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Transcriptome sequencing and multi-plex
imaging of prostate cancer
microenvironment reveals a dominant role
for monocytic cells in progression
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Abstract

Background: Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical
translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the
tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic
opportunities.

Results: In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference
model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to
define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis.
An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was
uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses.
These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex
immunohistochemistry.

Conclusions: This study advances our knowledge concerning the role of monocyte-derived recruitment in primary
prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment
immune modulation.

Keywords: Prostate cancer, Transcriptomics, FACS, Immunohistochemistry, Deconvolution, Bayes, Differential gene
expression, CAPRA-S, Microenvironment, Epithelial, Myeloid, Macrophages, Cholesterol, PDL1

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: papenfuss@wehi.edu.au
†Niall M. Corcoran, Anthony T. Papenfuss and Christopher M. Hovens
contributed equally to this work.
1Bioinformatics Division, The Walter and Eliza Hall Institute of Medical
Research, Parkville, Victoria, Australia
4Department of Medical Biology, University of Melbourne, Melbourne,
Victoria, Australia
Full list of author information is available at the end of the article

Mangiola et al. BMC Cancer          (2021) 21:846 
https://doi.org/10.1186/s12885-021-08529-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-08529-6&domain=pdf
http://orcid.org/0000-0002-1102-8506
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:papenfuss@wehi.edu.au


Background
Prostate cancer is the second most commonly diagnosed
cancer in men globally [1]. Although most cancers fol-
low an indolent clinical course, an unpredictable 10–
15% of tumours progress to metastases and death. The
inability to discern progressive disease at an early stage
results in substantial overtreatment of localised disease,
leading to a significant clinical cost to the patient and
economic cost to the healthcare system. Selecting pa-
tients for treatment is usually reliant on a small number
of well-established clinical and pathological factors, such
as tumour grade, prostate serum antigen (PSA) level and
clinical stage [2], the development of metastases [3] and
prostate cancer-specific death [4]. Although comprehen-
sive molecular analyses have linked clinical outcomes
with rates of genomic alterations [5, 6], such as somatic
changes in copy number, nucleotide sequence and
methylation, it is yet to be demonstrated that such mea-
sures are able to consistently outperform standard
clinico-pathological risk scoring across a broad range of
grades and stages. Despite many years of tumour evolu-
tion characterization, it still remains unclear what mech-
anisms drive prostate cancer progression in most
patients [7]. It is believed that reciprocal interactions be-
tween malignant epithelium and surrounding non-
cancerous cells within the tumour microenvironment
are responsible for driving disease progression [8, 9].
Selected targets in the prostate tumour microenviron-

ment have been extensively studied through in vitro and
in vivo experiments, such as migration assays [10] and
xenograft mouse models [11] respectively. More re-
cently, several studies that integrated fluorescence-
activated cell sorting or laser microdissection with RNA
sequencing increased the gene and sample throughput
while maintaining a degree of resolution of the tissue
heterogeneity [8, 12, 13]. Additionally, the use of spatial
transcriptomics has identified gradients of benign-cell
gene transcription around tumour foci [14]. However,
these studies mainly focused on the process of epithelial
to mesenchymal transition [12, 13] or were limited to
the overall stromal contribution to disease progression
[8]. An integrative investigation of immune, stromal and
cancer cell transcriptional changes associated with clin-
ical risk is still lacking.
In this study, we applied an optimised protocol for

combined cell-type enrichment and ultra-low-input
RNA sequencing, which allowed the probing of four key
cell types across 13 fresh prostate tissue spanning a
broad clinical disease spectrum. Motivated by the
pseudo-continuous properties of the CAPRA-S risk
score, we developed a novel statistical inference model
for differential transcription analyses on continuous co-
variates, TABI (Transcriptional Analysis through Bayes-
ian Inference). Our inference model estimated changes

in transcription without a priori patient risk stratification
and robustly mapped transcriptional change events to
cancer risk states. Among the list of significant genes for
the four cell types coding for cell-surface and secreted
proteins, we identified several hallmarks of prostate can-
cer. These hallmarks included a dominant signal for
monocyte-derived cell recruitment. We tested this with
tissue deconvolution on the extensive Cancer Genome
Atlas (TCGA) cohort and multiplex immunohistochem-
istry on an independent patient cohort. The latter
single-cell resolution spatial analysis revealed the rela-
tionship between macrophages and epithelial and T cells
with progression. For prostate cancer, prioritising targets
for immunotherapies is far from settled in the literature,
with monocytic cells being an under-represented player
[15, 16]. In this scenario, the parallel lines of evidence
we provide from unbiased analyses contribute to shaping
future research directions.

Methods
Tissue sampling and processing
Following the prostatectomy of 13 patients, a four-
millimetre tissue core was collected from the prostate
tumour site, conditional to histopathological verification
[17, 18]. The patient cohort ranged from 52 to 78 years
of age and from CAPRA-S risk score of 0 (attributed to
benign tissue samples, harvested from a site far from a
low grade, low volume cancer) to 7 (Supplementary file
4), If not otherwise specified, all procedures were carried
out at 4 °C. Tissue blocks were washed in phosphate-
buffered saline (PBS) solution for 2 min and minced for
2 min with a scalpel. Homogenised tissue was added to a
solution (total volume of 7 ml) composed by of 1 mg/ml
collagenase IV (Worthington Biochemical Corp, USA),
0.02 mg/ml DNase 1 (New England Biolabs, USA), 0.2
mg/ml dispase (Merck, USA). The homogenised tissue
was serially digested in the shaker incubator at 37 °C at
180 rpm (4 g), through three steps of 5, 10 and 10 min of
duration. The final 3 min were dedicated to sedimenta-
tion at 0 rpm. After each digestion step, the supernatant
was aspirated and filtered through a 70 μm strainer into
a pre-chilled tube, diluting the solution with 15ml of
Dulbecco’s PBS containing 2% Bovine serum (dPBS-
serum) to quench the enzymatic reaction. The resulting
cumulative solution was then centrifuged at 300gfor five
minutes, with the supernatant collected and the cell pel-
let resuspended into 1 ml 2% PBS-serum before labelling
(Fig. S1).

