warming pad, and a constant flow of oxygen was delivered
to the rat to prevent hypoxia. The level of anesthesia was monitored by checking
the absence of tail, ear, and hind paw reflex, as well as monitoring blood oxyge-
nation, heart, and respiratory rate through a pulse oximeter (Pulsesense-VET,
Nonin), whose sensor was attached to one of the hind paws. After induction, the
rat was placed in a stereotaxic apparatus (Narishige, SR-5R) in flat-skull orientation
(i.e., with the surface of the skull parallel to the base of the stereotax), and, fol-
lowing a scalp incision over the left and posterior parietal bones, a craniotomy was
performed over the target area in the left hemisphere (typically, a 2 x 2-mm?
window). Dura was also removed to ease the insertion of the electrode array.
Stereotaxic coordinates for V1 recordings ranged from —7.49 to —8.36-mm
anteroposterior (AP), with reference to bregma; for extrastriate areas (LM, LI, and
LL), they ranged from —6.64 to —7.74-mm AP.

Once the surgical procedure was completed, the stereotaxic apparatus was
moved on top of an elevated rotating platform. The right eye was immobilized with
an eye ring anchored to the stereotaxic apparatus, and the left one was covered with
opaque tape. The platform was then rotated, so as to align the right eye with the
center of the stimulus display and bring the binocular portion of its visual field to
cover the left side of the display. Throughout the experiment, ophthalmic solution
Epigel (Ceva Vetem) was regularly applied onto the right eye and the exposed brain
surface was covered with saline to prevent drying. In addition, a constant level of
anesthesia was maintained through continuous IP infusion of the same anesthetic
solution used for induction, but at a lower concentration (0.1-mg/kg/h fentanyl and
0.1-g/kg/h medetomidine), by means of a syringe pump (NE-500; New Era Pump
Systems).

Neuronal recordings. Extracellular recordings were performed with 32-channel
silicon probes (Neuronexus Technologies), following the same procedure used in
ref. 5. Briefly, to maximize the RF coverage, recordings in V1 were performed with
4- or 8-shanks probes, which were inserted perpendicularly into the cortex.
Recordings from lateral extrastriate areas were performed using single-shank
probes, which were inserted diagonally into the cortex with an angle of ~30°, in
order to map the progression of RFs’ centers along the probe and track the reversal
of retinotopy between adjacent areas (see refs. °>°7). The space between recording
sites on each shank ranged from 25 to 200 pm; the distance between shanks (when
more than one) was 200 um; the surface of recording sites was either 177 or 413
pm?, Extracellular signal was acquired with a Tucker-Davis Technologies (TDT)
system 3 workstation (TDT) at a sampling rate of ~24 kHz using TDT OpenEx
Software Suite. Before insertion, the probe was coated with Vybrant® Dil cell-
labeling solution (Invitrogen, Oregon, USA), to allow visualizing the probe inser-
tion track postmortem, through histological procedures.

A total of 19 rats were used for this study. Since, in some occasions, multiple
recording sessions were performed from the same animal, this yielded a total of
23 sessions. After spike sorting (see below) these recordings yielded a total of 1313
well-isolated single units: V1 (510), LM (126), LI (209), LL (401). Following the
application of a reproducibility filter on the neuronal responses of the units across
repeated presentations of the movie stimuli (see below), the final count of single
units that were further analyzed in our study was 294, of which 168 in V1 (5
different rats, for a total of 7 recording sessions), 20 in LM (4 rats, 4 sessions), 36 in
LI (8 rats, 8 sessions), 70 in LL (11 rats, 12 sessions).

Visual stimuli. Stimuli were presented full-field to the right eye at a distance of 30
cm on a 47-inch LCD monitor (SHARP PN-E471R), with 1920 x 1080 resolution,
60-Hz refresh rate, 9-ms response time, 700-cd/m? maximum brightness, 1200:1
contrast ratio, spanning a field of view of ~120° azimuth and ~89° elevation. The
stimuli were presented using Psychtoolbox’® in MATLAB in a pseudorandom
order. Between each stimulus (movie or drifting bar), a black screen was shown for
at least 200 ms.

