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Abstract: Introduction: The field of artificial intelligence (AI) is rapidly expanding, with many
applications seen routinely in health care, industry, and education, and increasingly in workplaces.
Although there is growing evidence of applications of AI in workplaces across all industries to
simplify and/or automate tasks there is a limited understanding of the role that AI contributes
in addressing occupational safety and health (OSH) concerns. Methods: This paper introduces a
new framework called Risk Evolution, Detection, Evaluation, and Control of Accidents (REDECA)
that highlights the role that AI plays in the anticipation and control of exposure risks in a worker’s
immediate environment. Two hundred and sixty AI papers across five sectors (oil and gas, mining,
transportation, construction, and agriculture) were reviewed using the REDECA framework to
highlight current applications and gaps in OSH and AI fields. Results: The REDECA framework
highlighted the unique attributes and research focus of each of the five industrial sectors. The
majority of evidence of AI in OSH research within the oil/gas and transportation sectors focused on
the development of sensors to detect hazardous situations. In construction the focus was on the use of
sensors to detect incidents. The research in the agriculture sector focused on sensors and actuators that
removed workers from hazardous conditions. Application of the REDECA framework highlighted
AI/OSH strengths and opportunities in various industries and potential areas for collaboration.
Conclusions: As AI applications across industries continue to increase, further exploration of the
benefits and challenges of AI applications in OSH is needed to optimally protect worker health, safety
and well-being.

Keywords: artificial intelligence; worker health and safety; occupational safety and health; sensor
devices; robotic devices; machine learning algorithms; future of work

1. Introduction

Artificial intelligence (AI) is an extensive and diverse research field that has infil-
trated every aspect of our lives and gained decisive importance over the years with over
20,000 publications in 2019 alone (Figure 1) [1]. In basic terms, AI is the ability of a com-
puter to process information and generate outcomes that mimic how a human learns,
makes decisions, and solves problems [2]. While research in AI is relatively new, the
concept of AI can be traced back to as early as the 1940s where Alan Turing was one of
the first mathematicians to explore the mathematical possibility of AI by posing “whether
a machine can think like a human or not” [3]. The term “artificial intelligence” was pro-
posed in a series of workshops at the Dartmouth Summer Research Project on Artificial
Intelligence (DSRPAI) hosted by John McCarthy and Marvin Minsky in 1956 [4]. Academia
and industry have applied AI to solve various problems such as decision making [5],
environmental monitoring [6,7], lower operational costs [8], and increase productivity [9].
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The advent of technological advances in robotics, sensors, data management, and computer
technology on one hand, and powerful machine learning (ML) algorithms, on the other
hand, have opened vast opportunities to apply AI in various fields (Figure 2). For example,
ML algorithms are being used to: optimize the performance of a network of sensors used
for detecting moving objects [10], select the location of radio frequency sensors used by
police/firemen to detect indoor crews in the event of a fire or other threats [11], detect
vocal disorder among workers who use their voice maneuvers extensively such as singers
and teachers [12], and used to predict bankruptcy [13]. Other important AI applications
include: facial recognition technology for law enforcement [14], improvement in mar-
keting and customer service [15], and dramatic improvements in the accuracy of digital
imaging [16,17]. These studies point to accumulating evidence that AI technology could
effectively be used to detect, identify, and predict risky behavior in a potentially hazardous
working environment.
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1.1. Basics of AI and ML

One of the definitions of AI is the study of an agent that receives data from the
environment, analyzes the data, and performs an action based on the analysis [18–21]. The
process could be initialized by a collection of the data from the environment by sensor
devices, followed by analyzing the data through ML algorithms, and finally, performing
the action by actuators (Figure 3). Sensor devices and actuators are considered as the
autonomous part of the AI, while ML techniques are the algorithmic part of the AI. In
general, ML is considered a sub-division of AI that provides the system with the ability
to learn and improve from experiences automatically [21]. In other words, ML is a wide
range of algorithms that build a mathematical model based on sample data or features
to make predictions or decisions without being explicitly programmed to perform the
task [22]. The ML algorithms are capable of learning by trial and error and improving their
performance over time [2]. Throughout the paper, the usefulness of both the autonomous
and algorithmic applications of AI in OSH for several industry sectors are presented. Since
ML techniques play a crucial role in this process, it is essential to understand the algorithms
associated with each application.
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1.1.1. Types of ML