Antibody labelling, flow cytometry and cell storage
The cell preparation was labelled with the following
antibodies: CD3-BV711 (Becton Dickinson San Jose Ca),
EpCAM-PE (BD Biosciences, USA), CD31-APC (BD
Biosciences, USA), CD90-PerCP-Cy5.5 (Becton
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Dickinson San Jose Ca), CD45 APC-CY7, and CD16 Pa-
cific Blue (BD Biosciences, USA). All antibodies were
used at concentrations according to manufacturers rec-
ommendations and incubated for 30 mins at 4 °C. Fol-
lowing labelling, the cells were diluted to 5 ml and
centrifuged at 300 g for 5 min. The supernatant was
removed, and the cell pellet was resuspended in dPBS-
serum. The viability die (7AAD) was added to the sus-
pension to a final concentration of 5 μg/ml. Epithelial,
fibroblasts, myeloid and T cells were sorted using a
fluorescence-activated cell sorting Aria III cell sorter
(Becton Dickinson San Jose, Ca). The cell sorting strat-
egy utilised a robust 3 stage design: (i) a series of gates
based on forward and side scatter to exclude debris, cell
clumps and doublets. (ii) a gate to exclude all dead cells
and (iii) a combination of the fluorescent antibodies to
allow purification of the above cell types. The four cell
types were identified as follows: T Cells: FSC and SSC
lo, PI negative, EpCAM and CD31 negative, CD3 and
CD45 positive. Epithelial cells: FSC and SSC high, PI
negative, CD31 and CD90 negative and EpCAM positive.
Myeloid cells: FSC and SSC hi and medium, PI negative,
CD31 and EpCAM negative and CD16 positive. Fibro-
blasts: FSC and SSC hi, PI negative, EpCAM and CD31
negative, CD90 positive. The four purified populations
were sorted directly into 1.5 ml conical tubes and stored
on dry ice immediately after collection before permanent
storage at − 80 °C.

RNA extraction, library preparation and RNA sequencing
RNA extraction was performed in two batches (compris-
ing 6 and 7 patients, for a total of 24 and 28 samples, re-
spectively) on consecutive days. In order to eliminate
time-dependent methodological biases, the two patient
batches included a balanced distribution of Gleason
score (means 2.00 and 2.71, standard deviations 2.50,
1.86; Supplementary file 4) and days elapsed from tissue
processing (means 197 and 222, standard deviations 46.3
and 71.9; Supplementary file 4). The RNA extraction
was performed using the miRNeasy Micro Kit (Qiagen;
Cat #217084), according to the manufacturer’s protocol.
Briefly, cell pellets were lysed with QIAzol lysis reagent,
treated with chloroform, and centrifugation carried out
to separate the aqueous phase. Total RNA was precipi-
tated from the aqueous phase using absolute ethanol, fil-
tered through the MinElute spin column and treated
with DNase I to remove genomic DNA. The RNA
bound columns were washed with the buffers RWT and
RPE before eluting the total RNA with 14 μl of RNase-
free water. RNA estimation was carried out using Tapes-
tation (Agilent).
According to the manufacturer’s protocol, transcrip-

tome sequencing on low input total RNA samples (up to
10 ng) was carried out using SMART-Seq v4 Ultra Low

Input RNA Kit (Clontech). The first-strand cDNA syn-
thesis utilised 3′ SMART-Seq CDS Primer II-A. The
SMART-Seq v4 Oligonucleotide together with the
cDNA amplification was carried out on Thermocycler
using PCR Primer II-A and PCR conditions: 95 °C for 1
min, 12 cycles of 98 °C 10 s, 65 °C 30 s and 68 °C 3min;
72 °C for 10 min and 4 °C until completion. The PCR-
amplified cDNA was purified using AMPure XP beads
and processed with the Nextera XT DNA Library Prep-
aration Kits (Illumina, Cat. # FC-131-1024 and FC- 131-
1096) as per the protocol provided by the manufacturer.
Sequencing library preparation (10–100 ng) was car-

ried out using Truseq RNA Sample Preparation Kit v2.
The poly-A containing mRNA was purified using oligo-
dT bound magnetic beads followed by fragmentation.
The first-strand cDNA synthesis utilised random
primers, and second-strand cDNA synthesis was carried
out using DNA Polymerase I. The cDNA fragments then
underwent an end-repair process, adding a single ‘A’
base and ligation of the RNA adapters. The adaptor-
ligated cDNA samples were bead-purified and enriched
with PCR (15 cycles) to generate the final RNAseq
library.
The SMART-Seq v4 RNA and Truseq RNA libraries

were sequenced on an Illumina Nextseq 500 to generate
15–20 million 75 base pairs paired-end reads for each
sample. The batch effect due to sequencing runs was
minimised by pooling all 52 libraries and carrying out
three sequential runs on a Nextseq500 sequencer.

Sequencing data quality control, mapping and read
counting
The quality of the sequenced reads for each sample was
checked using the Fastqc [19]. Reads were trimmed for
custom Nextera Illumina adapters; low-quality fragments
and short reads were filtered out from the pools using
BBDuk (jgi.doe.gov) according to default settings. All
remaining reads were aligned to the reference genome
hg38 using the STAR aligner [20] with default settings.
The quality control on the alignment was performed
with RNA-SeQC [21]. For each sample, the gene tran-
scription abundance was quantified in terms of nucleo-
tide reads per gene (read-count) using FeatureCounts
[22] with the following settings: isPairedEnd = T, requir-
eBothEndsMapped = T, checkFragLength = F, useMeta-
Features = T. All sequenced reads that did not align to
the reference human genome were assigned to bacterial
and viral reference genomes using Kraken [23] with de-
fault settings.

Statistical inference of differential gene transcript-
abundance
Changes of transcriptional levels along CAPRA-S risk
score [24] were estimated independently for each cell
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type (epithelial, fibroblast, myeloid and T cell). The
CAPRA-S risk score is a combination of (i) concentra-
tion of blood prostate serum antigen (PSA); (ii) presence
of surgical margin (SM); (iii) Gleason score; (iv) presence
of seminal vesicle invasion (SVI); (v) the extent of extra-
capsular extension (ECE); and (vi) lymph node involve-
ment. The RNA extraction batch was used as a further
covariate. Due to the absence of publicly available
models for non-linear monotonic regression along a
continuous covariate, a new Bayesian inference model
was implemented. This model is based on the simplified
Richard’s curve [25] (Eq.1) but re-parameterised to im-
prove numerical stability (Eq. 2). In particular, the stand-
ard parametrisation suffers from non-determinability
issues if the slope is close to zero; furthermore, in the
case of an exponential-like trend, the upper plateau is
not supported by data and tends to infinity.