The RFs of the neurons recorded along a probe were estimated by showing
drifting oriented bars over a grid of 73 locations on the stimulus display, covering
the central 110° azimuth span and central-upper 70° elevation span of the total field
of view of the monitor. The bars were 10° long and drifted seven times along four
different directions (0° 45° 90°, and 135°). A spherical correction (as described in
ref. 7°) was applied to each bar to compensate for shape distortions at large
eccentricities. As shown in Fig. 2, mapping the inversion of the retinotopic map at
each area boundary allowed identifying the visual area each neuron was recorded
from>5-%7.

The main stimulus set consisted of nine movies: two fast and two slow manual
movies, two ratcam movies, a phase-scrambled version of one of the fast movies, and
a phase-scrambled version of one of the ratcam movies (see next paragraph for
details). The resolution of these movies was 720 x 1280 pixels and they were presented
for 20 s at a rate of 30 frames per second (fps). An additional white-noise movie with
a resolution of 45 x 80 pixels was shown at 20 fps for 20 s. All movies were converted
to grayscale and were gamma-corrected offline with a lookup table calculated for the
monitor used for stimulus presentation. During the course of the experiment, each
movie was presented 30 times. The videos can be watched at the following link:
https://osf.io/7gteq/?view_only=6300871272414e89bc2c4e7{fb03718e.

The manual movies were designed to reproduce the continuous flow of visual
information typically experienced by an observer that explores an environment
containing a number of distinct visual objects, placed in different locations. To this
aim, we 3D-printed various geometrical objects, we painted them black or white
(see examples in Fig. 3a), we placed them inside an arena and we simulated an
observer roaming through such an environment by smoothly moving a hand-held
camera across the arena for 20 s. The camera was moved at two different speeds to
obtain slower and faster movies. The ratcam movies were intended to better
simulate the visual input of a rat exploring a natural environment*’. They were
obtained by placing a small web camera (Microsoft Lifecam Cinema HD) on the
head of a rat, while it was running freely inside the arena that contained some of
the 3D-printed objects and another rat.

The phase-scrambled movies were obtained by performing a spatiotemporal
fast Fourier transform (FFT) over the standardized 3D array of pixel values,
obtained by stacking the consecutive frames of a movie. The phase spectrum was
extracted and shuffled, then merged with the unaltered amplitude in such a way to
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preserve the conjugate symmetry of the initial transform. An inverse FFT was then
applied on the resulting array. The imaginary parts were discarded, then the
original mean and standard deviation were restored. Values outside the 0-255
range were clipped in order to obtain a valid movie. The white-noise movie was
generated by randomly setting each pixel in the image plane either to white

or black.

Histology. In a few experiments (5 rats), at the end of the recording session, each
animal was deeply anesthetized with an overdose of urethane (1.5 gr/kg) and
perfused transcardially with phosphate buffer saline (PBS) 0.1 M, followed by 4%
paraformaldehyde (PFA) in PBS 0.1 M, pH 7.4. The brain was then removed from
the skull, post-fixed in 4% PFA for 24 h at 4°C, and then immersed in cryopro-
tectant solution (15% w/v sucrose in PBS 0.1 M, then 30% w/v sucrose in PBS 0.1
M) for 48 h at 4 °C. The brain was finally sectioned into 30-pm-thick coronal slices
using a freezing microtome (Leica SM2000R, Nussloch, Germany). Sections were
mounted immediately on Superfrost Plus slides and let dry at room temperature
overnight. A brief wash in distilled water was performed, to remove the excess of
crystal salt sedimented on the slices, before inspecting them at the microscope.
Each slice was then photographed with a digital camera adapted to a Leica
microscope (Leica DM6000B-CTR6000, Nussloch, Germany), acquiring both a Dil
fluorescence image (700-nm Dil filter) and a bright-field image at x2.5 and x10
magnification. By superimposing the fluorescence and bright-field images, we
reconstructed the tilt and the AP position of the probe during the recording session
(se example in Fig. 2a, left).

Data analysis. All analyses were performed in Python.

