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Abstract: Like most countries worldwide, the coronavirus disease (COVID-19) has adversely affected
Ireland. The aim of this study was to (i) investigate the spatio-temporal trend of COVID-19 incidence;
(ii) describe mobility trends as measured by aggregated mobile phone records; and (iii) investigate the
association between deprivation index, population density and COVID-19 cases while accounting for
spatial and temporal correlation. Standardised incidence ratios of cases were calculated and mapped
at a high spatial resolution (electoral division level) over time. Trends in the percentage change in
mobility compared to a pre-COVID-19 period were plotted to investigate the impact of lockdown
restrictions. We implemented a hierarchical Bayesian spatio-temporal model (Besag, York and Mollié
(BYM)), commonly used for disease mapping, to investigate the association between covariates
and the number of cases. There have been three distinct “waves” of COVID-19 cases in Ireland
to date. Lockdown restrictions led to a substantial reduction in human movement, particularly
during the 1st and 3rd wave. Despite adjustment for population density (incidence ratio (IR) = 1.985
(1.915–2.058)) and the average number of persons per room (IR = 10.411 (5.264–22.533)), we found
an association between deprivation index and COVID-19 incidence (IR = 1.210 (CI: 1.077–1.357)
for the most deprived quintile compared to the least deprived). There is a large range of spatial
heterogeneity in COVID-19 cases in Ireland. The methods presented can be used to explore locally
intensive surveillance with the possibility of localised lockdown measures to curb the transmission
of infection, while keeping other, low-incidence areas open. Our results suggest that prioritising
densely populated deprived areas (that are at increased risk of comorbidities) during vaccination
rollout may capture people that are at risk of infection and, potentially, also those at increased risk of
hospitalisation.

Keywords: COVID-19; spatio-temporal; spatial statistics; standardised incidence ratio; disease mapping

1. Introduction

Coronavirus disease 2019 (COVID-19, due to infection by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)), which was first detected in Wuhan, China, in
late 2019 has rapidly evolved from an epidemic to a pandemic within an extremely short
timeframe [1]. The highly infectious disease has, as of 7 April 2021, resulted in an estimated
132 million cases and 2,875,514 deaths globally [2]. Transmission of infection mainly occurs
via the respiratory route (respiratory droplets, aerosols) during close contact with an in-
fected person, but can also occur during direct contact with contaminated surfaces. The
virus can remain in aerosols for up to three hours, on cardboard up to 24 h and on plastics
and stainless-steel surfaces for up to three days, with the primary method of transmission
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through physical contact or close proximity [3,4]. The World Health Organisation (WHO)
recommends case isolation, contact tracing of individuals and quarantine, physical distanc-
ing and hygiene measures (WHO) [5]. Governments have highlighted the importance of
social distancing, proximity and geographical space, at times coupled with country-wide
lockdowns and restricted travel movements [6].

As human movement within and between regions is the key driver of SARS-CoV-
2 infection, monitoring this is vitally important in understanding how and where the
infection is spreading. Until recent years, accurately measuring and monitoring movement
at a population level would have been a challenging exercise but now mobile phone
geolocation data offer a reliable approach to quantify human movement which can also
provide real-time information [7,8]. These data have a number of uses for government
bodies, especially during a lockdown phase, including the identification of “hotspot”
areas (where people are congregating), determining whether people are complying with
lockdown measures, and as an epidemiological tool where these data have the potential to
be used as an explanatory variable to model COVID-19 cases in space and time.

Another potentially important spatial consideration for COVID-19 is that socioeconom-
ically deprived areas often display a higher prevalence of pre-existing health conditions
and lower access to health care services. In terms of COVID-19, this may accentuate prob-
lems for deprived communities as they may be disproportionately vulnerable to infectious
diseases [9]. For a national health system, and policy decision making during a pandemic,
it is critically important to be aware of such disparities, if they exist. Unsurprisingly, early
indications suggest that areas with the greatest socioeconomic deprivation are associated
with a higher incidence of COVID-19 cases [10,11] but further investigation is warranted.