GL X; α; β; κð Þ ¼ k
1þ e− αþXβð Þ ð1Þ

GLA X; y0; β; ηð Þ ¼ y0 1þ eηβ1
� �

1þ eηβ1−Xβ
ð2Þ

The new parameter y0 represents the intercept on
the y axis, η represents the point of inflection on the
x-axis, β represents the matrix of coefficients (i.e.
slope coefficients, without the intercept term), β1 rep-
resents the coefficient of interest (i.e. main slope),
and k the upper plateau of the generalised sigmoid
function.
Bayesian inference was used to infer the values of all

parameters of the model, with TABI (GitHub: steman-
giola/TABI@v0.1.3). The probabilistic framework Stan
[26] was used to encode the joint probability function of
the model (Eq. 3). We partitioned the transcriptomic
dataset into blocks of 5000 genes to decrease the analysis
run-time. This Bayes model is based on a negative bino-
mial distribution (parameterised as mean and overdis-
persion). In order to account for various sequencing
depths across samples, a sample-wise normalisation par-
ameter was added to the negative binomial expected
value. The slope parameter for the main covariate (β1)
was subject to a regularised horseshoe prior [27] to in-
crease the robustness of the inference of transcription
changes and help anchor data from different samples for
normalisation. The role of this prior is to impose a
sparsity assumption on the gene-wise transcriptional
changes; that is, most genes are not Tdifferentially tran-
scribed. The overall distribution of the gene intercepts
follows a gamma probability function. The following
joint probability density defines the statistical model.

P γð ÞP δð ÞP σð ÞP ηð ÞP ξð ÞP β̇ ξjð Þ
YR

r¼2

P βr σjð Þ
 !

YG

g¼1

P yog γ
0
; γ″

��
� �

 !

YG

g¼1

YS

s¼1

P Y g;s Ŷ ; δ;ω
��� �

 ! ð3Þ

Y t;g∼NB exp δtð ÞŶ t;g ;ω
� � ð4Þ

Ŷ t;g ¼ GLA Xt;y0g ; βg ; ηg
� �

ð5Þ

βg;1∼ RegHorseshoe …ð Þ ð6Þ

βg;k∼N 0; σkð Þ; k > 1
σk∼HalfN 0; 1ð Þ ð7Þ

y0g∼Gamma γ1 þ 1; γ2ð Þ
γ i∼Exponential 1ð Þ
ω∼Gamma 1:02; 2ð Þ

ð8Þ

ηg∼N 0; 1ð Þ
δt∼N 0; 1ð Þ;

X
δt∼N 0; 0:001�Tð Þ ð9Þ

Y represents raw transcript abundance, Ŷ represents
the expected values of transcript abundance, and X rep-
resents the design matrix (with no intercept term and
scaled covariates). The regression function also includes
β, which represents the gene-wise matrix of factors (i.e.
slopes excluding the intercept term), y and η, which rep-

resent the gene-wise y-intercept and the inflection point
of the generalised reparameterised sigmoid function (Eq.
2). γ represents the hyperparameters of y. Other parame-

ters of the negative binomial function are δ, which rep-
resents the normalisation factors, and ω, which
represents overdispersion. The regularising prior (for
imposing the sparsity assumption) over the covariate of
interest β1 (first column of β) is defined by the hyper-
parameter list ξ [27] (i.e. nu_local = 1; nu_global = 1;
par_ratio = 0.8; slab_df = 4; slab_scale = 0.5), while σ
represents the standard deviations of the other factors
(in our case only the batch). The algorithm multidimen-
sional scaling [28] was used to map the data in two-
dimensional space.

Gene annotation
Each gene (g) was considered well fitted by the model if
it had read counts outside the 95th percentile of the
generated quantities for three or fewer samples (accord-
ing to posterior predictive checks standards [29]).
Among the well-fitted genes, those for which the 0.95
credible intervals of the posterior distribution of the fac-
tor of interest β1g did not include the value 0 were la-
belled as differentially transcribed. The credible interval
is a numerical range within which an unobserved
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parameter value falls within a certain probability. As dis-
tinct from standard practices for frequentist models op-
erating on confidence intervals and p-values, for this
study, the credible interval probability threshold was not
altered for multiple hypothesis testing, consistently with
standard practices in Bayesian statistics [30].
In order to interpret the inflection points over the

CAPRA-S risk score (i.e. the point of the maximum
slope; at what stage of the disease a transcriptional
change happens) covariate in a biologically meaningful
way, the inflection point was adjusted to the log-scale.
Considering that the lower plateau of our generalised
sigmoid function was set to 0 (to limit the number of pa-
rameters needed to model it), the inflection point of the
logarithm-transformed function is not defined. There-
fore, we calculated the inflection point (X) of the log sig-
moid forcing a plateau at 1 (i.e. log (0) = 1; Eq. 10; Fig.
S7). This new inflection point can now be calculated as
the value of the x-axis at half distance between zero and
the upper plateau of the generalised reparameterised sig-
moid function (Eq. 10).

Ẋ ¼
β1η− log e

y0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ey0η þ 1−1

p� �

y0
ð10Þ

Genes were functionally annotated with gene ontology
categories [31] using BiomaRt [32]. Furthermore, genes
were functionally annotated with the protein atlas data-
base [33] for identifying those that interface with the
extracellular environment, encoding for cell-surface and
secreted proteins. For a more in-depth analysis of pos-
sible interactions between cell types, we compiled a cell-
type-specific annotation database for cell-surface and se-
creted protein-coding genes (Supplementary file 3).