Spike sorting and selection of the units included in the analyses. Data were
spike-sorted offline with the spike sorting package KlustaKwik-Phy® in two steps:
automated spike detection, feature extraction, and expectation maximization (EM)
clustering were followed by manual refinement of the sorting using a customized
version of the GUI. The last step was performed by taking into account many
features of the candidate clusters: (1) the distance between their centroids and their
compactness in the space of the principal components of the waveforms (a key
measure of goodness of spike isolation); (2) the shape of the auto- and cross-
correlograms (important to decide whether to merge two clusters or not); (3) the
variation, over time, of the principal component coefficients of the waveform
(important to detect and take into account possible electrode drifts); and (4) the
shape of the average waveform (to exclude, as artifacts, clearly nonphysiological
signals). Clusters suspected to contain a mixture of one or more units were
separated using the “reclustering” feature of the GUI (i.e., by rerunning the EM
clustering algorithm on the spikes of these clusters only).

At the end of the manual refinement step, we further screened the resulting
well-isolated single units to make sure that their firing was reproducible across
repeated stimulus presentations. The selection was based on a reproducibility index
that quantified, for each neuron, how reliable its responses were to its preferred
frames within a movie (see definition below). This metric was chosen over other
approaches that rely on computing the correlation coefficient between responses to
repetitions of the same stimulus®%8!, because we wanted to avoid the inclusion of
silent neurons that would have yielded high correlations due to lack of activity. To
calculate the reproducibility index for a given unit and movie, we included in the
metric the top 10% time bins with the highest neuronal response (given by the
firing rate of the neuron in the bins). Let X, = {ng)

neuron ng) in one of such preferred time bins ¢ (with k denoting the stimulus

repetition). Let N be the number of repetitions. Then, the reproducibility index is

calculated as 1 — <U(£?’>]> /~/N. The resulting metric ranges from 0 to 152, where 1

corresponds to ideal responses with perfectly reproducible trials. A cell was
considered reproducible if, for at least one of the nine movies, the reproducibility
index was 0.7. This threshold was arbitrarily set following an extensive visual
inspection of raster plots from different movies to ensure that clearly responsive
and reproducible cells were included. For all the analyses described in this study,
the responses of these units during the presentation of the movie stimuli were
converted to a spike-count representation by binning spike trains in 33ms bins.

} be the set of responses of the

Characteristic timescale of the movie stimuli. To quantify how fast the pixel-
level content of the movies changed over time, we computed the following metric.
Given a movie, for a given time lag A, we computed the average correlation
coefficient between all movie frame pairs separated by that lag, on a pixel-wise
basis, i.e.:

1 zT,A Cov[X,, X, 4]
T — A" Var[X,]Var[X 1, ,]

C(4) = @

where T is the total number of frames in the movie, X, = {xffh} is the movie frame
t and expectations are taken over pixel positions, indexed by w, h (for width and
height). We then plotted the correlation C(A) as a function of A (Fig. 3b). To fit the
decay of the correlation with A, we considered two possible functional forms: a
decaying exponential of the form y(t) = aexp(—t/7) and a damped oscillation

function of the form y(t) = aexp(—t/1)cos(wt + ¢). Fitting was performed with the
basin-hopping algorithm® coupled with L-BFGS-B#. Model selection was per-
formed independently for each fit with an Extra Sum of Squares test®’, choosing
the more complex model whenever the p value from the test resulted below the
threshold of 0.05. The model selection procedure selected the simple exponential
form in all cases. The time constant 7 of the exponential decay was taken as the
characteristic timescale of the stimulus.

