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Abstract The transmission dynamics of COVID-19
is investigated in this study. A SINDy-LM modeling
method that can effectively balance model complex-
ity and prediction accuracy is proposed based on data-
driven technique. First, the Sparse Identification of
Nonlinear Dynamical systems (SINDy)method is used
to discover and describe the nonlinear functional rela-
tionship between the dynamic terms in the model in
accordance with the observation data of the COVID-19
epidemic. Moreover, the Levenberg–Marquardt (LM)
algorithm is utilized to optimize the obtained model
for improving the accuracy of the SINDy algorithm.
Second, the obtained model, which is consistent with
the logistic model in mathematical form with small
errors and high robustness, is leveraged to review the
epidemic situation in China. Otherwise, the evolution
of the epidemic in Australia and Egypt is predicted,
which demonstrates that this method has universality
for constructing the global COVID-19 model. The pro-
posed model is also compared with the extreme learn-
ing machine (ELM), which shows that the prediction
accuracy of the SINDy-LM method outperforms that
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of the ELMmethod and the generatedmodel has higher
sparsity.
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1 Introduction

At the beginning of 2020, Corona Virus Disease 2019
(COVID-19) occurred globally [2,3], and it is currently
spreading worldwide on a large scale. Statistics from
Johns Hopkins University in the United States showed
that nearly 850,000 people have died of COVID-19 and
more than 25,890,000 cases of infection have been con-
firmed in more than 180 countries and regions around
the world as of September 31, 2020. The prediction
of COVID-19 is an important task in the public health
security. It can detect the development trend of the dis-
ease early and improve the predictability of the epi-
demic, which plays an important role in the preven-
tion, treatment, and health decision making of the dis-
ease [4]. Therefore, the proposal of a universal predic-
tion method for COVID-19 has important theoretical
and practical significance for the guidance of epidemic
prevention and control worldwide based on the devel-
opment of the epidemic situation in China.

Model-driven and data-driven approaches are two
mainmethods for the spread and prediction of COVID-
19 at present. The traditional epidemiological models
for studying infectious diseases consists of SIR and
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SEIR models [1]. Teles used the SIRmodel to simulate
the MERS epidemic in Korea for assessing the evolu-
tion of the curve of the number of COVID-19 cases in
Portugal [5]. Some researchers used the SEIR model
to analyze and identify the transmission dynamics of
the COVID-19. Huang et al. completed the prediction
of the COVID-19 epidemic in some Asian countries
basedon the transmissiondynamics anduniversal SEIR
model [4]. Tang et al. derived the basic reproduction
number of COVID-19 through SEIR model analysis
[6]. Gaurav et al. employed the SEIRmodel and regres-
sion method to analyze and predict the development
of the epidemic in India [7]. Other researchers have
also proposed some methods to improve and extend
the SEIR model. He et al. used particle swarm algo-
rithm to identify the parameters in the SEIR model and
introduced seasonal and random infection parameters
[8]. However, the abovementioned references ignore
that COVID-19 has a long incubation period and strong
infectivity; these characteristics give rise to great diffi-
culty in predicting specific parameters in the traditional
model. If a high-dimensional complex model is estab-
lished to reduce the difficulty of estimation, then some
problems such as the inconsistency of the development
trend of the state variables in the model with the actual
data will be induced.

In addition to traditional epidemiological models,
academic circles at home and abroad have proposed
many researchmethods that usemachine learning algo-
rithms to predict the spread of COVID-19 [10]. Javid
used the extreme learning machine (ELM) to make
predictions [11], but some issues such as low pre-
diction accuracy and poor model interpretability still
exist. Although machine learning methods have the
abovementioned shortcomings, models based on data-
driven methods in machine learning have been widely
employed in nearly every branch of engineering and
applied mathematics [12,13]. This framework serves
as an alternative for the discovery of the dynamic equa-
tions for controlling the spread of infectious diseases.
There have been some researchs that used data-driven
methods to predict and analyze COVID-19 [14–16].
This data-driven method omits the complicated mod-
eling process, which avoids the large error caused by
parameter identification and has high practicability and
universality [17–19]. Thus, it is often used in sys-
tem identification [20]. However, data-driven model-
ing usually requires assumptions on the form of the
model. Thus, the results are limited to linear dynam-

ics, which can only produce valid results near the fixed
point of dynamics [21]. In addition, if the data-driven
method is used to establish a model to predict COVID-
19, then it is also prone to problems such as over-fitting
and low prediction accuracy in a long time. Therefore,
designing a new data-driven method of the accurate
prediction of the actual observation data of COVID-19,
which could balance the complexity (interpretability)
of themodel of COVID-19 and the prediction accuracy,
has become a key research topic and urgently needs a
breakthrough at home and abroad.

The Sparse Identification of Nonlinear Dynami-
cal systems (SINDy) method uses symbolic regres-
sion to discover and describe the nonlinear function
of the relationship between variables and measured
dynamic terms; this method also utilizes sparse rep-
resentation to determine the correlation in an effective
and scalable framework model item [17,18,22]. This
method has been used for feature selection and param-
eter identification of differential equations in physical
models [19]. It can also effectively solve the problem
that the number of hidden neurons in the construc-
tion of deep neural networks cannot be determined
[20]. Adopting this method to establish a model of
COVID-19 based on data-driven strategy can effec-
tively avoid errors caused by infectious disease coeffi-
cients in the model of COVID-19; thus, a more accu-
rate prediction result can be obtained. Moreover, this
method has better interpretability than the other data-
driven modeling methods. However, this data-driven
method may have problems of overfitting and low pre-
diction accuracy. Accordingly, appropriate and reason-
able improvements are needed in order to derive amore
stable optimization method.