Differential tissue composition analyses
The differential tissue composition analysis is composed
of two integrated modules. First, a module infers tissue
composition from whole-tissue gene transcript abun-
dances based on reference transcriptional profiles of
pure cell types (deconvolution). Second, a module for
beta regression on the inferred proportions along the
factor of interest (and additional covariates). Bayesian in-
ference allows the transfer of the uncertainty between
the two modules (GitHub: stemangiola/ARMET@v0.7.1).
The probabilistic framework Stan [26] was used to en-
code the joint probability function of the model [34].
The 0.95 credible interval of the posterior distributions
was used as a significance threshold.
The supervised deconvolution was based on deconvo-

lution signatures created using a curated collection of
250 publicly available transcriptional profiles (included
in BLUEPRINT [35], ENCODE [36], GSE89442 [37] and
GSE107011 [38]) encompassing of 8 broad categories of

cell types and 18 cell phenotypes. Genes whose tran-
scription varied across datasets (detected using Limma
[28]) were used to identify highly correlated datasets.
The Pearson correlation was calculated for all-versus-all
samples. The samples with a Pearson correlation greater
than 0.99 were discarded as redundant. Each cell-type
category was classified as belonging to a node of the
cell-differentiation tree, which includes epithelial, fibro-
blasts, endothelial and immune cells in the first level,
and B-, T-, natural killer, monocyte-derived, and gran-
ulocyte cells. For each cell type in the differentiation
tree, the gene-transcript abundance was modelled using
a negative binomial distribution (parameterised by mean
and overdispersion). Differences in sequencing depth
across biological replicates were modelled with a bio-
logical replicate-wise exposure rate term ϵ that multi-
plies the transcripts expected abundance (mean). For
each cell-type pair of the same level, 40 genes (20 for
each direction) were selected that (i) were abundant
(had a mean value higher than the median of all genes),
and (ii) segregated the two cell types (having the largest
gap between the upper quantile of one cell-type and the
lower quantile of the other; 95% credible interval). The
gene selection for each level was represented by the
union of marker genes for all cell-type pairs. The infer-
ence was carried out along the two levels of the hier-
archy structure, and the inference for each node (e.g. T-
cells) was relative to its parent (e.g. immune cells).

Analysis of tumour microenvironment using multiplex
immunohistochemistry
Slides (3 μm) from formalin-fixed and paraffin-
embedded (FFPE) tissue were taken from a total of 63
core biopsies of localised prostate cancer across 17 pa-
tients. A pathological evaluation was done to define the
tumour and surrounding benign tissue areas for each bi-
opsy. The methodology for performing multiplex immu-
nohistochemistry, cell type classification and localisation
has been detailed by Keam et al. [39]. Briefly, slides were
deparaffinised and rehydrated with xylene and ethanol.
The fluorochrome-coupled antibodies against human
CD68 (macrophages and dendritic cells), high molecular
weight cytokeratin (HMWCK; epithelial basal cells),
CD3 (T cells), CD20 (B cells), CD11c (dendritic cells),
and PDL1 were used. The dye DAPI was used for nuclei
staining. Vectra 3.0 Automated Quantitative Pathology
Imaging System (Perkin Elmer, MA) was used for im-
aging, as Keam et al. [39] detailed. The software HALO
was used for cell segmentation and phenotyping. Stro-
mal cells were defined with the negative selection of all
antibodies (DAPI positive) and with filtering by large
size (cell area > 70) and highly elongated shape (ratio of
largest dimension and smallest dimension > 2; 0.9 per-
centile; 0.9 percentile; Fig. S6).
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Cell type proximity was quantified as the number of
cells within a radius of 20 cells sizes from a selected cell,
averaged per tissue area (5 cell size units) for smoothing
and avoiding information duplication due to tight cell
clusters. Cell relative size was calculated at 15 units as
the observed median length units in the coordinate sys-
tem. The statistics were summarised at the biopsy level.
When the distance between two cell types was mea-
sured, only the biopsies including both cell types were
selected. The robust regression analyses were performed
using the R heavy package [40] on log-transformed prox-
imity measure. The co-proximity analysis between epi-
thelial basal cells and PDL1+ macrophages and T cells
was performed at the single cell level (averaged by tissue
area of 5 cell size units). We calculated the proximity on
a radius of 50 relative cell sizes for ensuring good cover-
age of both T cells and PDL1+ macrophages and de-
crease sparsity. Only the epithelial basal cells in immune
rich areas (with > 5 neighbour T cells) were considered.

Result
Data generation and quality
To investigate the role of the tumour microenvironment
in patient outcome, we enriched for four cell popula-
tions (epithelial: EpCAM+; fibroblasts CD90+/CD31−; T
cells: CD45+/CD3+; and myeloid: CD45+/CD16+) from
fresh prostatectomies of 13 prostate cancers, ranging
from benign tissue (labelled as CAPRA-S score 0) to
high-risk tumours (CAPRA-S risk score 7). The choice
of those cell populations was guided by their predomin-
ant role in the progression of prostate and other cancers
[41–45]. Technical and practical experimental limita-
tions prevented considering other key cell types such as
luminal and basal epithelial compartments, endothelial,
smooth muscle and other lymphocytes such as B and
natural killer cells. RNA extracted from the four cell
populations was then sequenced, generating a median of
22 million reads per library (Fig. S1 and S2). Overall for
the four cell type categories, a conservative cell-type pur-
ity inference (using Cibersort and a Bayesian estimator;
Material and Methods) estimated high enrichment: 99%
for epithelial samples; 99% for fibroblasts; 97% for mye-
loid (83% for neutrophils; 14% for monocyte-derived
cells); and 95% for T cells (Fig. S3). On average, across
the four cell types, 40% of genes had 0 sequenced reads
in more than half of the samples and were removed
from further analysis.

Differential transcription and model fitting
Dimensionality reduction (multidimensional scaling; in
Materials and Methods) of the filtered transcript abun-
dance revealed an association of CAPRA-S risk score
with either the first and the second principal compo-
nents (Fig. 1a; with an indicative direction represented

by the dashed grey line; tested with linear regression, lm
function from R). A clear gradient in risk score was seen
for epithelial and fibroblasts (Bonferroni adjusted p-
value of 1.0 × 10− 2 and 9.7 × 10–3, respectively). A
weaker pattern was apparent for myeloid and T cells
(Bonferroni adjusted p-value of 3.0 × 10− 2 and 0.37 re-
spectively), possibly due to the greater heterogeneity of
the two immune cell populations than epithelial and
fibroblasts.
We performed a differential transcript abundance