In terms of analytical approaches to track the infection, determining R0 (the repro-
duction number, i.e., the number of secondary infections caused by each case) through
deterministic infectious disease models is usually the initial response by a country for
disease surveillance at a population level [1,12,13]. This is crucial, as it provides public
decision makers and authorities with evidence on whether national (or regional) control
measures are effective or not. Perhaps more importantly, R0 coupled with the overall
burden of infection (the number of infected people measured using the case incidence
rate), providing insights into the force of infection, provides estimates on the capacity of a
health system to cope with the pandemic (e.g., number of ICU beds) [14]. These models,
however, primarily only include a time element and do not consider the space domain
or geographical location. In addition to determining R0, disease mapping and spatial
modelling are equally important epidemiological tools to monitor progression of infection
across a country. In particular, advanced spatio-temporal statistical models which account
for spatial and temporal autocorrelation have proven to be a fruitful exercise for modelling
other similar infectious diseases including hand, foot and mouth disease [15], dengue [16]
and influenza [17]. To date, however, spatio-temporal modelling of COVID-19 has been
limited, as the focus has been at a country level instead of localised surveillance.

Thus, the aims of this study were to (i) map standardised incidence ratios (SIRs) of
COVID-19 cases over time, (ii) present and quantify mobility trends of the Irish population
during the pandemic from aggregated mobile phone data, and (iii) perform a spatio-
temporal random-effects analysis, using official national COVID-19 administrative data,
to examine the associations between region-specific deprivation index scores and phone
metrics, and the number of confirmed cases of SARS-CoV-2 per electoral division (ED) in
Ireland. This has the potential to be used by policy makers for local planning and disease
surveillance.

2. Materials and Methods
2.1. Study Design and COVID-19 Data

This study utilises national Irish COVID-19 health administrative data that have been
collated by several national organisations including the Department of Health, Health
Services Executive (HSE) (Health Protection Surveillance Centre (HPSC), Health Intelli-
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gence Unit (HIU)), where the Central Statistics Office (CSO) has acted as data controller.
Within Ireland, the first positive COVID-19 case was identified in February 2020, although
the source infection for this person was never determined [18]. The initial response to
the pandemic involved specialised centres being set up nationally to facilitate testing of
symptomatic or suspect cases, with the first social distancing measures and movement
restrictions coming into effect on March 14th followed by stricter lockdown measures on
28 March. Movement restrictions were introduced including a national stay at home order
requiring people stay within 5 km of their home (except for those deemed as essential
workers, e.g., medical workers). At a later stage of the pandemic when movement restric-
tions were lifted, localised lockdowns were introduced as discussed in the results section
below.

Once an individual was confirmed with infection, the patient’s details were recorded
within the administrative database. Data extracted for this study included case age, sex,
and date of COVID-19 confirmation. Each case was assigned to an ED using the patient’s
address at date of confirmation. EDs (n = 3409, total aggregated land mass of approx-
imately 70,000 km2) are the smallest legally defined administrative areas in Ireland for
which population data are available. Based on the latest CSO census (2016), we included a
deprivation variable, population density measure and the average number of persons per
habitable room. Deprivation indices are composite indices that combine several measures
of socioeconomic status or material deprivation and here, we included the Trinity Depri-
vation Index [19]. This deprivation index was calculated from a principal components
analysis (PCA), a common dimension reduction technique, where four separate indicators
were included “unemployment”, “low social class”, “local authority rented housing” and
“no car”.

Our study period included the interval from the beginning of the outbreak (1 March
2020) through to 22 February 2021. As the daily number of cases were low when examined
across EDs, we aggregated cases to a weekly count per ED and merged the first two
weeks of the outbreak where cases were sporadic and specialised COVID-19 administrative
databases were still being created.

2.2. Mobile Phone Data

We obtained anonymised and aggregated ED level, data protection compliant data
from one of the three main national mobile carriers in Ireland (own approximately a one-
third of the total market share nationally) and extrapolated this to the full population
based on the latest census data. The data included a population-level mobility metric
that was calculated from the aggregation of records of mobile phone activities, formally
known as the “stay-at-home index” (SHI) which was provided for each ED during the
study period. SHI is an estimate of the percentage of the population travelling further
than 10 km from their estimated home location. A breakdown by different age groups
(<20, 20–64 (in 5-year age-bands), >64) was provided and the rolling seven-day average
was extracted for each week examined. To quantify how the COVID-19 pandemic and
lockdown measures impacted mobility, we calculated the percentage change of SHI with
pre-COVID-19 data which we had access to (January–February 2020). Separately, a contact
matrix of all ED-to-ED movements was available, which represented a count of the number
of people who spent 30 min or more in one ED and then 30 min or more in another ED in
the same day (i.e., journeys). For anonymity, if a cell contained five or less movements, the
cell was populated with a zero. For this study, we randomly assigned a number from zero
to five.