Levenberg-Marquardt (LM)algorithmhas the advan-
tages of reducing the probability of falling into a local
minimum value, strong stability, and fast convergence
[23]. It has become a standard technique for solving
nonlinear least square problems [24] and has been
employed to optimize the learning process of neural
networks [25]. However, the accuracy of the LM algo-
rithm depends heavily on the selection of the initial
value [23]. If the SINDy data-driven modeling is com-
binedwith theLMalgorithm tooptimize the parameters
in themodel, then the accuracy of the SINDy algorithm
can be improved first. Second, it can also effectively
overcome shortcoming of the LM algorithm that relies
too much on the initial value. The combination of the
two methods can achieve a more complete review of
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countrieswhere the epidemic has ended andmakemore
accurate predictions for countries where the epidemic
has not ended. Thus, this combination can further solve
the problems of determining the turning point of the
epidemic.

This study presents a method that combines new
data-driven methods with optimization algorithms the
abovementioned discussion. The effect of balancing
model complexity and interpretability simultaneously
can be achieved by combining the SINDy method with
the LM method. Focused on the transmission dynam-
ics of infectious diseases, this study contributes to
proposing a modeling method that can effectively bal-
ance interpretability and prediction accuracy based on a
data-driven technique. The proposed modeling method
could review the epidemic situation in Chinese main-
land and predict the epidemic situation in other coun-
tries worldwide.

The paper is organized as follows. In Sect. 2, the
basic principles of the nonlinear dynamic sparse recog-
nition method and the LM algorithm are mainly intro-
duced, and the “SINDy-LM” data-driven modeling
method that combines the two is proposed. In Sect. 3,
the method is first applied to establish a COVID-19
model suitable for Chinese mainland. This section also
judges the location of the “epidemic turning point” and
the SINDy-LM method is applied to other countries in
theworld (Australia, Egypt). Section 4 considers higher
dimension cases and the robustness of the model. The
comparison between SINDy-LMmethod and the ELM
algorithm is also discussed in this section. The last sec-
tion summarizes the conclusion and discusses the prac-
tical significance of the method, potential problems,
and follow-up work.

2 Data-driven modeling based on SINDy-LM

In this section, the idea and algorithm procedure of
SINDy method and LM algorithm are introduced in
detail, and the two are combined to complete the estab-
lishment of the model.

2.1 Model setup based on SINDy method

The Sparse Identification of Nonlinear Dynamical
systems (SINDy) method uses sparse regression and
parameter identification to discover the reduced gov-

erning equations correctly from a large number of com-
bined potential dynamicmodels. StevenL.Brunton and
others introduced the background and partial applica-
tions of the SINDymethod [17] and elaborated on using
the SINDy method to study models and solve regres-
sion and selection problems [26].

This section introduce the SINDy method proposed
by Steven L. Brunton [26]. The symbols used through-
out the work are given as follows: lowercase letters
(such as x ) represent scalars, and bold lowercase let-
ters (such as x ) represent vectors; bold uppercase let-
ters (such asX) definematrices; parentheses emphasize
functions and vector functions (such as f (·)); the rele-
vance of variables with respect to time, such as x(t), is
emphasized when necessary.

SINDy method determines the governing equations
in the infectious disease dynamics system by using the
true observation data in many countries. The nonlinear
dynamic system is expressed as Eq. (1):

ẋ(t) = f (x(t)), (1)

where vector x(t) represents the state of the system
at time t , ẋ(t) represents the derivative of x(t) at
time t , and f (x(t)) is the evolution of x(t) with time
to represent constraints of the governing equation in
the dynamic system. In the established COVID-19
model, the main research goal is about the evolution of
state variables such as the number of confirmed cases,
deaths, cured cases and close contacts over time.

The specific form of the function f is determined by
the observation data, and it requires collecting the time
history of the state x(t). It needs to collect the COVID-
19 time series data ofx(t) at t1, t2, · · · , tm and construct
the relevant numerical matrix Eqs. (2) and (3):

X =

⎡
⎢⎢⎢⎣

xT (t1)
xT (t2)

...

xT (tm)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

x1 (t1) x2 (t1) · · · xn (t1)
x1 (t2) x2 (t2) · · · xn (t2)

...
...

. . .
...

x1 (tm) x2 (tm) · · · xn (tm)

⎤
⎥⎥⎥⎦ ↓ t ime,

→state

(2)

Ẋ =

⎡
⎢⎢⎢⎣

ẋT (t1)
ẋT (t2)

...

ẋT (tm)

⎤
⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎣

ẋ1 (t1) ẋ2 (t1) · · · ẋn (t1)
ẋ1 (t2) ẋ2 (t2) · · · ẋn (t2)

...
...

. . .
...

ẋ1 (tm) ẋ2 (tm) · · · ẋn (tm)

⎤
⎥⎥⎥⎦ , (3)

where Ẋ is approximated by the numerical differentia-
tion ofX, and the data required inX are the observation
data collected from the measurement in the real world.
In this study, x1, x2, · · · , xn will be substituted into
state variables such as the number of confirmed cases
and the number of deaths.