analysis (at the gene level) for each cell type inde-
pendently, seeking associations between transcript
abundance across subjects and CAPRA-S risk score,
treated as pseudo-continuous variables. In order to
perform differential analyses that would robustly
model the pseudo-continuous properties of the
CAPRA-S risk score (Fig. 1a), we developed a Bayes-
ian inference model (TABI) that implements a robust
generalised sigmoid regression (i.e. sigmoid function
extending from zero to any positive value). TABI was
used to model the gene transcript abundance as a
continuous function of CAPRA-S risk score (from 0
representing benign to 7 representing high risk); this
avoids the loss of information caused by patients’ a
priori stratification in low−/high-risk groups based on
an arbitrary threshold. In principle, using a general-
ised sigmoid function permits modelling linear, expo-
nential and sigmoid-like trends of transcriptional
alterations (Fig. 1b and c). However, to provide robust
modelling for RNA sequencing data, we reparame-
terised the generalised sigmoid function to suit better
the numerical properties of transcript abundance (Fig.
1b; Materials and Methods). In addition to robust-
ness, the sigmoid function allows mapping each dif-
ferential transcriptional event with a clinical risk
state, effectively providing a new developmental di-
mension to the analyses. This mapping is possible be-
cause the inflection point represents the CAPRA-S
risk score at which the transcriptional alteration is
most pronounced. The location of the most rapid
change can be highly localised in the case of a dra-
matic change in transcription at a specific risk score
or can be diffused in the case of a gradual change of
transcription along the risk score range (Fig. 1c).
Following the statistical inference of transcriptional al-

terations, an average of 10% of genes was removed based
on the posterior predictive check across all samples [29],
as not satisfying the assumptions of our model (Table 1;
Materials and Methods). A total of 1626 genes were
identified as differentially transcribed across the four cell
type categories (i.e. 95% credible interval excluding zero;
with no need for multiple test adaptation, consistent
with standard practices in Bayesian statistics [30]; Table
1; Supplementary file 1). The distributions of differential
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Fig. 1 (See legend on next page.)
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transcription events along the CAPRA-S risk score range
are concentrated on low-risk scores (Fig. S4) for the four
cell types, indicating that most transcriptional changes
occur early in cancer developmental stages (including
benign prostate tissue).

Differentially transcribed cell-surface and secreted
protein-coding genes are linked with recurring cancer
hallmarks
In order to provide an initial biological evaluation of the
resultant differentially transcribed genes, we sought the
overlap with cancer-related gene datasets and calculated
the enrichment of gene sets against functional and clin-
ical gene annotation databases. On average, across the
four cell types, 14% of all the differentially transcribed
genes have been previously identified as cancer-related;
of these, 24% have been previously described as prostate
cancer-related genes [46] (Table 1). For differentially
transcribed cell-surface and secreted protein-coding
genes, an average of 33 and 51% have been previously
described as cancer and prostate cancer-related genes,
respectively [46] (Table 1). In order to investigate pos-
sible cell-cell interactions within the primary prostate
tumour microenvironment, we focused on genes encod-
ing for cell-surface and secreted proteins, which may

directly influence other cell types. On average, across the
four cell types, 35% of differentially transcribed genes
encode for cellular-interface proteins; of those, 148
genes have been previously described as cancer-related
genes. For all cell types, most cancer genes have a direc-
tion of change for all cell types consistent with the direc-
tion reported in the literature (35 vs 13 for epithelial; 17
vs 8 for fibroblasts; 32 vs 6 for myeloid cells; and 26 vs
11 for T cells; Supplementary file 3).
In order to allow an in-depth interpretation of the

concurrent transcriptional differences for cell-surface
and secreted protein-coding genes across cell-types, we
produced a cell-type and disease-specific annotation
database integrating curated cell-specific Gene Ontology
information [31] with more than 1500 scientific articles
(Supplementary file 3). This database allowed us to iden-
tify six recurring hallmarks of cancer (Fig. 2): (i) immune
modulation; (ii) cancer cell migration; (iii) angiogenesis;
(iv) hormonal homeostasis; (v) epithelial/cancer cell
growth; and (vi) osteogenesis. Among the immune
modulation related genes, a balance exists between pro
and anti-inflammatory. This balance appears to be dy-
namic along the disease progression course. The epithe-
lial cell migration hallmark includes three main
functional clusters: tissue remodelling, tissue fibrosis and

(See figure on previous page.)
Fig. 1 The continuous relationship between the CAPRA-S risk score and gene transcript abundance. A Multidimensional scaling plots of transcript
abundance grouped by cell type. The colour coding represents the CAPRA-S risk score. The risk-score is correlated with the first and second
dimension, particularly in epithelial and fibroblast cells (linear regression performed using lm in R; Bonferroni adjusted p-value of 0.0187, 0.00971,
0.0306 and 0.367, respectively). Alphanumeric codes refer to patient identifiers (Supplementary Table S1). The dashed lines indicate the correlation
between the first and the second dimension with the CAPRA-S risk score. B Re-parameterisation of the generalised sigmoid function and
probabilistic model (Material and Methods). Left-panel: The three reference parameters for the standard parameterisation (blue). Alternative robust
parameterisation (red). Right-panel: a graphic representation of the probabilistic model TABI. C Examples of continuous relationships between
transcript abundance of four representative genes and CAPRA-S risk score (for epithelial cell population), from more discrete-like to more linear-
like. The bottom panel displays the inferred distribution of possible values (as posterior distribution) of the inflection point for each gene
sigmoid trend

Table 1 Summary statistics of the differential transcription analysis, including 52 samples from 13 patients and 4 enriched cell types

Cell type Total
genes

Genes
filtered
(zeros)

Genes
filtered
(PPC)

Differentially transcribed Differentially transcribed in the interface (curated
annotation)

Total (up/
down)

Of which
cancer genes

Of which PC
genes

Total (up/
down)

Of which cancer
genes, consistent

Of which PC genes,
consistent

Epithelial 21,618 5408 189 171 (139/
32)

45 (26%) 29 (64%) 80 (67/13) 35 (44%) 23 (67%)

Fibroblast 21,510 7141 651 267 (156/
111)

27 (10%) 9 (33%) 97 (58/39) 17 (18%) 7 (41%)

Myeloid 22,507 13,836 2695 900 (827/
73)

56 (6%) 11 (20%) 261 (238/
23)

32 (12%) 10 (31%)

T cell 21,716 8807 540 288 (195/
93)

42 (15%) 18 (42%) 83 (55/28) 26 (31%) 15 (58%)