Characteristic timescale of stimulus-driven neuronal population responses.
To measure the characteristic timescale of neural stimulus correlations from
population peri-stimulus time histograms (PSTHs) in our anesthetized rat data, we
applied a very similar procedure to that described above for the visual input. We
used the same expression as above (Eq. (2)) to compute C(4), but now we set
X, = {x” — x,}, where x{ is the trial-averaged spike count of cell number # at
time frame f, and subtracting (x,,) centers{x}_{n}*{(t)} around its temporal average
(2" as a function of ¢ is color-coded in Fig. 3c for the V1 and LL populations, in
response to two example movies). A time constant was extracted by fitting either an
exponential decay of the form y(t) = aexp(—t/7) or a damped oscillation function
of the form y(t) = aexp(—t/7)cos(wt + ¢) + b for t > 0 (see Fig. 4a). Model selection
was carried out as described in the previous section. The time constant 7 of the
exponential decay or of the exponential envelope of the damped oscillation was
taken as the characteristic timescale of the trial-averaged population response
(PSTH). The simple exponential form was selected for three of the movies in V1
and one of the movies in LL; the damped oscillation form was selected for all other
movies. We note that here, as well as in the case of intrinsic timescale estimation
(see below), the model selection procedure ensured that the estimated timescale
matched the characteristic time over which the statistical dependence between the
signal X, at time ¢ and the signal X, , , at time t 4+ 7 became small compared to its
value at short lags. Crucially, the model selection procedure allowed this to hold
even in presence of oscillatory patterns in the correlation functions, where the fact
that the correlation goes to zero at a certain lag can hide the fact that it takes on
significant negative values (indicating the persistence of a statistical relationship,
albeit with flipped sign) and can further possibly come back to positive values at
larger lags. We considered one population PSTH for each cortical area we recorded
from, pooling together all the available sessions, as illustrated in Fig. 3c.

Intrinsic timescale of neuronal activity. Intrinsic timescales of neuronal activity
were computed in a way that mirrors the stimulus-driven correlation timescales
defined in the previous section (see Supplementary Fig. 1) and that is a simple
extension of the definition given by ref. 4. To compute C(4) for a given cell, we set

X, = {xy)} in Eq. (1), where ng) is the spike count of the cell at time bin ¢ in trial k.
Following ref. 44, we then averaged C(4) across all units belonging to the same area
before extracting a time constant (see example in Fig. 4c). The characteristic
timescale of intrinsic correlation decay was computed as above for the PSTH, using
the same fitting functions and the same model selection procedures. Intrinsic
correlations in V1 were well fitted by simple exponential decays, while the damped
exponential form was selected for fitting intrinsic correlations for all movies in
extrastriate areas.

Characteristic timescale of decoding performance. After computing the average
classifier performance p(A) as a function of the lag A (see next section), a char-
acteristic decay time constant was extracted by the same procedure previously used
to compute the timescales of the movies, of the stimulus-driven responses and of
the intrinsic activity. Namely, either an exponential decay of the form y(f) = aexp
(—t/7) + b or a damped oscillation function of the form y(t) = aexp(—t/7)cos(wt +
¢) + b were fitted to p(A) for A >0 (see example in Fig. 5b). Model selection was
performed as described above, and the exponential decay time constant 7 was
extracted as the quantity of interest. The majority of pseudopopulations/movie/trial
set combinations were fit with the damped-oscillatory functional form (V1: 108 out
of 144; LM: 14 out of 18; LI: 17 out of 18; LL: 48 out of 54).

Classifier analysis. To assess the discriminability of population activity at different
points in time during the presentation of a given movie, we proceeded as follows.
For each recording session, we divided the 30 available recording trials in a training
set of 20 trials and a validation set of 10 trials. We pooled all units that were
recorded from a given area across all sessions to obtain a total number of units N
per area. We generated K pseudopopulations of M < N units (with M = 20 for most
of the analyses) by selecting as many random nonoverlapping subpopulations of
size M as possible. For instance, in V1, K= 8 as N = 168. These subpopulations
were the same in the training and in the validation set. Following standard pro-
cedure when working with pseudopopulations, for each trial set (training and
validation), we shuffled cell activity across trials to destroy cross-cell noise
correlations.

We then considered all pairs of time bins along a trial that were separated by at
least 40 time bins (i.e., by 1320 ms, as bin size was 33 ms). For each of these
“reference” pairs of time bins (gray boxes in Fig. 5a), we trained a linear support
vector classifier (provided by liblinear® via scikit-learn®”) to discriminate
population activity samples from one of the element of the pair vs. the other. The
penalty hyperparameter was chosen by threefold cross-validation within the
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training set, performing a grid search over candidate values 10-2~10.12, After
selecting the best value of the hyperparameter, the classifier was retrained on the
full training set.