A candidate function library�(x) consisting of can-
didate nonlinear functions Eq. (4), where each column
represents the potential candidate of the element in f (·)
to be discovered, is constructed. The function chosen to
fill the library is arbitrary and can be composed of poly-
nomial terms and trigonometric functions. Considering
the interpretability of the model and the amount of cal-
culation, the candidate function library only contains
polynomial terms. Then, the nonlinear feature library
is leveraged to find the least dynamic term that satis-
fies Eq. (4); thus, a COVID-19 model is generated as
follows:

Ẋ = �(X)�, (4)

�(X) =
⎡
⎣

| | | |
1 X XP2 XP3 . . .

| | | |

⎤
⎦ , (5)

where element 1 represents a column vector composed
ofm ones, elementX is defined in Eq. (2), and element
XP2 is the set of all quadratic polynomial functions
of state vector x. XP3 is the set of cubic polynomial
functions. The superscript P2 is used to define the set
of quadratic polynomial functions with a structure as
in Eq. (6):

XP2 =

⎡
⎢⎢⎢⎣

x21 (t1) x1x2 (t1) · · · x22 (t1) · · · x2n (t1)
x21 (t2) x1x2 (t2) · · · x22 (t2) · · · x2n (t2)

...
...

...
...

x21 (tm) x1x2 (tm) · · · x22 (tm) · · · x2n (tm)

⎤
⎥⎥⎥⎦ .

(6)

Each columnof�(X) represents the candidate func-
tion term on the right side of the equation. A greater
degree of freedom is obtained when selecting coef-
ficients in this alternative function library. However,
other dynamic systems such as infectious disease trans-
mission systems usually have only a few nonlinear
terms in practical applications. Thus, the right side of
the equation has high sparsity in the high-dimensional

nonlinear function space. As emphasized in the litera-
ture [26], the assumption that the algorithm can con-
verge to the true solution is that only a few elements
make up the function f (·); this way makes it sparse
in the space of possible functions [13]. This sparsity
balances the complexity and accuracy of the model. In
summary, a sparse regression problem can be estab-
lished to determine the sparse vector of the coefficient
matrix for obtaining the nonlinear effective function
term. The objective function of SINDy is defined by �1
norm regression:

ξ i = argmin
ξ̂ i

∥∥∥Ẋ − ξ̂ i�(X)

∥∥∥
2
+ λ

∥∥∥ξ̂ i

∥∥∥
1
, (7)

where ξ i collects the coefficients of candidate function
�(X), which is the goal of minimization. The number
of vectors is equal to the dimension n of the state vector
with i = 1, · · · , n. Only a few candidate functions are
expected to affect system dynamics; thus, all vectors
are expected to be sparse. Symbols ‖ · ‖1 and ‖ · ‖2
represent �1 norm and �2 norm, respectively. λ is a

scalarmultiplier and elementλ
∥∥∥ξ̂ i

∥∥∥
1
is a regularization

term that penalizes coefficients different from 0 in a
linear manner. It is the real promoter of sparsity in the
minimizing problem.

For Eq. (7), convex optimization algorithms such
as least absolute shrinkage and selection operator
(LASSO) can be used to solve. The method of sequen-
tial threshold least squares can also be used instead.
The sequential threshold least square method applies
sparsity by “manually” setting all coefficients less than
λ to 0 in an iterative manner. The result is very similar
to that produced by LASSO. For the sake of brevity,
this study takes the latter solution.

After all the sparse vectors are estimated, they can
be collected in the sparse matrix �:

� =
⎡
⎣

| | |
ξ1 ξ2 · · · ξn
| | |

⎤
⎦ . (8)

Given that� is obtained, themodel of each elements
of the control equation Eq. (1) can be constructed as
follows:

dxi
dt

= fi (x) = �
(
xT

)
ξi , (9)

where x = (x1, x2, . . . , xn)T and x1, x2, . . . , xn rep-
resent state variables such as the number of confirmed
cases and the number of deaths. Unlike the data matrix
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�(X), �(xT) is a vector of symbolic functions of ele-
ments of x. In this way, a complete COVID-19 model
is formed:

ẋ = f (x) = �T
(
�

(
xT

))T
. (10)

In this study, the COVID-19 model is simplified to
only one-dimension case and the reason for that will be
illustrated in Sect. 4. That is, in Eq. (9), the governing
equations followed by the components in the obtained
COVID-19 model can be expressed as:

dxi
dt

= � (xi ) ξ i

= b0,i + b1,i xi + b2,i x
2
i + b3,i x

3
i + · · · bp,i x p

i ,

(11)

where b0,i , b1,i , · · · , bp,i are the elements in the coef-
ficient matrix � = [ξ1, ξ2, · · · , ξn] with each ξ i =
(b0,i , b1,i , · · · , bp,i )T.

2.2 Optimization of model coefficients with LM
algorithm

The model generated by the SINDy method is more
dependent on the selection of training data, and its
advantage is that it has strong universality and flexibil-
ity. However, this data-driven method have problems
with over-fitting and low prediction accuracy. Thus,
appropriate and reasonable improvements are needed
in order to derive a more stable optimization method.

TheLMalgorithm,which is a standard technique for
solving nonlinear least square problems [23,24], has
been used to optimize the learning process of neural
networks [25]. This study combines SINDy method
with LM algorithm to optimize the parameters in the
model.

According to the abovementioned SINDy method,
Eq. (4) can be solved as Eq. (10), which is the specific
coefficient matrix � = [ξ1, ξ2, · · · , ξn] of the model.
This study combines the SINDy method with the LM
algorithm to iteratively optimize the items in � for
improving the accuracy of the coefficients ξi of each
function in the model. As a result, better prediction
results can be obtained.