The purpose of ML models is to make predictions, obtain cognitive insights, and
support decision-making [2]. ML uses an advanced set of rules called algorithms to build
models. ML algorithms can be divided into supervised learning, unsupervised learning,
semi-supervised learning, reinforcement learning [23]. Table 1 shows the type of ML
techniques as well as common algorithms for each of them. Each of these algorithms can
be defined as follows:

• Supervised algorithms use labeled data that have been previously validated to train
a model. The trained model is used to find patterns and make predictions on the
unlabeled test dataset [24]. Supervised learning can be divided into regression and
classification subsections. Regression predicts a single output value based on different
continuous target variables input, for example, prediction of house prices based on
different variables such as the location, and size of the house. On the other hand,
classification organizes the outputs based on some categorical input variables, for
example, predicting if a person is the defaulter of a loan or not.

• Unsupervised learning does not use labeled data for training. Unlabeled data are
provided to the learning algorithm, and the model then describes the hidden structure
of the data without human guidance, separating the data into clusters or classes [25].
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An example of unsupervised learning is that the customers of any specific store or
a company such as Amazon can be grouped into different categories based on their
similarities in their purchasing histories.

• Semi-supervised learning algorithms analyze unlabeled data mixed with a small
number of labeled data. By combining labeled and unlabeled data together, the
accuracy of the ML models is improved, and it significantly reduces the costs of
prediction of unlabeled test datasets through using supervised algorithms [26].

• Reinforcement learning is a form of sequential learning where the machine is generat-
ing its own training data through interaction with a dynamic external environment
and optimizing the outcome [27]. Reinforcement models learn the correct outcomes
through rewards and penalties using trial and error methods used by humans [2]. For
example, if we have an agent, a reward, and many hurdles in between them, the agent
will try to find all possible paths to reach the reward. After that, the agent chooses the
path with the least number of hurdles to reach the reward [28].

Table 1. Type of ML techniques and the algorithms associated with each technique.

Types of ML Techniques List of Most Common Algorithms

Supervised ML
Support Vector Machine (SVM), Naive-Bayes, K-Nearest
Neighbor, Decision Trees, Random Forests (RF), Linear

Regression, Logistic Regression, DL

Unsupervised ML K-Means, Hidden Markov Model (HMM), Principal Component
Analysis, Gaussian Model Mixture (GMM), DL

Semi- Supervised ML Self-Training, Co-Training, Generative methods, Mixture models,
Semi-supervised SVM, Graph-based methods

Reinforcement ML Q-Learning, Temporal Difference, Deep Adversarial Networks

A major class of ML algorithms are constructed based on Neural Networks (NN). NN
are designed based on the human brain with interconnected neurons. The NN mathemat-
ically adjust the probability weights between nodes in a layer which is called a hidden
layer so that the difference between the input and output layers narrows until the actual
output of the network matches the desired output [29,30]. Moreover, Deep Learning (DL)
is a subdivision of ML that uses a neural network with multiple processing hidden layers
of interconnected neurons between input and output layers to recognize a pattern. Convo-
lutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) are popular NN
that are used for the implementation of DL algorithms [31].

1.1.2. Types of Metrics to Evaluate ML Models

ML algorithms can be evaluated with different metrics, which are given in Table 2. ML
models can produce true positive, false positive, true negative, and false negative outcomes.
True positive (TP) is an outcome where the model correctly predicts the positive class.
False-positive (FP) is an outcome where the model incorrectly predicts the positive class.
True negative (TN) is an outcome where the model correctly predicts the negative class.
False-negative (FN) outcome where the model incorrectly predicts the negative class [31].
The results of the findings are used to calculate precision, specificity, sensitivity, accuracy,
F1 measure, and receiver operative character (ROC), in which the formulas for calculating
these metrics are presented in Table 2. Precision is the proportion of positive prediction
that was correct. Specificity is defined as the proportion of actual negatives, which got
predicted as the negative (or true negative). Sensitivity is a measure of the percentage of
actual positive cases that got predicted as positive (or true positive). Sensitivity is also
termed as recall. Accuracy is the fraction of predictions the model got right among all
outcomes. F1-measure combines precision and sensitivity values. In the end, Sensitivity
and Precision measures are used to plot the ROC curve.
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Table 2. Evaluation Metrics.

