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Abstract

Physicians use perioperative decision-support tools to mitigate risks and maximize benefits to 

achieve the most successful outcome for patients. Contemporary risk-assessment practices 

augment surgeon’s judgement and experience with decision-support algorithms driven by big data 

and machine learning. These algorithms accurately assess risk for a wide range of postoperative 

complications by parsing large datasets and performing complex calculations that would be 

cumbersome for busy clinicians. Even with these advancements, large gaps in perioperative risk 

assessment remain; decision-support algorithms often cannot account for risk-reduction therapies 

applied during a patient’s perioperative course, and do not quantify tradeoffs between competing 

goals of care (e.g., balancing postoperative pain control with the risk of respiratory depression or 

balancing intraoperative volume resuscitation with risk for complications from pulmonary edema). 

Multi-objective optimization solutions have been applied to similar problems successfully, but 

have not yet been applied to perioperative decision-support. Given the large volume of data 

available via electronic medical records, including intraoperative data, it is now feasible to 

successfully apply multi-objective optimization in perioperative care. Clinical application of multi-

objective optimization would require semiautomated pipelines for analytics and reporting model 

outputs and a careful development and validation process. Under these circumstances, multi-

objective optimization has the potential to support personalized, patient-centered, shared decision-

making with precision and balance.

Article summary:

Risk calculators and decision-support tools estimate the probability of individual or composite 

outcomes, yet approaches and techniques in multi-objective optimization are unknown to most 

clinicians. Here we describe the potential for multi-objective optimization methods to quantify 

tradeoffs among competing outcomes in perioperative medicine.
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Single objectives versus reality

Historically, assessing the risks of undergoing surgery relied solely on surgeon experience 

and intuition. Preoperative risk assessments have evolved into an evidence-based practice 

using objective clinical data and validated risk-assessment tools. Risk-scoring systems such 

as the American College of Surgeons National Surgical Quality Improvement Program Risk 

Calculator, the Surgical Risk Preoperative Assessment System, MySurgeryRisk, Predictive 

OpTimal Trees in Emergency Surgery Risk Calculator, and others aim to provide patients 

and clinicians with estimates of risk for postoperative complications.1–4 These calculators 

leverage large volumes of data, regression modeling, and machine-learning techniques to 

accurately predict postoperative complications. These predictions can inform shared 

decision-making processes involving patients, their caregivers, and clinicians.

One major weakness of most existing surgical risk calculators is that they fail to incorporate 

a dynamic mathematical adjustment for change in the probability of outcomes or 

complications that is expected to occur when various treatments are applied. Instead, the 

calculators estimate static risk for individual complications or composite outcomes. Risk 

estimates for composite outcomes better represent aggregate risk for a larger, more 

comprehensive set of complications, but they often group rare events with common events 

and group severe complications with minor complications; the resulting predictions lack 

granularity and interpretability.5 Even when risk estimates are accurate, granular, and 

interpretable, they often do not identify the specific clinical decisions that are the primary 

drivers of clinical outcomes, much less suggest an optimal management strategy to optimize 

outcomes.

Perioperative decision-support tools predicated on numerical rating scales present numerous 

challenges. The definition of pain as a fifth vital sign by the American Pain Society and 

subsequent emphasis by the Joint Commission led to an implicit administrative goal to 

minimize patient-reported pain.6 This single-objective optimization is easily accomplished 

by administering high-dose fentanyl in the postanesthesia care unit, although this may not 

lead to improvement in overall patient outcome. Thoughtful clinicians also seek to avoid 

respiratory depression, nausea, emesis, pruritus, constipation, opioid dependence, and 

adverse opioid-related events.7–11 These other important outcomes may be monitored, 

reported, and valued separately, inappropriately, or not at all, leading to a treatment approach 

that fails to achieve the ultimate goal of restoring function (e.g., breathing, return of bowel 

function, and ambulation). In a sentinel investigation by Vila et al.,12 an opioid-based quality 

improvement program was associated with a 6% improvement in patient satisfaction with 

pain management and a 223% increase in postoperative safety events, demonstrating the 

potential consequences of single-objective optimization.