The coefficients of each term in the model Eq. (11)
directly obtained by the SINDy method are set as the
initial value of the iteration, which is set as ξ

(0)
i . Then,

the principle of the iterative procedure is

ξ
(k+1)
i = ξ

(k)
i + �ξ i , (12)

where ξ
(k)
i is the vector at the kth iteration(k = 1, 2, ...,

M); ξ (k+1)
i is the vector at the (k + 1)th iteration; �ξ i

is the variation during the two iterations. Next, for ξ i
at the kth iteration (the superscript (k) is temporarily
omitted for brevity), assume that

�ξ i = −
[
∇2E

(
ξ i

)]−1 ∇E
(
ξ i

)
, (13)

E
(
ξ i

) = ∥∥e (
ξ i

)∥∥
2

= 1

2

m∑
j=1

[
f
(
xi

(
t j

) ; ξ i
) − ẋi

(
t j

)]2
, (14)

where e(ξ i ) = (e1, e2, . . . , em) is the error and E(ξ i )

is the �2norm of error. ∇E(ξ i ) is the gradient, and
∇2E(ξ i ) is the Hessian matrix of E(ξ i ), as shown in
the following equations:

∇E(ξ i ) =
[

∂E
∂b0,i

∂E
∂b1,i

· · · ∂E
∂bp,i

]T
, (15)

∇2E(ξ i ) =

⎡
⎢⎢⎢⎢⎢⎣

∂2E
∂2b0,i

∂2E
∂b0,i b1,i

· · · ∂2E
∂b0,i bp,i

∂2E
∂b1,i b0,i

∂2E
∂2b1,i

· · · ∂2E
∂b1,i bp,i

...
...

...
∂2E

∂bp,i b0,i
∂2E

∂bp,i b1,i
· · · ∂2E

∂2bp,i

⎤
⎥⎥⎥⎥⎥⎦

. (16)

For high-dimension cases, computing the second
derivative will be very complicated. In the Gauss-
Newton method, the Hessian matrix is not calculated
directly, but is fitted via the Jacobian matrix. They are
rewritten by

∇2E(ξ i ) ≈ AT(ξ i )A(ξ i ), (17)

However, if the Jacobian matrix is used to fit the
Hessian matrix, the calculated result is not necessar-
ily reversible. So on this basis, an identity matrix is
introduced:

∇2E(ξ i ) ≈ AT(ξ i )A(ξ i ) + μI . (18)

Among them, I is the identity matrix, μ > 0 is the
damping coefficient and a constant. A(ξ

(k)
i ) denotes the

Jacobian matrix of e(ξ i ) at the kth iteration, as shown
in the following equation:

Ak
�= A(ξ

(k)
i )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂e1(ξ
(k)
i )

∂b0,i

∂e1(ξ
(k)
i )

∂b1,i
· · · ∂e1(ξ

(k)
i )

∂bp,i
∂e2(ξ

(k)
i )

∂b0,i

∂e2(ξ
(k)
i )

∂b1,i
· · · ∂e2(ξ

(k)
i )

∂bp,i
...

...
...

∂em (ξ
(k)
i )

∂b0,i

∂em (ξ
(k)
i )

∂b1,i
· · · ∂em (ξ

(k)
i )

∂bp,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (19)
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In summary, the expression of the LM algorithm is
as Eq.(20) and (21):

�ξ i = −
(
AT
k Ak + μI

)−1
AT
k ek, (20)

ξ
(k+1)
i = ξ

(k)
i −

(
AT
k Ak + μI

)−1
AT
k ek . (21)

The error function value E(ξ
(k)
i ) needs to be recal-

culated and μk needs to be set as the value of μ in
the k th iteration. Suppose ν > 1, if E(ξ

(k+1)
i ) <

E(ξ
(k)
i ), make μk+1 = μk/ν and stop decreasing μ

when E(ξ
(k+1)
i ) > E(ξ

(k)
i ) is satisfied; if E(ξ

(k+1)
i ) >

E(ξ
(k)
i ), makeμk+1 = μk ·ν and stop updatingμwhen

E(ξ
(k+1)
i ) < E(ξ

(k)
i ) is satisfied. Finally, the specific

coefficient matrix �(M) =
[
ξ

(M)
1 , ξ

(M)
2 , . . . , ξ (M)

n

]

after M iterations is obtained, as well as the optimized
COVID-19 model.

The complete modeling procedures are shown in the
Fig. 1.

3 Main Results

3.1 Review work in China

According to the infection cases in Chinese mainland
reported by the National Health Commission of China,
the cumulative number of confirmed cases, cumulative
cures, cumulative deaths, and other epidemic data from
10 January to 30 June, 2020 can be obtained.

On the basis of the proposed modeling method that
combines the SINDy data-driven method and the LM
optimization algorithm introduced above, 47 days of
actual observation data from 10 January, 2020 to 25
February, 2020 are set as the training set. The data from
26 February, 2020 to 1 April, 2020 are used as the
testing set to solve the COVID-19 model in Chinese
mainland,which can realize the review of the epidemic.

By using the epidemic data from Chinese mainland,
the coefficients of each function term at the right side
of Eq. (10) are shown in Table 1.

Table 1 shows the coefficients of each function item
at the right side of the governing equation followed
by the cumulative number of confirmed cases, deaths,
cured, and close contacts. The function items repre-
sented by the numbers on the horizontal axis are x , x2,
x3, and x−1. The coefficients of some function terms
have been omitted in the table because they are all zero.