2.3. Statistical Analysis
2.3.1. Standardised Incidence Ratio (SIR)

Crude age and sex SIRs, standardised by all cases over the study period using age
and sex ED distributions from the 2016 census, were calculated and mapped by week.
Defined as the ratio of observed to expected number of counts, SIRs are a crude but
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very useful measure of disease risk within an area. The number of expected cases of
COVID-19, Ei for ED i, represents the total number of cases that one would expect to find
in that area, if it behaved like the overall standard population which can be estimated
using indirect standardisation Ei = ∑i=1:3409 ri pi, where ri is the age-sex rate (COVID-19
cases/population) over the pandemic for the population, and pi is the population for
ED i. With small populations or where the expected counts are very low, SIRs values
can give misleading results [20]. Additionally, this approach does not account for spatial
correlation [21]. One crude method for examining clustering is through measures of spatial
autocorrelation, such as Moran’s I statistic and before we implemented a spatial model,
this was calculated for deprivation index score. This statistic is similar to the common R
squared value where a value of 1 indicates perfect positive correlation and −1 indicates
perfect negative correlation.

2.3.2. Spatio-Temporal Models

To model the counts of COVID-19 cases per ED over time, we ran several hierarchical
Bayesian spatio-temporal models which can account for spatial and temporal correlations
where local disease risk is modelled using a set of spatial random effects, which borrow
information from neighbouring areas to get more reliable region-specific estimates, while
adjustment for potential covariates can also be incorporated that results in the smoothing
or shrinking of extreme values based on small sample sizes. Cases, Yit in ED i, for week t,
were modelled using a negative binomial distribution in a Besag, York and Mollié (BYM)
model [22]:

Yit ∼ NegBin(Eiθit)

Spatio-temporal model:

log(θit) = α + βi′s + f (week) + (ui + υi) + (γt + φt) + log(Ei)

where Ei can be included as an offset term in a model for standardisation purposes, and
θit which is the relative risk (RR) in ED i for week t, α denotes the intercept or overall
risk in the country, βi,s the ED-specific covariates/regression parameters associated with
SHI/deprivation index, f(week) is a smooth function of time (cubic regression spline),
ui is a spatial correlated random effect specific to region i to model spatial dependence
between the relative risks (RRs), and νi is an unstructured exchangeable component that
models uncorrelated noise which follows a normal distribution, defined as N

(
0, σ2

v
)
. γt

is smoother (rw2, random walk 2nd order) for year and ϕt is an extra independent and
identically distributed noise term. Together, these two random-effect terms, γt and ϕt
define the temporal term [20,23–25]. The BYM model assumes the spatial random effect, ui,
follows a Conditional Autoregressive (CAR) distribution:

ui|u−i ∼ N(
N

∑
j=1

cijuj, σ2)

where cij is an adjacency matrix, with cij = 1 if area i and j are neighbours and 0 otherwise
(queen’s adjacency). This is a conditional distribution, where the ui|u−i ui|u−i notation
indicates that we are modelling the distribution of the random-effect ui given all the other
uis, except ui itself. Hence, the conditional mean of the random effect for ED i, ui given all
the other random effects, is the average of the neighbouring ED random effects. In this
BYM model, smoothed SIRs can be considered the posterior mean of the RR [26].
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2.3.3. Model Fitting

In a traditional maximum likelihood estimation (MLE) framework, convergence issues
can often be a problem when attempting to solve spatial models. For this reason, Bayesian
approaches were implemented to fit models. As there were a large number of EDs with a
high number of time-points, computation time was an important consideration and for
this reason, models were fitted using the Integrated nested Laplace approximation (INLA)
approach of Rue et al. [27]. Vague prior densities were assigned to the fixed parameters:
normal distribution with mean 0 and precision τ = 0.001. As τ = 1/σ2, this translates to
σ = 31.6, so the fixed parameter priors are of the form β ∼ N

(
0, 31.62). Similarly, for the

variance parameters or hyperparameters; τu, τv, τγ and τφ we chose vague priors which all
followed: ∼ LogGamma(1, 0.00005). Regression estimates are presented as the means and
95% credible intervals. All analysis and mapping were conducted using R (R Core Team,
2020). INLA models were fitted using the R-INLA package [28].