Evaluation Metrics Formula

Recall or sensitivity TP
TP+ FN

Precision TP
TP+ FP

Specificity TN
EP+TN

Accuracy TP+TN
TN+TP+ FP+ FN

F1-measure 2× precision× recall
precision+ recall

ROC
√

speci f icity × sensitivity

1.1.3. Statistical Modeling versus ML Modeling

ML techniques are built upon statistical frameworks, but they are different from
the traditional statistical modeling techniques, such as linear and logistic regressions. In
statistical analysis, modeling is dependent on the distribution of the data, but in an ML
approach, the development of a model is independent of the distribution of the data.
Moreover, in statistical analysis, a model is mostly developed based on all the available
data, however, in both the ML supervised and unsupervised learning techniques, a model
is developed on a training dataset and will be evaluated using a separate dataset called
the testing dataset. The decisions which can be made by statistical analysis are usually
involved in a few decision steps; but by ML methods, complex decisions more similar
to that of the human brain can be made. Statistical methods use the collected data to
infer the relationships between variables, while ML obtains a general understanding of
the data to make predictions [32]. The analysis of big datasets using standard statistical
analysis is challenging, especially when the number of measurements exceeds the number
of individuals and may be further complicated by missing data for some subjects and
variables that are highly correlated [33]. ML techniques are especially very advantageous
when dealing with such big data sets.

1.1.4. Available Datasets

Datasets are an integral part of the field of machine learning; they are essential as they
provide us with the information used to construct the ML models. There are many freely
available datasets in a variety of fields such as health care, education, and manufacturing
which have been used as the inputs of the ML algorithms. An example of a primary freely
available health care database is Medical Information Mart for Intensive Care (MIMIC).
MIMIC-III is a clinical dataset owned by the MIT Lab for Computational Physiology, con-
taining de-identified health data associated with intensive care unit admissions including
demographics, vital signs, laboratory tests, medications, etc. [34]. Colombian Institute for
the Evaluation of Education (ICFES) is a popular educational database with a variety of
economic, social, and academic attributes of the students [35]. These attributes have been
widely used to develop ML models to predict the performance of the students throughout
the semester. The Manufacturing Execution System (MES) is a database that has provided
real-time data for various manufacturing activities [36]. These data have been used to
create ML methods to optimize production, process quality, and productivity. Another
freely available example of databases is Kaggle. Kaggle is an open repository of published
data and codes in a variety of fields [37]. These codes and datasets repositories allow users
to make their own ML models as well as collaborate with other researchers to build even
more powerful models and improve the results. However, no specialized datasets for
occupational safety and health (OSH) are available.

1.2. AI and OSH

The field of OSH is a subdivision of public health science and integrates disciplines
such as toxicology, epidemiology, and ergonomics to study the distribution of illnesses and
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injuries in the workplace and implement strategies and regulations to prevent them [18].
There has been increasing interest in integrating AI research within the frameworks of
OSH. The National Institute for Occupational Safety and Health (NIOSH) founded the
Center for Occupational Robotics Research (CORR) to assess the impact of robotics and
artificial intelligence on worker safety, health, and well-being in the work environment [19].
Similarly, the European agency for health and safety has also studied the use of AI-enhanced
tools and applications in workplaces, looking at where they function and how this is
occurring and what the implications are for workers’ occupational safety and health [20].
The number of AI publications with OSH topics has dramatically increased and including
several review papers on various industries (Figure 3). Several publications have reviewed
the application of AI in OSH in various industries. However, they are limited in scope,
and they don’t provide an overall perspective on AI applications in OSH. As the number
of AI applications in the workplace dramatically increases, there is a crucial need to gain
a thorough understanding of AI methods and their potential impact on worker health
and safety.

The objectives of this paper are: (1) define and apply a novel framework to evaluate
AI literature in OSH; (2) identify research studies that highlight current applications
of AI to improve the health and safety of workers in agricultural, oil and gas, mining,
transportation and construction industries; and (3) describe, across these industries, the
potential applications of AI in anticipating and controlling occupational hazards, and
opportunities for future AI interventions.