The results in Table 1 show that the coefficients of
the dynamic terms in the COVID-19 model obtained
using the SINDy-LMmethod have high sparsity, which
is consistentwith the underlying laws followed by other
infectious disease systems. It also demonstrates that
the model obtained by this method has a certain inter-
pretability compared with the model obtained by the
general neural network algorithm.

Let Nc denote the cumulative number of confirmed
cases changing over time and Nd denote the number
of deaths. By substituting the data of the cumulative
number of confirmed cases into Eq. (10), the specific
expression of Eq. (11) is obtained by solving

dNc

dt
= b1,1Nc + b2,1N

2
c , (22)

where b1,1 = 0.2391, b2,1 = −3.0234e−6.
Utilize the LM algorithm to iteratively optimize the

coefficients, and obtain the optimized governing equa-
tion:
dNc

dt
= b̂1,1Nc + b̂2,1N

2
c , (23)

where b̂1,1 = 0.2204, b̂2,1 = −2.6790e−6.
By solving Eq. (23), the analytical expression of the

cumulative number of confirmed cases in themodel can
be obtained as Eq. (24):

Nc(t) = α

1 + e−β(t−τ)
, (24)

where α = 82269, β = 0.2204, τ = 30.4959.
By comparing the Eq.(25) and the classic Logistic

model [27],

Nc(t) = K

1 +
(

K
N0

− 1
)
e−r(t−t0)

, (25)

where K is the population capacity, N0 is the number
of the population at time t0, and r is the growth rate.

The mathematical form of Eq. (24) is exactly the
same as that of Eq. (25). Thus, the mathematical model
followed by the cumulative number of confirmed cases
is the logisticmodel with K = 82269, r = 0.2204. The
Chinese government employed effective anti-epidemic
policies after the outbreak. Thus, it strictly controlled
the number of people entering and leaving the country.
Therefore, Chinese mainland can be regarded as a unit,
in which the vast majority of cases occurred without
any major “import” or “export” events. Therefore, the
logistic model is indeed suitable for the prediction and
analysis of the development of the epidemic in Chinese
mainland.
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Fig. 1 Complete modeling procedures of SINDy-LM method

Table 1 Coefficients of each function item in the COVID-19
model

Function item xi x2i

Confirmed cases 0.2204 −2.6790e−6

Deaths 0.1715 −5.6026e−5

Cured cases 0.2123 −5.4154e−6

Close contacts 0.2122 −3.3610e−7

The governing equation for the cumulative number
of deaths in the COVID-19 model constructed with the
SINDy-LM method is as shown in Eq. (26),

dNd

dt
= b̂1,2Nd + b̂2,2N

2
d , (26)

where b̂1,2 = 0.1715, b̂2,2 = −5.6026e−5.
The previous analysis shows that the cumulative

number of deaths in China is also consistent with
the logistic model, with model parameters K =
3061.3104, r = 0.1715. Therefore, the COVID-
19 model obtained is compatible with the traditional
empidemiological model and conforms to the natural
law followed by the infectious disease transmission
dynamic system.

Compared with the prediction results that directly
uses the logistic model and identifies the parameters,
the SINDy-LM method simplifies the process of ana-
lyzing many assumptions and is obviously more con-
cise and powerful. Comparedwith othermachine learn-
ing algorithms such as deep neural networks, SINDy-
LM also avoids problems such as the uncertainty of
neurons in the hidden layer. The resultingmodel ismore
interpretable.

According to the differential equations (such as Eqs.
(23) and (26)) followed to obtain the state variables,
the results of the review and prediction of the cumula-
tive number of confirmed cases and deaths in Chinese
mainland are shown in Fig. 2. The goodness of fit R2 is
greater than 0.95, which confirms that the model gen-
erated by the SINDy-LM method has high accuracy.
Moreover, the curve trend of the cumulative number of
confirmed cases and deaths obtained is consistent with
the actual trend. The relative error is also within the
controllable range.

As shown in Fig. 2, the data of cumulative cases is
demonstrated in red and the data of daily increments
is demonstrated in blue. The left side represents the
training set, and the right side represents the testing
set. The dots are the actual data, and the lines are the
predicted data.

3.2 Forecasting work of the other countries

In addition to China, this section also forecasts and ana-
lyzes the evolution of the epidemic situation in other
countries to verify whether this method is universal in
other areas of the world. From the “Baidu Pandemic
Real-time BigData Report” website, relevant epidemic
data in Australia and Egypt can be obtained during
the 180 days after the outbreak. Based on the SINDy-
LMmethod introduced above, the COVID-19 model is
established and solved with the observation data.

The coefficients of the dynamic terms in Eq. (23) of
the COVID-19 model followed in Australia are

b̂1,1 = 0.1637, b̂2,1 = −5.0489e−5.
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Fig. 2 Review results of
Chinese mainland in the
COVID-19 model followed
by (a) the cumulative
number of confirmed cases
and (b) the cumulative
number of deaths
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Fig. 3 Error bar graph
obtained by predicting the
cumulative number of
confirmed cases in the next
15 days
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85K

N c

Thefigure of the cumulative number of confirmed cases
changing over time is shown in Fig. 4.

The prediction of the number of confirmed cases
in Australia can be obtained using the SINDy-LM
method. Fig. 4 shows that the results (total cases and
daily increments) using this method are consistent with
the actual results on the testing set. The trend of the
curve is also roughly the same as the actual curve trend,
which almost coincides in September, and the goodness
of fit R2 is 0.99926. The relative error of the predic-
tion is small, which demonstrates the accuracy of the
model is high. Similarly, the dynamic coefficients of
the cumulative number of confirmed cases in Egypt in
Eq. (23) are

b̂1,1 = 0.0627, b̂2,1 = −6.3115e−7.