PPC posterior predictive check, PC prostate cancer. “Of which” refers to the gene selection relative to the category adjacent on the left. “Interface” refers to cell-
surface and secreted protein-coding genes. “Curated” refers to the curated database for cellular-interface genes produced in our study (Supplementary file 2).
“Consistent” refers to a consistent direction of transcriptional change according to the curated database. Genes were labelled as “cancer genes” if present in the
tier1 COSMIC databasehttps://paperpile.com/c/BQQ95X/zLPNs [46] or labelled as such in our manually curated cell-type-specific database (Supplementary file 2).
Genes were labelled as “prostate cancer genes” if present in the tier1 COSMIC prostate cancer database datasethttps://paperpile.com/c/BQQ95X/zLPNs [46] or
labelled as such in our manually curated cell-type-specific database (Supplementary file 2)
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Fig. 2 Recurrent functional categories identified in differentially transcribed secreted and transmembrane genes. The estimated inflection point
for each gene shows the CAPRA-S risk score at which the transcriptional change was fastest; values < 0 or > 7 indicate an early or late
change, respectively
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direct epithelial-to-mesenchymal transition. The differ-
ential transcription events of those three classes do not
appear to be concentrated on any particular stage of dis-
ease progression.
Similarly, angiogenesis signalling appears to be sus-

tained along the whole disease progression. A cluster of
genes linked to platelet recruitment and endothelial cell
migration is differentially expressed in synergy by both
myeloid and T cells. Several transcriptional alterations
from both epithelial and immune cells were linked with
hormonal and lipid homeostasis, a key molecular hall-
mark in prostate cancer [47]. Within this set, the most
recurring metabolite that is linked with differentially
transcribed genes is cholesterol. While all four cell types
contributed similarly for most hallmarks, a clear bias is
present for cancer cell growth, osteogenesis and hor-
mone modulation, which genes are differentially tran-
scribed in epithelial and immune cells types,
respectively. As the most compelling signal, immune
modulation was selected for further investigation.

Immune modulation is associated with cancer grade and
targets predominantly monocyte-derived cells
In order to elucidate the role of the four cell types in the
immune response to primary prostate cancer and their
potential interactions, we focused on genes that encode
for cell-surface and secretory proteins involved in im-
mune modulation. In doing so, we again used the fitted
inflection point of the sigmoid model to distinguish be-
tween early (i.e. low CAPRA-S risk score) and late (i.e.
high) transcriptional changes. The balance between pro
and anti-inflammatory signalling from the four cell types
tracks the risk score covariate (Fig. 3). The number of
differentially abundant gene-transcripts encoding for
pro-inflammatory proteins remains roughly constant
through the risk range, with 18 genes for CAPRA-S risk
score ≤ 2 and 14 for CAPRA-S risk score > 2. On the
contrary, the number of altered anti-inflammatory-
related genes significantly expands (p-value 0.015; t-test)
for more advanced stages of the disease, with 12 genes
against 20 for the two risk score categories, respectively.
Overall, a large proportion (14 genes of 27) of the

inflammatory-related transcriptional alterations across
all four cell types is involved in the recruitment of
monocytes and macrophages [48–55] (highlighted in
yellow in Fig. 3a). These include CAMKK2 [56],
ORM1 [57] and DCN [58, 59] in epithelial; IL2RB
[60, 61], ICAM4 [62, 63], DCN [58, 59] and MDK
[64, 65] in myeloid cells; and CSF1 [48] and PDGFD
[66] in T cells. In addition, we identified a known
fibroblast-macrophage chemotactic interaction includ-
ing the regulation of the cytokines CXCL10 [51],
CXCL14 [50] and the receptor SLAMF1 [52, 53] for
fibroblasts; with COL1A2 [67] and CYR61 [68] (for

CAPRA-S 6–8) altered in myeloid cells known to
function as a co-stimulatory loop. A smaller cluster of
genes was linked with T cell recruitment and inflam-
mation, including CFP [69], IL24 [70], PROK2 [71],
SELL [72]. Interestingly, epithelial cells upregulate a
cluster of receptor genes normally involved in antigen
recognition and presentation in immune cells [73], in-
cluding an MHC class II cell surface receptor (i.e.
HLA-DRB5) and three Fc receptors (i.e. FCER1G,
FCGR1A and FCGR2A).
Overall, the significant genes associated with anti-

inflammation across the four cell types targets a more
heterogeneous set of cell types than the pro-
inflammatory ones. Monocyte-derived cells are mainly
targeted by genes that are differentially transcribed in
epithelial and myeloid cells. These include the receptor
genes SPNS2 [74, 75], IL10RA [76] and ICAM5 by epi-
thelial cells; and the receptor genes CPM [77] and
PEX13 [78] and the secreted protein genes FN1 [79] and
ANGPT2 [80] by myeloid cells. Another cluster of genes
targets predominantly T cells, including AREG [81, 82],
CD200 [83], LRCH1 [84], CD47 [85]. Fibroblasts mainly
downregulate pro-inflammatory cell-surface and se-
creted protein genes, such as FCGR3A and C1QA/B.

Increased monocyte-derived cell infiltration in tumours is
associated with lowered disease-free survival
In order to test the relevance of recruitment of
monocyte-derived cells suggested by our integrated tran-
scriptional analysis, we performed a differential tissue
composition analysis (i.e. a test for difference in cell-type
abundance between conditions) based on an independ-
ent methodology and independent patient cohort. We
used a higher-order Bayesian inference model [34] that
integrates deconvolution and downstream regression
modules in a joint model (that showed superiority com-
pared with the serial use of deconvolution and regres-
sion; Fig. S8) on an independent cohort of 134 patients
from the primary prostate cancer.
The Cancer Genome Atlas (TCGA) dataset [7] in-

cluded both disease-free survival and CAPRA-S score in-
formation. The deconvolution module of this algorithm
bases its supervised inference of cell-type proportions on
a collection of 250 curated publicly available transcrip-
tional profiles (including BLUEPRINT [35], ENCODE
[36], GSE89442 [37] and GSE107011 [38]), encompass-
ing 8 broad cell categories and 18 phenotypes. The de-
convolution model uses those reference deconvolution
signatures to estimate the contribution of each cell type
to the observed mixed transcriptional signal (i.e. TCGA
tissue RNA sequencing data). This analysis provides tis-
sue composition estimates as well as their association
with risk score [34]. Overall, we estimated a median of
88% for epithelial cellular fraction across samples
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(consistent with public literature [86], Fig. S5), 4.8% for
endothelial, 4.8% for fibroblasts, and 1.6% for immune
cells. The differential tissue composition analysis showed
a significant positive association with the CAPRA-S risk
score of the monocyte-derived and a negative association

of the natural killer and granulocyte cells (95% credible
interval excluding 0; Fig. 4a).
In order to test whether the enrichment in

monocyte-derived cells is clinically relevant, we gener-
ated Kaplan–Meier curves using the estimated cell-