2. Materials and Methods
2.1. Risk Evolution, Detection, Evaluation, and Control of Accidents (REDECA) Framework

Figure 4 describes a novel framework called Risk Evolution, Detection, Evaluation,
and Control of Accidents (REDECA) developed by the authors to theorize how AI tech-
nologies and methods can be used to anticipate and control risk of exposure in a worker’s
immediate environment. The REDECA framework is constructed based on the funda-
mental underlying idea of the Swiss cheese model [38] that is a dominant paradigm for
depicting how injury incidents in complex systems occur. Based on this model a given
hazard can generate a safety incident when multiple layers of defenses and safeguards
(or interventions) designed to prevent the incident or loss fail to properly act. While the
Swiss cheese model conceptualizes that a safety incident occurs when multiple stages of
safeguards fail, it is not capable of showing how AI can be used in each step of this process.
To create this capability, we extend the Swiss cheese model by including new details that
are necessary to describe how AI can be and has been used in detecting, preventing, and
controlling the evolution of safety accidents. These details include the characteristics of
each state visited when reaching from a safe state to an accident state, the probabilities
and timing information associated to each state, and the interventions that can reverse or
slow down such a process. We have shown all these details by the REDECA framework
shown in Figure 4. We assume that a human worker, due to the nature of his work, can
be at different levels of safety risk at any given time. These levels are shown by the three
states of R1, R2, and R3 (shown by blue boxes in Figure 4). R1 is the ideal state where a
worker has minimal to no risk of exposure to the hazard. Our goal as OSH professionals
is to keep the worker in this state. However, this is often not achievable due to the work
requirements, available technologies, environmental factors, budget, etc. In R2 the worker
is at an increased risk of a harmful work-related exposure event but has not experienced a
harmful event. R3 is the state when a harmful work-related event has already occurred
impacting the health and safety of the worker. AI technology- based inputs can monitor
and foresee the change in state of risk and impact movement between these states of risk
to minimize damage from a harmful work-related event. To minimize the chance and
negative consequences of safety incidents, we are interested in three types of information
and actions related to the states R1, R2, and R3: 1—transition probabilities and times for
moving from a lower risk states to a higher risk state (green boxes in Figure 4), 2—detection
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of a state change (white boxes in Figure 4), and 3—interventions in each state that reduce
the risk level or negative consequences of safety incidents (orange boxes in Figure 4).
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For a worker who is in state R1, we are interested in AI based models and technologies
that help us with the followings: calculating the probability and/or time left for the
worker to transition from the safe state (R1) to the hazard-exposed state of R2; detecting
(sensing) the event that shows such a transition; and designing and implementing AI based
technologies that keep the worker in R1 or at least reduce the probability of moving from
R1 to R2.

For a worker in state R2, we are interested in the AI models/technologies that assist us
with the followings: calculating the probability and time left for a worker transition from
the hazard-exposed state of R2 to R1 or R3; detecting or sensing the events corresponding
to these transitions; and the design and implementation of AI technologies and models
that could send the worker back to the R1 state or at least reduce the probability of having
a safety incident, i.e., moving from R2 to R3.

If a worker experiences an injury incident, then the worker’s state is set to R3. In this
state, we are interested in AI models/technologies that help in reducing the damage and
recovery time of the worker, and in calculating the times and probability of recovery.

All the AI/OSH papers reviewed by the authors are related to at least one of the green,
white or orange boxes shown in Figure 4. Therefore, we use this framework to classify
AI/OSH literature related worker’s safety in the five industries of agricultural, oil and gas,
mining, transportation and construction.

2.2. Literature Search Strategy

The five most dangerous industries by fatal injuries are agricultural, mining, oil and
gas, transportation, and construction respectively [39]. In 2019, according to the U.S. Bureau
of Labor Statistics these industries experienced almost 2700 fatal injuries, 50% of all fatal
injuries reported that year. These industries also had over 204,000 injuries that resulted in
days away from work, approximately 25% of all injuries in 2019. Moreover, these industries
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had the highest fatal injury rates of all other industrial sectors and were chosen for this
review paper (Figure 5) [39]. The application of AI and ML algorithms, actuators and
sensors in the OSH field for these industries were reviewed by using PubMed, Google
Scholar, and Scopus search engines to find relevant research. Different keywords such
as “artificial intelligence”, “occupational safety and health”, “agriculture”, “mining”, “oil
and gas”, “construction”, “transportation”, “ergonomic”, “risk factors”, “sensors devices”,
“robots” and their combinations were used to explore available papers in the fields of AI
and OSH. For each selected paper, a backward and forward citation search was conducted
to capture additional papers not found in the original queries. Over 650 abstracts were
reviewed and only papers that were non-repetitive, English-based, relevant to OSH, AI
and the five industrial sectors were chosen for further review. The full text of the remaining
publications was then read and only papers that meet the criteria specified in our REDECA
framework and within the five industries (agriculture, mining, oil and gas, transportation,
and construction) were included in this paper.
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Each paper was reviewed and classified using the REDECA framework (Figure 4) and
AI system (Figure 3). The algorithms, sensors, actuators and environment used/described
by the paper were organized by industry in tables highlighting where the majority of AI
research in each industry is located within the REDECA framework and AI system. Each
component of the REDECA framework was used in the tables using shorthand descriptions
and components where there was no available research included in the tables to highlight
potential research gaps (Table 3).