Fig. 5 shows the review and prediction of the epi-
demic in Egypt. The results are in line with the true
situation. The goodness of fit is R2 = 0.99959, which
indicates that the relative error of the prediction results
is also within the controllable range.

The prediction of the COVID-19 epidemic in Aus-
tralia and Egypt shows that the SINDy-LMmethod can
make accurate review and prediction on the develop-
ment of epidemic with high-precision in other coun-

tries. Thus, the prediction of the epidemic via this
method has some universality to a certain extend.

3.3 Exploring the “epidemic turning point”

The epidemic turning point is one of the signs thatmany
researchers pay attention to ([16], [28], [29]). There
are various definitions of the turning point. A common
definition is the date when the number of newly con-
firmed cases each day peaks and then drops, that is, the
point where the cumulative number of confirmed cases
increases the fastest, which is the one used by some
research groups [30]. However, Norden E. Huang et.al
[16] proposed the fact that the number of new infec-
tions reached a peak and then declined does not nec-
essarily mean that the epidemic has “turned from dan-
ger to safety”, because the number of infected people
is still increasing and there is still an urgent need for
additional medical resources. In addition, locating this
peak is highly susceptible to data failures and changes
in diagnostic definitions. For example, on 12 February,
when Hubei changed the definition of confirmed infec-
tion from the standard of nucleic acid gene sequencing
test to clinical observation and radiology chest scan,
more than 14,000 newly infection cases were added
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Fig. 4 Prediction results of
Australia in the COVID-19
model (the number of
confirmed cases)
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Fig. 5 Prediction results of
Egypt in the COVID-19
model (the number of
confirmed cases)
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that day, thus forming a peak that has not yet appeared.
But in other parts of China, the definition of “infected
person” has not changed.

A more meaningful turning point should be the
date when the number of confirmed cases reached a
peak and then began to decline. Norden E. Huang et.al
[16] proved that for the ongoing COVID-19 epidemic,
the determination of this turning point is not sensi-

tive to past data issues, including the sharp increase in
Nc(t)when Hubei changed its definition of “confirmed
infected person” on 12 February .

Therefore, this definition is used to judge the epi-
demic turning point in this study. Subtracting the daily
recovered cases each day dNr (t) from the daily con-
firmed cases dNc(t), we can obtain the number of
newly infected cases each day. This physical quantity
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Fig. 6 Forecast of the
epidemic turning point
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Fig. 7 Select different
subsets of function libraries
and generate models

Table 2 R2 of 10 models generated by different candidate function libraries

Model 1 2 3 4 5

R2 0.45844 0.97758 0.87692 0.86179 0.45961

Model 6 7 8 9 10

R2 0.17508 0.04079 0.45850 0.45851 0.45850

is called Existing Infected Cases (EIC) [16], and the
epidemic turning point tp is the date when EIC = 0. In
other words, tp should satisfy:

dNc
(
tp

) = dNr
(
tp

)
. (27)

Using the data of 27 days as the training set, the
COVID-19 model derived by the SINDy-LM method

can judge the epidemic turning point tp 7 days in
advance. According to Eq.(11), the equations followed
by the number of confirmed cases and the number of
recovered cases can be obtained. Then on the basis of
Eq.(27), the epidemic turning point can be determined,
as shown in Fig. 6.
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Fig. 8 Prediction of the
cumulative number
confirmed cases in Chinese
mainland obtained by the
models generated by 10
different kinds of candidate
function libraries (after
taking the logarithm)

The red dot in Fig. 6 denotes the true epidemic turn-
ing point (16 February) defined by Eq.(27), and the yel-
low dot denotes the predicted epidemic turning point
using the SINDy-LM method (13 February). The dif-
ference of 3 days between the two shows that SINDy-
LM method can make a reliable prediction of the epi-
demic turning point. In addition, it should be noted that
the prediction results of the COVID-19 model using
SINDy-LMmethod for the next 10 days after February
6 are relatively reliable, except for February 11, when
Hubei changed its definition of “confirmed infected”
since it used the newest diagnostics.

4 Discussion

4.1 Discussion of high-dimension case

In Sect. 2.1, the candidate function library �(x) (Eq.
(5)) is simplified to one-dimension case, namely�(xi ).
This section will discuss how to establish a COVID-19
model in a higher dimensions case to describe the epi-
demic and prove that the simplified method in Sect. 2.1
is reasonable.

In the high-dimension case, the candidate library
�(x) will be expressed as Eq. (28). (It should be noted
that �(x) , which is a row vector, is different from

the numerical matrix�(X), which contains time series
data.)

�(x) = [
1 x1 · · · xn x21 x1x2 x1x3 · · · x p

1 · · · ] (28)

Considering the interpretability of the model and
the relatively accurate results in Sect. 3.1, p is set as
2. At the same time, a permutation and combination
method is adopted to select the functions in the can-
didate function library, forming different subsets of
function libraries (“sub-libraries”) and generatemodels
to verify the influence of each dynamic term in high-
dimension situation. In the case of n = 4, there are∑p

i=0 C
n
i = 14 terms in the entire high-dimension

function library, which can form 214 = 16384 sub-
libraries according to whether each term is in the subset
of function library. That is, 16384 sub-models can be
generated, as shown in Fig. 7.