Fig. 3 Multi cell-type immune-modulation changes with risk progression and is mainly targeted at monocyte-derived cells. The landscape of the
immune-modulation related genes encoding cellular interface-proteins (i.e. cell-surface or secreted) inferred to be differentially transcribed across
CAPRA-S risk scores, grouped by cell type. A Map of the secretory (represented as circles) and cell-surface (represented as squares) protein-coding
genes that are differentially transcribed across the four cell types. The data point size is proportional to the baseline transcript abundance. The
colour coding represents the effect size. Genes with a similar inflection point (i.e. at what stage of the disease a transcriptional change happens)
are clustered vertically (CAPRA-S risk score < =2, > 2 and < =5 and > 5). Genes are split horizontally according to their pro- or anti-inflammatory
role. Genes encoding for proteins that target monocyte-derived cells are highlighted in yellow. B Statistics of the differentially transcribed genes
displayed in panel (A). Top: credible interval of the association between transcript abundance and CAPRA-S risk score. Middle: inferred effect size
(full dots) and baseline transcription (empty dots). Bottom: credible interval of the CAPRA-S value for the transcriptomic change (i.e. inflection
point; e.g., the gene HLA − DRB5 is upregulated in late stages of the disease)
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type abundances. The stratification of patients based
on the extent of monocyte-derived cells infiltration
revealed a significant separation of the survival prob-
abilities (Fig. 4b). For comparative purposes, we tested
patient stratification for the other cell types included
in the model. As a result, only granulocytes and B
cells (with the poor outcome cohort including only a
few patients) showed a significant negative associ-
ation. In contrast, no other significant associations
were detected for other cell types, including epithelial,
endothelial, fibroblasts, and immune cell types, in-
cluding T cells and natural killers (Fig. 4c). The nega-
tive association for the epithelial component might be
due to the absence of the mesenchymal component in

the epithelial deconvolution-signature derived from
public data.

Macrophage proximity to epithelial glandular clusters
increases with tumour progression
In order to validate our findings and gather more in-
depth knowledge about the role of macrophages in dis-
ease progression, we performed a spatial analysis at the
single-cell level of 63 prostate biopsies from the inde-
pendent RadBank cohort of 17 patients with localised
prostate cancer, spanning a wide range of CAPRA risk
scores (Table S1). Using 7 immuno-fluorescent dyes (in-
cluding DAPI) with 6 others linked to antibodies (CD3,
CD20, CD68, CD11c and HMWCK), cell size and shape,

Fig. 4 The abundance of monocyte-derived cells relative to total immune cells is positively associated with the CAPRA-S risk score and negatively
associated with disease-free survival. Association of monocyte-derived cell abundance (see Materials and Methods) with disease-free survival in
the independent primary prostate cancer TCGA dataset (n = 134). A Polar plot of differential tissue composition of primary prostate cancer TCGA
samples for which CAPRA-S risk score information is available, with the factor of interest being CAPRA-S risk score. The y-axis (scaled by the fourth
root) represents the overall cell type abundance; the colour coding reflects the association between cell type abundance and disease-free survival
(coloured = significant association). B Kaplan–Meier plot of patients (n = 134) with low (blue) or high (red) monocyte-derived cell infiltration in
the tumour specimen (proportion cut-off = 0.0048; see Materials and Methods section, Survival analyses subsection). C Kaplan–Meier plot for the
other cell types included in the analysis
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we were able to identify 6 major cell types: T cells, B
cells, macrophages, dendritic myeloid, epithelial basal
and stromal cells. Epithelial basal cells define prostate
glands, where cancer cells originate and co-localise (con-
firmed by pathological evaluation). PDL1 expressing cells
were also categorised using a PDL1-linked dye. Overall,
we sampled an average of 41 × 103 cells per biopsy
(standard deviation 2.7 × 104). The most abundant of
the categorised cell types was epithelial basal (8.06% on
average), followed by T cells (5.03% on average).
We estimated the association between macrophage

proximity to five other cell types and CAPRA risk score
(Fig. 5a). Across the five cell types, the average number
of neighbour cells to macrophages ranges from 1.4 to
23.0. The strongest positive association was between
macrophage and epithelial basal cells in tumour areas

(p-value 0.0325; Fig. 5a-top-right), while the strongest
negative association was for stromal cells in tumour
areas (p-value 0.0324; Fig. 5a-bottom). Overall, the aver-
age proximity between macrophages and other cells, ag-
gregated by biopsy, did not strongly associate with the
CAPRA risk score. In order to gather evidence that the
increased proximity of macrophages to the prostatic
gland structures in advanced cancer stages had some
direct effect on the local immune microenvironment, we
tested the hypothesis that macrophages in proximity to
gland structures would displace T cells. We observed an
inverse association between the number of neighbour
macrophage expressing PDL1 to epithelial basal cells
and the number of T-cell neighbours (Fig. 5b). Epithelial
basal cells that are close to clusters of PDL1 expressing
macrophages tend to be further away from T cells.

Fig. 5 The analysis of multiplex-immunohistochemistry (n = 17) reveals proximity patterns of macrophages along disease progression. A
Association between macrophage proximity and CAPRA risk score for five cell types identified from the multiplex immunohistochemistry.
Proximity is calculated as the number of neighbour cells per tissue area and summarised using the median for each tumour biopsy. (left)
Association between macrophages and epithelial basal cells (top) or stromal cells (bottom) and CAPRA risk score shown in panel (A). Only the 12
patients with both tumour and surrounding benign tissue are displayed (right). B Decreased proximity of T cells with epithelial basal in the
presence of PDL1 expressing macrophages. The bottom section shows the multiplex immunohistochemistry tissue from patient RB010, with two
examples of the presence (left) or absence (right) of PDL1 macrophages close to prostate glandulae. White circles surround the labelled T cells,
blue and red circles surround macrophages which are PDL1 low and high, respectively
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Discussion
To date, in-depth analyses of genomic features of pros-
tate cancer alone, including single nucleotide variants
and small and large structural rearrangements, have not
been sufficient to provide transformative prognostic
tools or unveil the full complexity of this disease. Non-
malignant cells within the tumour microenvironment
make an integral contribution to the mechanisms that
cause cancer progression. They are often modulated by
cancer cells toward pro-tumorigenic behaviours. In this
study, we significantly improved the knowledge of the
molecular landscape of the primary prostate tumour
microenvironment, revealing concurrent transcriptional
changes in epithelial, fibroblast, myeloid and T cells
along the CAPRA-S risk score range.
We optimised a combined fluorescence-activated