Principles of multi-objective optimization

Many real-life decision-making situations involve multiple goals. For example, a stock 

broker designing a portfolio seeks a high return on investment and low risk, a mechanical 

engineer building an engine seeks high horsepower and low fuel consumption, and an 
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anesthesiologist caring for a patient in the postoperative period seeks low pain severity and 

early return to function. The common thread across these decision problems is conflict 

between the goals cited. Financial portfolios that have high returns tend to be risky, powerful 

cars use more gasoline, and high-dose opioids can impair postoperative function. In addition, 

these problems typically have a set of good solutions rather than a single best solution. 

Often, to improve one goal, the decision-maker must sacrifice another goal. Only two 

conflicting goals are considered in these examples; tradeoffs can incorporate many goals or 

objectives.

It is possible to form complex decision-making scenarios as mathematical optimization 

problems with multiple objectives. These formulations are called multi-objective 

optimization problems. A decision (or a solution) is represented by assigning values to 

variables, for example the amount of intravenous fluid administered during surgery. Let xi 

represent the ith decision variable and x = (x1,…,xn) the collection of decision variables. An 

objective, in this context, is a function that maps decisions to a goal. Let fj(x) represent the 

jth goal as a function of a decision. Formally, the associated optimization problem is stated 

as

min
x ∈ X

f1 x , …, fm x

where x is a decision contained within X, which represents the decision space, or the set of 

all feasible decisions. This example arbitrarily minimizes the objectives; it is possible to 

minimize some objectives while maximizing others. The set of all possible outcomes that 

can result from all possible decisions is called the objective space. The goal is to find a 

solution that optimizes all functions.

Consider the portfolio optimization problem described by Harry Markowitz, in which one is 

interested in creating a portfolio of stocks with high expected return and low risk. Assume 

that an investor wants to invest a total of $1, distributed among 3 available stocks. Her 

decision space, X, is represented by the amount she invests in each stock. A solution, x, 

might look like, x=(0,0.25,0.75), representing no investment in stock 1, 25 cents in stock 2, 

and 75 cents in stock 3. Expected portfolio return is a weighted sum of each stock’s 

expected return, which can be written as f1(x)=x1μ1+x2μ2+x3μ3, where μi is the expected 

return of stock i. Similarly, objective 2, portfolio-wide risk, can be written as 

f2(x)=x12σ12+x22σ22+x32σ32, where σi2 is the variance of stock i’s return (for simplicity, 

we assume that stock returns are independent of one another). The associated optimization 

problem is maxf1(x),minf2(x),subject tox1+x2+x3=1,x1,x2,x3≥0.

The solution to this problem is a set of points known as the efficient frontier. The solutions 

in the frontier are called efficient solutions. One solution is said to dominate another solution 

if it is strictly better in 1 objective and not worse in others. The efficient frontier is composed 

of solutions that are not dominated by any other solution. Figure 1 represents a sampling of 

portfolios in the objective space (i.e., risk versus return). The solution corresponding to point 

A is nondominated because there is no portfolio that has lower risk than A. Portfolio A 

dominates B because it has both higher returns and lower risk, but A does not dominate C. C 
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is dominated by D. This example depicts multiobjective optimization problems as having 

sets of solutions rather than a single solution. Given this set of solutions, if there are 

additional preferences not previously included in the model criteria, then such preferences 

may help decision-makers choose among available solutions for a given multiobjective 

optimization problem.13

Multi-objective optimization in clinical practice

Multi-objective optimization challenges abound in surgery and perioperative medicine. 

Perhaps one of the simplest rubrics is in postoperative pain management, which has the 

goals of minimizing pain while minimizing opioids and maximizing indicators of surgical 

recovery, such as breathing, return of bowel function, and ambulation. Tradeoffs among 

these goals are illustrated in Figure 2.