Based on the interpretability and simplification of
the model, 10 sub-libraries that are most likely to gen-
erate the Logistic model are explored further, including
one-dimension function libraries, and the SINDy-LM
method is used to generate 10 different models. Solv-
ing their corresponding Eqs. (4) and (9), the prediction
results of the cumulative number confirmed cases in
Chinese mainland are shown in Fig. 8. The model cor-
responding to the red curve pointed by the arrow in
the figure (Model 2) uses the one-dimension function
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Fig. 9 Forecast results of
short term using 35-day of
data followed by (a) the
cumulative number of
confirmed cases (b) the
cumulative number of
deaths
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Table 3 Predicted results
and relative error of short
term(the cumulative number
of confirmed cases and
deaths)

Confirmed cases Forecast Reality Relative error

15 February 64189.36 66492 0.03463

16 February 67907.59 68500 0.008648

17 February 71291.87 70548 0.010544

18 February 74327.53 72436 0.026113

Deaths Forecast Reality Relative error

15 February 1498.372 1523 0.016171

16 February 1600.558 1665 0.038704

17 February 1695.521 1770 0.042079

18 February 1782.367 1868 0.045842

library, which is consistent with the model obtained
after simplification in Sect. 2.1.

Through the goodness of fit of these 10 models
(Table 2), it can be found that the R2 ofModel 2, which
uses the one-dimension function library, is significantly
higher than othermodels with high-dimension function
libraries. On the basis of the interpretability and spar-
sity ofmodel , nearly other 200models generated by the
function libraries whichmay obtain logistic models are
also calculated for their goodness of fit. Moreover, the
results indicate that the R2 of these models are all infe-
rior to that of the model generated by one-dimension
function library, so it can be demonstrated that the one-
dimension candidate function library�(xi ) in Sec. 2.1
(Eq. (5) ) is reasonable.

4.2 Robustness analysis

The effect of the model obtained via the data-driven
method usually depends on the choice of the training
set, we choose actual observation data in different time
periods as the training set to verify the robustness of
the model.

First, using 35-day data as the training set, it is found
that the obtained model has relatively good results in
the forecast of short term. Fig. 9 shows the prediction
obtained by adopting this model to forecast the cumu-
lative number of confirmed cases and the cumulative
number of deaths in the future 4 days. The relative error
is shown in Table 3. According to these results, we can
draw the conclusion:when the training set is required to
have less data, the model generated by the SINDy-LM

method can be used for short-term forecast and obtain
relatively reliable results.

Then, we observe the effect of fitting again using
some statistics. In this study, the goodness of fit is used
to measure the degree of agreement between the model
and the actual observation data. The statistic for mea-
suring the goodness of fit is the coefficient of determi-
nation R2, which is defined as Eq. (29):

R2 = 1 −
∑n

i=1 [yi − ȳ]2∑n
i=1 [ f (ti ) − yi ]2

. (29)

In Eqs.(29) and (30), f (ti ) represents the fitted
value, and yi represents the observed value. According
to the definition of Eq. (29), the model fits the obser-
vations better when R2 is closer to 1. On the contrary,
the fit is worse and the model is unreliable when the
value of R2 is smaller. The true observation data from
10 January, 2020 to 15 February, 2020 are selected as
the original training set and The data from 16 Febru-
ary, 2020 to 1 April, 2020 are used as the initial testing
set. The SINDy-LM method is utilized to establish a
COVID-19 model, and a function graph with the coef-
ficient of determination varying with the amount of
data used in the training set is obtained as shown in
Fig. 10(a). According to Fig. 10(a), the coefficient of
determination R2 shows an increasing trend with the
amount of data used in the first 40 days. This result
is due to the lack of data in the previous period and
the unstable model. However, R2 has exceeded 0.95
after using 40 days of data. The fluctuation range has
shrunk, and it has remained stable in an infinitely close
range. The model has been very stable and robust after
the testing set data volume exceeds 40 days. This result
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Fig. 10 Robustness
analysis of the model
followed by (a) variation in
goodness of fit (R2) with
the amount of data used and
(b) the variation of mean
square error (MSE) with the
amount of data used (after
taking the logarithm)
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Fig. 11 Review results of
Chinese mainland using
ELM method followed by
(a) the cumulative number
of confirmed cases and (b)
the cumulative number of
deaths
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Table 4 Relative error of
the SINDy-LM method and
ELM method

Forecast days 1 day 3 days 5 days 7 days

SINDy-LM 0.0156 0.041 0.079 0.123

ELM 0.551 0.721 0.891 0.919

Fig. 12 Relative error of
the ELM and SINDy-LM
methods varies with time

implies that the SINDy-LM method only needs to uti-
lize limited data to build a COVID-19 model with high
prediction accuracy. This property has a very positive
effect on the prediction and control of the middle and
late stages of the epidemic.

In addition to the goodness of fit, the mean squared
error (MSE) is often regarded as an important indicator
to measure the prediction results in practical applica-
tions.MSE represents the average of the sumof squares
of the difference between the predicted and true values,
and its mathematical expression is

MSE = 1

n

n∑
i=1

[ f (ti ) − yi ]
2 . (30)

Given Eq. (30), MSE is not fixed. It will have a
certain change depending on the selected data changes.
We make a chart of MSE with the variation in amount
of data used and also study the changes of accuracy in
the model.