2.3.4. Model Selection

Alternative models were compared to choose the one best describing the data. This
process involved fitting different distributions to our count outcome (Poisson, negative
binomial) and formally comparing models using the deviance information criterion (DIC)
and widely applicable information criterion (WAIC), where lower values indicate better
fit [21,24]. Additionally, leave-one-out cross-validation predictive checks were also im-
plemented where two quantities, conditional predictive ordinate (CPO) and probability
integral transform (PIT), were used for evaluating the goodness of fit for these Bayesian
models [29]. Uniformity of PIT values indicate that the predictive distributions match
the observations, suggesting a well-fitted model. The product of all the CPO values can
be considered a pseudo marginal likelihood, which gives a cross-validatory summary
measure of fit. The log pseudo marginal likelihood (LPML) is the log of this measure and
is often used as an alternative measure for DIC. Unlike DIC, however, high LPML values
suggest the model is better supported by the data [30].

3. Results

As of 22 February 2021, there were 216,274 number of COVID-19 cases in Ireland. Of
these, 214,021 cases (98.9%) had addresses that were able to be successfully geocoded and
assigned to an ED. The distribution of the overall incidence of new cases in Ireland over
time is presented in Figure 1 along with some key lockdown dates introduced during the
pandemic in Ireland. It is evident that there have been three “waves” of COVID-19 cases
and a breakdown of the main characteristics of these patients by each wave is presented in
Table 1. Wave 3, the most recent, has been the most severe to date with the majority of all
new cases during the pandemic occurring during this period (63%). During wave 1, the
largest proportion of cases were in the 40−59 year age band (34.3 %), but during wave 2
and 3, this shifted to the 20−39 year age band (37.5 % and 37.9 %, respectively). Wave 1
had the highest number of COVID cases over 80 year (14.4% of all cases), while wave 2 and
3 had substantially lower numbers of the total cases in those periods (only representing
3.3% and 4.7% of all cases in each wave, respectively). The sex distribution between waves
has been relatively equal, although there have been more females than males in each wave.
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Figure 1. Distribution of all COVID-19 cases over time from the start of the pandemic in Ireland along with key lockdown
dates. Three distinct waves are evident.

Table 1. The number of cases in each wave of the pandemic in Ireland with a breakdown by age
and sex.

Variable
Wave 1

2 March 2020–31
May 2020

Wave 2
1 June 2020–30
November 2020

Wave 3
1 December 2020–22

February 2021

Total N (%) 24,957 (12.6) 47,729 (24.1) 125,586 (63.3)
Sex f 14,287 (57.2) 24,131 (50.6) 66,082 (52.6)

m 10,670 (42.8) 23,598 (49.4) 59,504 (47.4)
Age 0−19 899 (3.6) 10,655 (22.3) 17,783 (14.2)

20−39 7761 (31.1) 17,922 (37.5) 47,659 (37.9)
40−59 8564 (34.3) 12,524 (26.2) 38,196 (30.4)
60−79 4146 (16.6) 5072 (10.6) 16,028 (12.8)
80+ 3587 (14.4) 1556 (3.3) 5920 (4.7)

% for “Total” row is row-wise.