Table 3. REDECA components and shorthand notations used in industry Tables 4–8.

Prob. R2 Probability and time of entering R2
Detect R1→R2 Detect change between R1 and R2
Int. R1→R2 Intervention to keep worker from moving to R2
Int. R2→R1 Intervention send worker back to R1
Prob. R3 Probability and time of entering R3
Detect R2→R3 Detect change between R2 and R3
Int. R2→R3 Intervention to keep worker from moving to R3
Prob. Rec. Probability of reducing recovery time
Int. R3 Intervention to minimize damage and recovery time
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3. Results
3.1. Agriculture

While the agricultural industry has come a long way from its humble origins of sub-
sistence farming to present-day farming, the fatal incident rate has stagnated since the
1990s and it is now considered the most dangerous industry in the US [39]. The number of
fatal incidents has dropped from around 1000 cases in the early 1990s to less than 600 cases
in 2019. However, the primary attribution of this drop is the reduction in the number
of workers (thus less exposure) due to the implementation of more efficient machinery
and systems [40]. Precision and digital agriculture research have grown tremendously in
recent years due to technological advances in sensor technology, development in robotics
human-robot interaction (HRI) [41], unmanned aerial vehicles (UAV) [42], and sophis-
ticated machine learning algorithms. However, significant investments are needed to
continue improvements in productivity and enhance health and safety in agricultural
environments [43]. The emerging research into collaborative robots (co-robots) is gaining
attention as a strategy to create a safe working agriculture environment. The field of
human-robot interaction involves designing, developing, and evaluating strategies to help
and improve human-robot capabilities and skills together [44]. HRI enabled robots are
currently used in urban search and rescue [45].

The agricultural industry is repetitive, labor-intensive, and usually involves lifting
heavy loads, which tend to increase the risk of injuries [46,47]. In addition, workers utilize
hazardous machinery such as tractors, augers, power take-off (PTO) shafts, grain bins
and have to deal with hazardous agents such as pesticides and manure [48–52]. Most
agricultural tasks are performed by human-operated machines with some autonomous
robots that can work on large-scale fields [53]. The most common injury incident type in the
agriculture industry is a collision with a machine or machine parts, which is mainly associ-
ated with errors in human factors [54]. Thus, most AI/OSH papers in agriculture reviewed
by the authors tended to revolve around HRI strategies that could improve agricultural
processes, such as the hazardous tasks of spraying pesticides and the repetitive tasks of the
detection of fruits and vegetables, grasping, detaching, and transport procedures [55,56]
(Table 4). Three major research areas (robotics, drones, biological sensors) are explored
further in this section.

3.1.1. Robotics

For agricultural workers to obtain successful crops, many factors will need to be
controlled and monitored, and agricultural robots could be used to perform these repetitive
tasks during planting, crop management, and harvesting efficiently and safely while
reducing costs.

Yaghoubi et al. summarized a report on the introduction of robotic systems for
land preparation [57]. The tasks that robotics systems could optimize include spraying
and water irrigation procedures in farms [58–61], grafting and cutting [62], weeding [63],
pruning [5], monitoring and inspection of crops [64–69], to map or monitor crop conditions,
natural resources, regulating in weather conditions [70–74]. Freitas et al. have shown that
a human working with a robot was able to trim trees faster (more than 2×) compared to
humans working alone using a ladder-based approach [75]. Similarly, using robots with
the relevant sensor utilizing ML algorithms would be able to reduce harvesting workload
by handling heavy material and performing repetitive work. Harvest and storing crops at
the right conditions via accurate detection and classification of crop quality are explained
in the following research [76–78]. Bechar et al. were able to show that HRI could be
used to improve automatic target recognition of melon on average between 94–100% at a
20% decrease in the time consumed compared to manual operation [55]. HRI collaboration
does not need to be a static type. Tkach et al. developed a real-time dynamic switching
between collaboration levels in a human-robot target recognition system (the ability to see
and recognize what you are seeing). These developments enabled real-time adaptation of
the combined human-robot system to make many possible changes in the environment,
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as well as human operators, and robots initiated the operation. Their ability to correctly
recognize what they are seeing was increased by up to 90% [79]. Furthermore, a localization
system for HRI robots was developed where vehicle position is triangulated from low-cost
wheel encoders and LiDAR sensors without the use of expensive satellite GPS systems [80].
This system allows the robot to track and control its position independently from the
operator while spraying or crop detection.