Figure 10(b) is a figure of themean square error with
the amount of data used. The mean square error shows
a decreasing trend as the amount of data increases in
the first 35 days. This result is due to the lack of data in
the previous period and the low degree of model fit and
accuracy. As the amount of data increases, the model
tends to stabilize, and the degree of fit and accuracy are
significantly improved. After using 46 days of data,
the mean square error increases slightly. This increase
is due to that the base number of confirmed cases has
reached a large value after 45 days, and themean square
error is slowly increasing because of its influence. After
using 53 days of data, themean square error has reached
a relatively small value, and it begins to decline slowly.
The accuracy of the model also continues to improve.
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4.3 Comparison with other methods (ELM algorithm)

In the prediction of the COVID-19 epidemic, many
institutions use machine learning methods except ana-
lytical modeling methods to build prediction models
for COVID-19. Among them, Johns Hopkins Univer-
sity used the method of ELM [11]. The ELM is a learn-
ing algorithm based on single hidden layer feedforward
neural networks (SLFNs), which can omit complex
analysis and modeling procedure and simplify calcula-
tions. However, when the original data are mixed with
a large number of noise variables, the classification and
regression accuracy of the ELM algorithm are greatly
reduced, and the robustness of the obtained model is
poor. In addition, this neural network-based machine
learning algorithm cannot produce a model with inter-
pretability.

To further explore the advantages of the SINDy-LM
method compared with machine learning algorithms,
this study compares the two methods by reviewing and
predicting the epidemic in China.

First, the data of the first 45 days of the epidemic
in China are taken as the training set, and the data
of the last 35 days as the testing set. The activation
function in SLFNs is composed of elementary function
libraries, which must be infinitely differentiable. The
inputweights andhidden layer deviations of SLFNs can
be randomly assigned according to the relevant theory
of ELMs. Therefore, SLFNs can be simply considered
a linear system. We can analytically calculate the out-
put weights connecting the hidden and output layers
through simple generalized inverse operations of the
hidden layer output matrix to determine the structure
of SLFNs and give the prediction results. The review
and prediction results of the epidemic situation in Chi-
nese mainland by using the ELM method are shown in
Fig. 11.

In Fig. 11, the results in (a) are obtained using the
ELMmethod to obtain the review and prediction results
of the cumulative number of confirmed cases in China;
those in (b) are obtained using the ELM method to
obtain the review and prediction results of the cumula-
tive number of deaths inChina. The blue line represents
the model result, the red dots represent the true data,
the left side of the black dotted line is the training set,
and the right side is the testing set.

According to the results in Fig. 11, the gap between
the predicted results obtained using the ELM method
and the actual results becomes quite large when pre-

dicting the cumulative number of confirmed cases and
cumulative number of deaths in China in the next 35
days. Moreover, the development of the cumulative
number of confirmed cases and deaths does not match
the facts. Similar results are obtained after changing the
amount of data in the training set, which shows that the
robustness of the model is quite bad. The relative error
produced by the short-term prediction is quantified and
compared.

Table 4 and Fig. 12 show that the prediction accu-
racy obtained by SINDy-LM method in epidemic pre-
diction outperforms that of the ELMmethod. However,
the relative error of the ELMmethod will also accumu-
late quickly, and large error and instabilities will occur
when making long-term predictions. Thus, the accu-
racy and robustness of the model are poor. To be brief,
the relative error obtained by the SINDy-LM method
is smaller, and it is more stable over time. Therefore,
the obtained model by SINDy-LM has better accuracy
and robustness than that by ELM.

5 Conclusion

In this study, aSINDy-LMmethod is proposed tomodel
and study the COVID-19 transmission system, which
balances complexity and prediction accuracy simul-
taneously. First, the prediction results of this method
in Chinese mainland, Australia, and Egypt are given,
which indicate high accuracy and a certain universality
of the derived method. Especially, the studied model
accurately determines that the “ the epidemic turning
point” in China will appear on 13 February, 2020. Sec-
ond, the COVID-19 model produced by this method
has strong sparsity, and the result has less fluctuation
with the amount of data used. It also demonstrated that,
in terms of describingCOVID-19 epidemic, to simplify
the candidate function library to a one-dimension case
is reasonable. Finally, comparing the “SINDy-LM”and
ELMmethods, it can be demonstrated that the former is
better than the latter in terms of model interpretability
and prediction accuracy, which plays an important role
in providing action guidelines to do a good job in epi-
demic prevention and control under nomal conditions.

Although ourmethod is effective for COVID-19 epi-
demic modeling and can be extended to data-driven
modeling of other complex systems, there are still some
aspects that need to be improved in the future.
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First, the derivatives in Eq. (4) rely on numerical dif-
ferentiation. In this study, derivatives are taken using
finite differences for clean data. However, numerical
approximations of derivatives are inherently unstable
due to the introduction of truncation and round-off
errors [31]. Thus, some methods with high accuracy
and stability, such as automatic differentiation, can be
utilized in themodeling process in SINDy-LMmethod.

In addition, it is noteworthy that the performance of
the SINDy-LM method is not very satisfactory when
modeling multi-phase epidemics on a global scale,
and the results obtained are not as good as the high-
dimensi- onal differential system with composite tra-
ditional models [32]. The features of data at differ-
ent stages are quite diverse, which is a disadvantage
for most data-driven methods. However, for countries
where multi-phased evolution appeared, the data set
can be divided and SINDy can be utilized in differ-
ent stages, which will be studied for further work and
expected to obtain relatively good results for each stage.

Moreover, we will also attempt to apply the SINDy-
LM algorithm to the parameter identification in the
traditional analytical modeling, in order to solve the
problem of difficult parameter identification in classi-
cal analytical modeling and make up for the poor inter-
pretability of data-driven modeling simultaneously.
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