The spatial distribution of crude age and sex SIRs, standardised by all cases over the
study period using age and sex ED distributions from the 2016 census were calculated
and mapped by week. For practical reasons, only weeks during wave 3 (Figures 2–4) are
presented in the manuscript although all weeks are included in the supplementary material
(SM1). These spatio-temporal SIR plots highlight the explosion of cases observed during
wave 3. It is clear, that high-incidence EDs are clustered together with some areas having
very low incidence rates.
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Mobility trend plots are presented in Figures 5 and 6. Although we have ED-level
data, for the purpose of visualisations, we believe it was more informative to present
county level data (larger spatial resolution). Again, for practical reasons, only a subset of
counties are presented in the manuscript (see supplementary material, SM2 and SM3, for
all county plots). The three counties presented were chosen intentionally as they represent
quite different counties in terms of the pandemic and geographical setting. Dublin is the
capital city of Ireland and has the highest population density, Kerry (south-west of Ireland)
is more rural and is a very popular tourist destination particularly during the summer
months, and Kildare (immediately to the southwest of Dublin) was chosen as it was a
county that went into a localised lockdown at the very early stages of wave 2 before the
wave 2 country-wide lockdown came into effect. The SHI metric by age groups is presented
in Figure 5 where a similar pattern is broadly seen for all counties: a sharp reduction during
wave 1 followed by a large increase during the summer months with another reduction
during wave 2 and 3. A maximum reduction of up to 83% was observed during wave 1
in Dublin for those aged >64 y. For Kildare, a reduction in movement is observed during
August which coincides with their localised lockdown before the country-wide restrictions
were introduced. Similarly, the percentage change in the number of journeys is presented
in Figure 6. The trends are similar to the SHI plots except for county Kerry, which had a
large increase in the number of journeys into, out of, and within the county during the
summer months compared to baseline. Importantly, however, the number of COVID-19
cases in Kerry during May, June, July and August was only 42. The overall correlation
between the number of COVID-19 cases and percentage change of SHI was −0.135.
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Negative binomial models were a better fit to the data compared to one that assumed
a Poisson distribution (results not shown). Different spatio-temporal models assuming
a negative binomial distribution were fit to the data and their associated measures of fit
(DIC, WAIC, LPML) are compared in Table 2. Unsurprisingly, based on the metrics in
Table 2, the best fit to the data was a model that included all variables. However, it is
evident that both SHI and deprivation score only moderately improve model fit. The
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posterior means and 95% credible intervals (CIs) for the parameters from three models
that all include cubic time spline terms and: deprivation quintiles (Model 1); deprivation
quintiles, population density, persons per room (Model 2); full model including the addition
of SHI (Model 3), are presented in Table 3. Without adjustment for population density
and the average number of persons per room, there was a strong association between
the most deprived quintile compared to the least deprived (incidence ratio (IR) = 3.819
(3.406–4.281), Model 1). Despite further adjustment for these variables, we still found
an association between the most deprived quintile compared to the least and COVID-
19 incidence (IR = 1.210 (CI: 1.077–1.357), Model 2). Unsurprisingly, population density
(IR = 1.985 (1.915–2.058)) and persons per room (IR = 10.411 (5.264–22.533)) were also
associated with increased COVID-19 incidence in this model (Model 2). An increase in
mobility, as measured as the percentage change in SHI was negatively associated with
incidence (IR = 0.879 (0.875–0.883), Model 3) although we urge caution when interpreting
this finding as examined in the Discussion below, where we advocate for Model 2 as our
final model (model without mobility metrics). Similar results were found when we lagged
SHI by a week to allow for the delay between date of infection and detection. The Moran’s I
value for deprivation score was 0.47 indicating a positive correlation with deprived regions
tend to be closer together and further from less deprived regions.

Table 2. Comparison of spatio-temporal negative binomial BYM models.

Model DIC WAIC LPML Dispersion Statistic

Deprivation quintile 337,975 338,798 −169,485 1.02
Log population density 337,541 338,307 −169,224 1.06

SHI % change 334,401 335,148 −167,659 0.98
Cubic spline (week) 285,226 286,153 −143,171 1.13

Persons per room 337,944 338,776 −169,478 1.01
Deprivation quintile + log population density + SHI

% change 333,869 334,537 −167,329 1.03

Deprivation quintile + log population density + cubic
spline (week) 284,776 285,672 −142,918 1.16

Deprivation quintile + SHI % change + cubic
spline (week) 281,942 282,899 −141,538 1.15

Log population density + SHI % change + cubic
spline (week) 281,604 282,552 −141,357 1.16

Deprivation quintile + log population density + SHI %
change + cubic spline (week) 281,595 282,537 −141,348 1.16

Deprivation quintile + log population density + persons
per room + cubic spline (week) 284,764 285,658 −142,911 1.16

Deprivation quintile + log population density + persons
per room + SHI % change + cubic spline (week) 281,583 282,523 −141,340 1.16

BYM: Besag, York, and Mollié model; DIC: deviance information criterion; WAIC: widely available information criterion; LPML: log pseudo
marginal likelihood; cubic spline: cubic regression spline (8 knots).