To assess the temporal stability of the population activity, the trained classifier
was then tested on samples of population activity coming from different time bins
than those it was trained on (orange and green boxes in Fig. 3A). More specifically,
if a classifier was trained on the pair of time bins at times #; and f,, it was then
tested on pairs of time point at times #; + A and t, + A, where A took on values
{—20,...,—1,0,1,...,20} bins*33 ms/bin. The fraction of correctly decoded trials at
negative and positive time increments was then averaged to yield a classifier
performance curve p(4) with A ranging from 0 to 20 bins*33 ms/bin = 660 ms.
This performance curve was computed for all possible reference pairs of time bins,
and averaged over all pairs. The resulting average performance decay curve (for
each individual movie stimulus and pseudopopulation) was used to compute the
typical timescale of self-similarity for population activity as described above.
Examples of such performance decay curves are given in Fig. 5b for the case in
which the test was performed on held-out trials (i.e., green boxes in Fig. 5a).

This analysis was performed separately on the training and the held-out trial
sets (respectively orange and green boxes in Fig. 5a), while keeping the trained
decoders fixed (see performance decay curves in Fig. 5b and Supplementary
Fig. 3a). When computed on the training set, p(0) corresponds to the performance
of the classifier on its own training data, but p(33 ms) is the performance of the
classifier on an entirely new set of data, which happens to come from the same set
of experimental trials as the training data. When compared to the results on the
held-out set, this allowed quantifying the extent to which the self-similarity of the
population activity in time was due to the stimulus-locked representational
structure of the population code rather than to intrinsic, within-trial, temporal
correlations in the activity of each neuron. Intuitively, population activity at time ¢
in trial i can be expected to be more similar to population activity at time t 4 A in
the same trial than in a different trial, precisely because of the existence of within-
trial, stimulus-independent correlations in the activity of each neuron. Comparing
the performance of the classifier on the training set vs. the held-out validation set,
as done in Fig. 5d, allowed therefore to assess the importance of this correlational
structure in enhancing the self-similarity of population activity over time (see Eq.

(1)

Regression analysis and hypothesis testing. Linear regression for the depen-
dence of the timescale of stimulus-driven responses and intrinsic activity on the
stimulus timescale (Fig. 4b, d), as well as for the dependence of the amount of
classifier performance due to intrinsic correlations on the timescale of intrinsic
activity (Fig. 5d and Supplementary Fig. 2c) was computed by ordinary least
squares. In each case, residuals were not incompatible with a normal distribution
(Jarque-Bera, p > 0.05). Regression and tests were performed with the Python
package statsmodels.

The distribution of the data was less regular for the case of the classifier
performance vs. the timescale of the movie (Fig. 5¢c and Supplementary Fig. 3b). In
particular, there were a few outliers with very long decoding timescales, especially
for LL, which could have biased our conclusion in favor of the hypothesis that
higher areas in the hierarchy have longer processing timescales. To prevent our
conclusions from relying disproportionately on these points, we performed the
corresponding linear regressions using a robust estimator (Theil-Sen estimator;38).
The confidence intervals were determined by percentile bootstrap
(10000 samples;39) stratified by cortical area. This combination of estimator and CI
determination procedure has been shown to provide reasonable coverage
probability in the face of model misspecification and data contamination by
outliers®8. Following ref. 8%, p values were computed by subtracting the bootstrap
distribution of any given parameter from its estimated value to obtain a surrogate
for the null distribution. The p value was then obtained as the mass of the surrogate
distribution for values larger than the estimate. This yielded a one-tailed test where
the null hypothesis was that the parameter value was not larger than zero.
Regression and tests were performed with custom R code”® using the boot and
WRS libraries.

Classifier analysis on hand-matched movie segments. The results illustrated in
Fig. 6 were obtained by performing a variant of the classifier analysis on a small
subset of neuronal recordings, corresponding to the presentation of movie seg-
ments that were carefully matched in pairs to reproduce as much as possible the
conditions under which representation invariance is typically studied with static
stimuli. All movie segments were taken to be exactly 29 frames (~967 ms) long, and
as described in the main text, they were all selected to show a single object, moving
smoothly from the left to the right of the frame (or vice versa) over the course of
the segment. The object could be black or white, leading to the existence of four
categories of movie segment pairs, based on the match or mismatch between the
color of the object in each element of the pair and their direction of motion: (1)
opposite color, same direction; (2) opposite color, opposite direction; (3) same
color, same direction; and (4) same color, opposite direction. The number of
available movie segment pairs was 4, 6, 5, and 6, respectively, for the four condi-
tions. For each segment pair and each cortical area, a classifier analysis similar to
the one outlined above was performed, as follows. First of all, as above, K non-
overlapping neural pseudopopulations of 20 cells each were formed at random,