Decisions on perioperative fluid management, vasopressor and inotropic support, ventilation 

management, antibiotic selection, and blood glucose management typify those hourly 

decisions, which may impart multiple and imbalanced consequences.13–20 Notably, while 

decision heuristics commonly aim to restore “normal” parameters, many patients suffer 

comorbid factors that may transiently or permanently challenge this underlying strategy.21 

From a broader perspective, decisions on the timing of surgery are common in older adults 

with hip fractures, with data supporting early repair as well as correcting reversible clinical 

abnormalities, which may conflict with early repair.22–24 Perioperative neurocognitive 

disorders (e.g., delirium and postoperative cognitive change), which are the most common 

postoperative complications in older adults, may be exacerbated by pain intensity and 

opioids, suggesting further opportunities for optimization across competing endpoints.25–31

Prior limited experience for clinical multi-objective optimization

The authors are unaware of any published applications of multi-objective optimization in 

perioperative decision-making. However, similar concepts have been applied in performing 

partial hepatectomy for multifocal hepatocellular carcinoma. Liver surgeons seek to 

maximize complete resection or destruction of the target lesions and the size and function of 

the liver remnant. Multi-objective optimization has been formally deployed in exploring the 

distribution of Level 1, 2, and 3 trauma centers in Colorado, minimizing total system access 

time and the number of casualties who could not reach the desired level of care.32 Similar 

work has been performed regarding the Scottish trauma system.33 Multi-objective 

optimization has been used in surgical device design and development for cochlear implants, 

coronary stents, and numerous orthopedic implants.34–36 Generally, these designs attempt to 

minimize the risk of insertion and device-specific complications while maximizing device 

longevity and functionality. Multi-objective optimization has also been applied to simulated 

radiation therapy for brain lesions, seeking to maximize normal neuroanatomy around the 

lesion while delivering a theoretically sufficient dose of radiation to destroy the lesion.37 

Similar methods have been applied to electrostimulation for acetabular bone reformation.38 

This work focused on arranging electrodes to achieve a homogenous field distribution and 

optimal simulation interval, objectives that occasionally conflict.
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Challenges and future directions in clinical implementation of multi-

objective optimization

The increasing availability of large volumes of data from electronic health records offers 

opportunities to apply advanced data science techniques to frame clinical challenges as 

multi-objective optimization problems that balance tradeoffs among competing goals. 

Conceptually, this approach seems preferable to traditional decision-support tools that 

estimate probabilities for individual outcomes in isolation or estimate probabilities for 

composite outcomes that lack granularity and interpretability. However, evidence supporting 

the clinical efficacy of multi-objective optimization is lacking. Future investigations should 

seek retrospective validation followed by prospective clinical application with comparison to 

standard decision-making and traditional decision-support tools. This would require 

semiautomated pipelines for analytics and reporting model outputs. If successful, multi-

objective optimization has the potential to support personalized, patient-centered, shared 

decision-making with precision and balance.
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Highlights

Topic:

Multi-objective optimization in perioperative decision-making

Purpose:

Describe a framework for achieving balance among several competing goals of care

State-of-the-Art:

Multi-objective optimization can quantify tradeoffs among several outcomes of interest, 

offering advantages over traditional, single-objective optimization

Knowledge Gaps:

The feasibility and efficacy of multi-objective optimization in augmenting surgical 

decision-making have not been reported

Technology Gaps:

Clinical application of multi-objective optimization would require semiautomated 

pipelines for analytics and reporting model outputs

Future Directions:

Retrospective development and validation of multi-objective optimization decision-

support tools, followed by clinical application in a prospective, observational setting
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Fig. 1. 
Risk vs. return profiles of stock portfolios.
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Fig. 2. 
Postoperative day one (POD1) mean pain intensity vs. oral morphine milligram equivalents.
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