In Model 2, the posterior mean of σui is 0.861, meaning that the majority of the spatially
correlated random-effects ui lie between −1.099 and 2.821 (0.861 ± 1.96), while the addi-
tional noise term σvi is only 0.466, suggesting that it is contributing much less to the model
than σui . The resulting RRs from this BYM model for COVID-19 incidence were mapped
for Ireland (see Figure 7 for three separate weeks, see Supplementary Materials (SM4) for
all weeks). These are equivalent to the crude SIR values but have been smoothed to account
for spatio-temporal correlations and deprivation score with the aim of eliminating random
noise. These maps strongly correlate with the crude SIR maps but note, the smoothed
estimates have resulted in shrunken estimates compared to the SIR estimates.
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Table 3. Posterior means and 95% credible intervals from negative binomial BYM models.

Model 1 Model 2 Model 3

Variable Mean 95% Credible
Interval Mean 95% Credible

Interval Mean 95% Credible
Interval

Deprivation quintile 2 1.171 1.060–1.294 0.970 0.891–1.056 0.973 0.894–1.059
Deprivation quintile 3 1.360 1.225–1.510 1.025 0.937–1.121 1.044 0.955–1.142
Deprivation quintile 4 1.931 1.737–2.147 1.159 1.056–1.272 1.157 1.055–1.269
Deprivation quintile 5 3.819 3.406–4.281 1.210 1.077–1.357 1.262 1.126–1.414

Log population density 1.985 1.915–2.058 1.926 1.860–1.996
Person per room 10.411 5.264–22.533 11.822 5.954–26.231

SHI% change (per 5) 0.879 0.875–0.883
Spline term 1 2.207 2.100–2.320 2.220 2.113–2.333 1.084 1.025–1.145
Spline term 2 0.061 0.058–0.066 0.061 0.057–0.066 0.078 0.073–0.084
Spline term 3 0.124 0.117–0.132 0.124 0.117–0.132 0.215 0.202–0.228
Spline term 4 3.398 3.265–3.536 3.403 3.270–3.542 5.245 5.032–5.467
Spline term 5 2.254 2.172–2.339 2.259 2.176–2.344 2.903 2.797–3.014
Spline term 6 14.805 14.282–15.349 14.826 14.301–15.371 16.088 15.525–16.672
Spline term 7 5.915 5.657–6.186 5.907 5.649–6.178 3.942 3.769–4.123

Spatial hyperparameters
σui 1.162 1.081–250 0.861 0.804–0.922 0.815 0.754–0.878
σvi 0.529 0.477–0.580 0.466 0.429–0.500 0.483 0.448–0.517
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4. Discussion

In this study, we have mapped SIRs of COVID-19 cases over time and presented mobil-
ity trends of the Irish population during the pandemic to date, based on aggregated phone
activity. We also implemented hierarchical Bayesian spatio-temporal regression models
using random effects to explore the association between deprivation index, population
density measures, mobility, and COVID-19 incidence over time at a small spatial resolu-
tion. So far, the pandemic has been characterised by three distinct waves. We found that
lockdown restrictions led to a substantial reduction in human movement as measured by
mobility metrics. We found an association between both densely populated and deprived
areas, and COVID-19 incidence.

It is unsurprising that wave 3 has been the most severe wave to date which occurred
during December 2020 and January 2021. Unfortunately, this period coincided with several
key factors that facilitated the rapid spread of infection. As the country was returning to
lower incidence rates from wave 2, but still with a not insignificant burden of infection
(5 day average rolling case numbers of 275 on 2nd December [31]), the decision was made
to begin the easing of lockdown restrictions. At the beginning of December, the opening of
all retail stores, restaurants, bars and cafés was permitted. Importantly, this also coincided
with the Christmas holiday period, where traditionally the number of social gatherings
of friends and family increases greatly. In addition, as people travelled home from within
Ireland from abroad, for the holiday period, it facilitated mixing of individuals from
different generations. Particularly, it meant that older age groups who would usually be
less risk averse in terms of social distancing, etc., would be meeting younger age groups
where incidence was highest. Similar experiences have been observed in USA, Israel, China
and elsewhere, which demonstrated that festive holidays, which tend to draw individuals
from distant places into close contact for prolonged periods, are associated with a spike in
COVID-19 incidence [32–34]. This naturally increases the chance of introduction of new
strains, e.g., B.1.1.7 [35].