cell sorting and ultra-low-input RNA sequencing
protocol, allowing us to obtain high-quality sequen-
cing data from inputs down to 1000 cells. Such a
strategy is of general utility as it enables studies of
rare cell types from both fresh tissue cores and biop-
sies. In order to optimally detect changes in transcrip-
tion along the CAPRA-S risk score, we developed a
novel statistical inference method, TABI. This model
permitted modelling transcript abundance natively on
continuous factors of interest with a minimal number
of parameters (n = 4), avoiding loss of information
due to the dichotomisation of the risk score into low
−/high-risk patient groups. As suggested by
multidimensional-scaling plots and supported by our
inference, transcriptional change events are indeed
continuously distributed along the whole risk score
range. This method is of broad utility in all cases
where a continuous (or pseudo-continuous) factor of
interest is present (e.g., risk score, time and chemical
concentration) and a monotonic change in transcript
abundance is of interest. Furthermore, the novel par-
ametrisation of the generalised sigmoid function that
TABI is based on can be extrapolated for a wide
range of applications. On the contrary, publicly avail-
able statistical models for continuous regression of
transcript abundance, such as for temporal RNA dy-
namics [87], cannot be used in the context of risk
score. This is because they require a large biological
replication, specific experimental design and are not
constrained to monotonic trends, affecting practical
interpretability.
The compilation of a curated cell-type-specific data-

base of gene functions for cell-surface and secreted
protein-coding transcripts enabled the detection of sev-
eral recurrent hallmarks of prostate cancer, characterised
by the involvement of multiple cell types. The most
striking aspect to emerge was the large number of
differentially abundant gene-transcripts linked to

monocyte-derived cell recruitment and modulation. The
association of monocyte-derived cell recruitment with
increased risk score was reflected in an orthogonal dif-
ferential tissue composition analysis on the extensive
Cancer Genome Atlas (TCGA) independent patient co-
hort against CAPRA-S risk score through a differential
tissue composition analysis. This analysis was enabled by
a robust Bayesian inference model, able to transfer the
uncertainty of the estimation of tissue composition for
each sample to the linear model linking cell-type propor-
tion (across samples) to clinical variables. This aspect is
particularly relevant considering the substantial noise as-
sociated with the inference of tissue composition (i.e. de-
convolution). To test the clinical significance of
quantifying monocyte-derived cell numbers within the
tumour mass besides the CAPRA-S risk score, we pro-
duced Kaplan-Meier estimates using the inferred cell-
type proportions along progression-free survival on the
TCGA cohort. For both analyses, we identified the
strongest association with clinical variables being
monocyte-derived cells. The infiltration of cell types
such as monocyte-derived cell populations has previ-
ously been shown to be linked to the extent of prolifera-
tive inflammatory atrophy lesions, chronic prostatic
inflammation and cancer gradehttps://paperpile.com/c/
BQQ95X/GLf0R [88]. In prostate cancer, specific and
overall survival analyses have identified an elevated
monocyte count as an independent prognostic factor for
poor outcomehttps://paperpile.com/c/BQQ95X/vyBlX+
pxdwu+xaA8T+2mcuI [89–92]. Furthermore, the infil-
tration of tumour-associated macrophages in prostate
needle biopsy specimens has been shown to have poten-
tial as a predictive factor for PSA failure or disease pro-
gression after hormonal therapyhttps://paperpile.com/c/
BQQ95X/eaIrr [93].
In order to validate further our hypothesis and enrich

our knowledge about the relation of macrophages with
epithelial and a range of immune cells along disease pro-
gression, we used multiplex immune-histochemistry to
determine the immune context at the single-cell level in
an independent cohort. This data supports the hypoth-
esis of a weakened relation of macrophages with stromal
compartments and a strengthened association with epi-
thelial glandular clusters along the disease progression
spectrum; glandular clusters being generally colocalised
with cancer cells in tumour tissues. This aspect becomes
highly relevant as the glandular areas in both tumour
and adjacent benign compartments rich in PDL1 macro-
phages are poorer in T cells. PDL1 expressing macro-
phages have been associated with their M2 wound-
healing phenotypehttps://paperpile.com/c/BQQ95X/
VvaW8 [94]. The relationship between PD-L1 expression
in intratumoral macrophages and prognosis in cancer
patients is still controversial. The two competing
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hypotheses are (i) PDL1 intratumoral macrophages lead
to dysfunctional T cellshttps://paperpile.com/c/BQQ95
X/2mglb [95] or (ii) not having significant effectshttps://
paperpile.com/c/BQQ95X/BJESQ [96].
Nonetheless, the expression of PDL1 in macrophages

has been shown to induce anti-inflammatory cytokines
such as IL-10https://paperpile.com/c/BQQ95X/VvaW8
[94]. Although PDL1 in macrophages may primarily
function as protection against induced cell death, our
study supports the hypothesis that it may have the effect
of inducing an anti-inflammatory, immune cold local
microenvironment, with adverse effects on disease pro-
gression. Although the role of several immune cell types
has been widely investigated in prostate cancer, the driv-
ing forces of immune modulation, clinically relevant for
immunotherapy resilience, are still under investigation.
From the myeloid compartment, the main focus has
been myeloid-derived suppressor cellshttps://paperpile.
com/c/BQQ95X/i6jgh [15], that have been investigated
mainly through blood and in-vitro analyses [97, 98].

Conclusion
There has been limited benefit observed in prostate can-
cer through the unselected use of novel immune check-
point inhibitors based on T cell receptor blockade (e.g.,
PD-1, PD-L1 and CTLA-4) https://paperpile.com/c/
BQQ95X/i6jgh [15]. Such failure may, in part, be driven
by our limited understanding of the dynamic interplay
between immune components of the microenvironment
and tumour cells. This study provides a clear direction
for further investigation into mechanisms of the immune
system, monocyte-derived cells in particular, that con-
tribute to disease progression; for example, through
changing the hormonal and growth-factor homeostasis
through a sustained inflammatory state. Furthermore,
this study provides a novel and robust method for de-
tecting monotonic changes in transcript abundance over
a continuous factor of interest such as risk and time that
has broad applicability to other research areas. The
methodological advances and the novel findings pre-
sented in this study provide a research framework for
improved immune interventions.
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