where K = floor(N/20) and N was the total number of available cells (for area LM,
this just meant forming one pseudopopulation taking up all available cells). Neural
activity was binned in temporal bins of duration 1/30 s, (rather than 33 ms as in the
other analyses), corresponding to the exact duration of each movie frame, to ensure
straightforward alignment of neural binned data and movie frames. Each of the
time bins spanning the duration of either movie segment was sequentially con-
sidered as the training bin for the classifier, which was then tested on the other
bins, yielding a performance vs. lag curve, where the lag could go from —28 to +28
bins depending on the identity of the training bin. For instance, when the classifier
was trained on the first bin of both segments, the classifier’s performance would be
evaluated for lags spanning the range from 0 to 4-28. On the other hand, when the
classifier was trained on the middle bin of both segments (bin number 15), the
performance vs. lag curve would be computed for lags spanning from —14 to +14.
All performance curves were then aligned and averaged (ignoring missing values),
yielding a summary performance curve for lags spanning from —28 to +28. This
performance curve was further “folded” by identifying positive and negative lags.
The folded performance curve (spanning now from 0 to +14 bins, i.e., from 0 to
~467 ms) was then averaged across all neural pseudopopulations for the areas.
Finally, this procedure was repeated ten times, each time selecting different random
pseudopopulation, and the resulting curves were averaged. This yielded an average
performance curve for each movie segment pair and each brain area. For each of
these curves, a characteristic timescale was computed using the same curve-fitting
methods described in the previous section. A final estimate of the timescale for
each condition was obtained as the average timescale derived from all movie
segment pairs in that condition. Statistical significance of the difference between
the timescales in V1 and those of the other areas was assessed by performing a
simple linear regression of the timescales of the individual movie pairs versus area
identity and condition. Mathematically, this was expressed as follows:

7= o+ Bia - LM+ B, - LI+ B - LL+ B, - Direction + f
-Color + f, - Direction - Color

In this expression, LM (resp. LI, LL) is an indicator variable that is 1 when the
area is LM (resp LI, LL) and 0 otherwise, and Direction (resp. Color) is an indicator
variable that is 1 when the movement direction (resp. object color) is the same in
the two movie segments making up a pair. Therefore, for instance, 1y represents
the mean difference in timescale between LM and V1 controlling for the effect of
the condition (direction and color).

Analysis of awake mouse data. The awake mouse dataset (here and elsewhere
referred to the Allen dataset) was collected and published by the Allen Institute for
Brain Science. We refer to the original publication!? for an exhaustive description
of the experimental procedures and data processing.

The Allen dataset is subdivided into individual sessions. We used the Allen
Software Development Kit (Allen SDK) to extract stimulus-aligned spike timings
for the relevant visual areas (LGN, V1, LM, RL, AL, PM, and AM) from the first
17 sessions included in the dataset and we pooled all units within each area. Firing
rates were binned using a bin size of 33 ms, consistent with our other analyses. As
detailed in “Results” section, we only considered the neural activity recorded in
response to the presentation of one of the two movies in the dataset (the longest of
the two, named Natural Movie 3), as the other movie (named Natural Movie 1) was
composed by highly static shots, leading to an irregular structure of the temporal
pixel correlations (Supplementary Fig. 4a, left) that when collapsed as a correlation
function were not well described by any of the functional forms we considered
(decaying exponential, damped oscillation; see Supplementary Fig. 4b, red curves).
We analyzed the movie frames and the neural data using the same methods
detailed above for the anesthetized rat experiment, with a few differences. First, as
we only had access to one movie, we did not study the dependence of the timescales
on the stimulus timescale, but we only analyzed the difference in timescales across
areas. Second, all correlation functions (pixel correlations in the stimulus, as well as
response and intrinsic correlations in the neural data) were well fit by simple
decaying exponentials, so the damped oscillation functional form was never used.