As social mixing and mobility are the key drivers for the transmission of infection, it
is important to attempt to monitor them during a pandemic [4]. Mobile phone records are
recognised as the gold standard for measuring human movement [8,36] and the pandemic
has seen a surge in interest in them, primarily by state agencies, to monitor physical
distancing and to determine if the public are adhering to movement restrictions [37].
Overall, we found large reductions in the mobility metrics which coincided with state
lockdown measures. However, despite mobile phone records being the gold standard for
measuring mobility, for anonymity reasons, we are restricted to using aggregated data at
ED or county level. Despite ED-level data being at a very high spatial resolution, it can
mask localised gathering where mixing could occur, e.g., attendance at a large funeral or
a local sports event. One of the critical aspects to remember when monitoring mobility
movement in an infectious disease setting is that it is not possible to untangle how human
behaviour has changed over time. For example, when movement returned to normal
levels during the summer months after wave 1, a sudden surge in cases in Ireland was not
observed, suggesting that mobility, as measured by aggregated phone records, is not on the
causal pathway. A good example of this can be seen with the large increase in movements
associated with County Kerry during the summer months representing a “staycation”
effect whereby the public were holidaying within Ireland instead of traveling abroad, but
this did not result in an increase in COVID-19 cases in the local area (or in Ireland overall).
We hypothesis that the primary reason for this is that human behaviour had changed
whereby the actions of individuals were more conscientious with respect to public health
guidelines (e.g., wearing face masks, hand washing and covering sneezes and coughs).
Gatalo et al. [38] have also recognised this limitation where they suggest that mobile phone
mobility data only captured a small component of the behaviours associated with social
distancing that reduced transmission of SARS-CoV-2 in the early stages of the pandemic
in the USA. The absence of a strong correlation between mobility and case growth after
the initial phase of the pandemic (when a longer study period was analysed) suggests that
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other individual level factors, such as wearing a mask or maintaining distance even when
encountering individuals, are likely to be more important than mobility alone. They also
suggest that overdispersion identified in the distribution of transmissions suggests that a
small number of individuals are likely to account for a large proportion of transmission.
Separately, despite being recognised as the gold standard for measuring human movement,
the accuracy of mobile phone records themselves has been raised and variation in usage
has been seen across subpopulations, leading to concerns about coverage bias, particularly
in older age groups [39]. Furthermore, this may lead to ascertainment bias where certain
individuals or groups may be excluded from the data. Meng has previously highlighted
that “big data” does not necessarily equate to a representative sample of the population [40].
We do not have access to the precise demographic breakdown of the mobile carriers’ users
and hence, we cannot determine how representative the sample is of the whole population
in this study. With all this in mind, we advise caution when interpreting the findings from
our regression models that includes mobility metrics. It is precisely for these concerns
that the final model for which we advocate is one without mobility metrics. Nonetheless,
mobility data remain a critical tool for state and public agencies during a pandemic to
monitor adherence to lockdown restrictions. In addition, the data can play an important
role in infectious disease models (for scenario modelling for R0, the reproduction number),
where the data can be used to get a proxy for social mixing [36].

Our finding that higher deprivation index was associated with a higher incidence of
COVID-19 is in line with emerging research from other spatial regression studies. Whittle
and Diaz-Artiles [11], who conducted a similar analysis (also using a BYM INLA model),
found that socioeconomic factors helped to explain disparities in incidence levels between
neighbourhoods in New York City. They found that densely populated, low-income,
and predominantly black neighbourhoods were strongly associated with COVID-19 test
positivity. Likewise, in Brazil, Campos de Lima et al. [10] also implemented spatial regres-
sion models using INLA and found that COVID-19 infections were spatially distributed,
forming clusters and hotspots. Less developed areas with lower socioeconomic status
were associated with increased risk of infection. In our analysis, we used a deprivation
score [19] derived through PCA that is comprised of four separate socioeconomic markers
(“unemployment”, “low social class”, “local authority rented housing” and “no car”). We
believe this is a more robust measure of socioeconomic status rather than just focusing on
mean/median salary in an area. A large proportion of Ireland is rural, and salary, which
is often used as a proxy for socioeconomic status, may biases heavily against rural areas
(where the cost of living may be very different, so a lower salary does not necessarily imply
lower socioeconomic status). The interesting aspect of our findings is that we still observed
an association with deprivation index despite additional adjustment for the number of
persons per room and population density. By its nature, an infectious disease requires close
contact between hosts for transmission and we have shown that despite adjustment for
this, deprived areas are still at an increased risk of incidence. People living in cramped
conditions cannot effectively self-isolate and may not have the means to do anything about
it, suggesting that a vaccination programme should consider prioritising these individuals.

As previously alluded to, there has been limited application of spatio-temporal sta-
tistical models on COVID-19 data. This is despite a pressing need for them for to inform
local response strategies as recognised by WHO [5]. Visualising the spread of infection
in a country is of critical importance for prioritizing policy and rapid decision making.
Disease mapping is most useful towards the extremes of a wave (e.g., at the beginning
of a wave or towards the end when cases begin to fall) when cases are not widespread
geographically. In Ireland, this was evident in the summer months in counties Laois, Offaly
and Kildare, when incidence was low nationally, but cases began to climb in these counties.
The government, with the aid of mapping tools along with infectious disease models,
decided to introduce localised lockdown measures for these counties while keeping the
rest of the country open. Advanced statistical spatio-temporal methods have progressed
significantly in the last 15 years particularly with the seminal paper by Rue et al. [27]
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who developed the INLA approach. Similar to our approach, these models have been
used successfully in other countries to monitor the spread of SAR-CoV-2 infection at a
spatio-temporal level [10,11,41].

Our current study has several strengths. To the best of our knowledge, this is the
first spatial study to explore the association between deprivation index and incidence of
COVID-19 while adjusting for population density and the average number of persons
per room. This is the first study that we are aware of to explore the spatio-temporal
spread of COVID-19 in Ireland where we had close to full geocoding of all confirmed cases.
Access to high-quality, reliable, anonymised phone data from one of the largest phone
carriers in Ireland is a big strength of this work which has resulted in accurate human
movement metrics. Within the Irish setting, identification of socioeconomic status as a
risk marker is a novel and valuable finding. Identifying vulnerable groups ahead of time
may help in preparedness and response policies if future waves materialise. This study
also has several limitations. Given that the pandemic is ongoing, we rely on data that are
incomplete, with systematic biases (in reporting of symptoms, testing, etc.), and subject to
future consolidation as has been acknowledged in other large studies [42]. In Ireland, the
address and hence ED location of tested individuals was poorly recorded as part of the
public health response. Ireland introduced a postal code system in recent years whereby
each house has a separate individual code which is perfect for geocoding but to date,
households do not know their code verbatim. Adjusting for the underlying number of
people requesting tests (a proxy for symptomatic cases) would be desired as it would be
a potentially important predictor of the future number of cases. However, the inclusion
of the testing data did not improve model fit (data not shown) and we suspect that there
was a strong reporting bias, where correct recording of addresses was influenced by the
conscientiousness of the administrative inputter which would naturally vary across the
country. We did not have access to Northern Ireland COVID-19 data, which may have
implications for estimates from Irish border counties.

5. Conclusions

In conclusion, we found an association between population density, the average
number of persons per room and deprivation index, and COVID-19 incidence. Our results
suggest that prioritising densely populated, deprived areas (that are at increased risk of
comorbidities) during vaccination rollout may capture people that are at risk of infection
and, potentially, also those at increased risk of hospitalisation. Results and the methodology
presented here may be useful for preparing for future pandemics, which may help to
minimize the health and economic damage sustained by countries. Managing epidemics
requires facing up to inequalities and ensuring supports are put in place to protect those
most at risk.
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