To study the variation of the neural timescales along the visual pathway, we
performed an ordinary least squares linear regression of the timescales against the
anatomical score of their respective area.

Comparison of running and resting conditions in awake mouse. Given a
recording session, we used the velocity information v to identify epochs of the
neuronal responses to the movies during which the mouse was either resting (v <1
cm/s) or running (v > 1 cm/s). Each session had a number of these epochs, and by
construction each rest epoch divided two adjoining running epochs. In addition,
given that each movie was presented ten times within a session, the segments of the
movie in which the mouse was at rest or running were different in each pre-
sentation. Since our analysis required processing the responses of each recorded
neuron across multiple repeated presentations (or trials) of the same stimuli, we
looked for segments of the movie where the resting (or running) epochs obtained
for the various trials overlapped and we took their intersection (see Supplementary
Fig. 5). The number of resting (or running) epochs shared across trials decreased as
a function of the number of trials considered and, concomitantly, their duration
became shorter. In principle, our comparison between the running and the resting
conditions could have been affected by our specific choice in this trade-off between

16 | (2021)12:4448 | https://doi.org/10.1038/s41467-021-24456-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

number of trials and amount of available data (duration and number of the shared
resting or running epochs). To avoid any such bias, we repeated our analysis for
any combination of four choices of trial number N; (i.e., 3, 4, 5, and 6 trials) and
five choices of the minimal duration L of the epochs to be included in the analysis
(e, 2.5, 3.3, 4.1, 5.0, and 6.6 s). For each of these combinations, we computed the
stimulus-driven and intrinsic correlation functions, we fitted the exponential
decays and we obtained their time constants. This procedure was repeated for all
the 17 recording sessions of the Allen dataset included in our analysis, so as to
obtain an estimate of the average temporal stability of neuronal activity across the
seven visual areas during quiet wakefulness (i.e., during the resting epochs) as well
as during active wakefulness (i.e., during the running epochs). To make sure that
the time constants included in the final averages were obtained from exponential
fits with similar quality, for any combination of the parameters N, and L we pooled
the errors of the fits obtained across all the resting and running epochs of all areas.
We then looked at the resulting, overall distribution of fit errors and only retained
the time constants of those fits with an error in the lower 50th percentile. Since in
general, for any given area, the numbers of resting and running epochs yielded by
this selection procedure were different, we equated them by subsampling the
epochs of the more populate state. This ensured that the number of time constants
used to assess the neuronal dynamics of a given area was the same for the resting
and running state.

Analysis of awake rat data. For the awake rat analyses of Supplementary Fig. 6,
we used the neuronal recordings collected in ref. %9, for which we refer for a
detailed description of the acquisition methodology. In brief, single-unit recordings
were performed from areas V1, LI, and TO on head-fixed, awake rats, while the
animals were shown natural movie stimuli. The stimulus set included 20 movies,
each 5-s long, and the number of recorded neurons was 50 in V1, 53 in LI, and 52
in TO. As for the anesthetized data, in our analyses, the spike data were discretized
in temporal bins 33-ms long. We discarded all neurons that did not meet the
reproducibility criterion described above (under “Spike sorting and selection of the
units included in the analyses”), and this reduced the number of available neurons
to 44 in V1, 40 in LI, and 38 in TO. Since the structure of the data was very similar
to our new recordings in anesthetized rat, we were then able to apply the same
analysis pipeline to estimate stimulus timescales, response timescales, and intrinsic
timescales, leading to the data reported in Supplementary Fig. 6. Three exceptions
were made to this general principle: (1) since the movies were shorter, we con-
sidered a smaller range of lags over which to compute the correlations (0.5 s instead
of 2's, compare Fig. 4a, ¢ with Supplementary Fig. 6 a, c); (2) because of the
particular trend typically exhibited by intrinsic correlations (with a peak at some
nonzero but short lag, see Supplementary Fig. 6¢), only the tail of the intrinsic
correlations was considered, using only lags larger than 5 bins (=165 ms); and (3)
the form of the function used for fitting the correlations was now y(t) = aexp(—t/7)
[c+ cos(wt 4 ¢)] + b. All details of the regression analysis were the same as for the
anesthetized data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data generated in this study have been deposited on OSF under accession code
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