Table 4. Agricultural AI/OSH algorithm, sensor and actuator research organized by the REDECA framework. Major
technologies described by each paper is mentioned and linked to the relevant papers [39–98]. Summary of each paper is
found in Appendix A.

REDECA
Components AI Algorithms (ML) Sensors Actuators Environment (Type of

Hazard)

Prob. R2

Linear Mixed Model: [59]
Signal Detection theory
(SDT): [79]
SVM: [84]
Image Processing: [85]

Laser: [58]
Camera: [59,61,84,85]
EEG: [94]

Robot: [41,57,60,61]
UAV: [84,85]
Tractor: [94]

Musculoskeletal
Disorders: [41,57,61]
Pesticide: [58–60,84,85]
Machinery: [79,94]

Detect R1→R2

LIDAR: [91]
Radar: [91]
Camera: [91]
Thermography: [91]

Robot: [91] Machinery: [91]

Int. R1→R2 Linear Mixed Model: [59]
Image Processing: [63]

Camera:
[59–61,63,78,87–90]
Ultrasonic: [62]
GPS: [63]
Infrared Laser: [78]
Pressure [78]
EEG: [93]

Robot:
[59,60,62,63,78,87–90]
Tractor: [93]

Pesticide: [59,60,87–90]
Planting: [62]
Weeding: [63]
Harvesting: [78]
Vibrations: [93]

Int. R2→R1

Prob. R3 Accelerometer: [46]
Vibrations: [95–97]

Musculoskeletal
Disorders: [46,95–97]

Detect R2→R3

Int. R2→R3

Prob. Rec.

Int. R3

3.1.2. Drones and Remotely Operated Systems

UAVs or drones help in mapping and crop monitoring. Computer vision via sensors
and ML algorithms can process data captured from drones flying over their fields [81,82].
Using drones reduces the need for farmworkers to be venturing into remote locations. In
high-resolution imagery, shadows may cause problems in the soil and vegetation recog-
nition, Al-Ali et al. used data obtained from a UAV with multispectral sensors to assess
vegetation coverage using SVM and maximum likelihood algorithms [83]. The same
multispectral camera fixed on UAV technology was used to collect the data, and ML algo-
rithms were used to discriminate between weed and vegetation with an overall accuracy
of 96% [84]. The efficiency spraying of pesticides was shown to be improved by using
ML algorithms to detect the exact locations reducing the need for workers’ exposure to
pesticides [85].

To reduce the physical presence of workers in areas to be sprayed with pesticides, the
performance of the robots and ML algorithms needs to be accurate. The following reports
have proposed the use of semi-autonomous operation of a teleoperated pesticide-spraying
robot [86–89]. The operator would be able to remotely control the robots using a mouse, a
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remote, and digital, thus reducing the risk of exposure to hazardous pesticide exposure. For
such a strategy to be successful, the following features should be optimized: visibility, safety,
simplicity, feedback, extensibility, and cognitive load reduction. Adamides et al. assessed
the awareness of the operator and HRI robot, where both should be aware of the status,
activities, and the surrounding limitations of the other party [90]. To improve the ambient
awareness of agricultural robots, Reina et al. proposed a multisensory perception system
by using sensor technologies such as LiDAR, six radar, stereovision, and thermography to
detect and avoid obstacles [91]. Berenstein et al. applied two parameters: human-robot
collaboration levels and a spraying coverage optimization function (SCOF) in a case study
of detecting non-uniform grape clusters in vineyards by allowing both the human and
the robot to mark the area for pesticide spraying [92]. Bernstein et al. presented three
types of human-robot collaboration: fully manual mode (robot suggests, and human
approves), semi-manual (robot sprays and human supervise), or fully autonomous robot
spraying modes.

3.1.3. Biological Sensors

Smart robots could also be used to monitor the health of human operators as well.
Sensors such as electromyography (EMG) can measure the psychophysical feature of the
human operator to modify tasks to improve safety or increase efficiency. For example,
Gomez-Gil et al. used EMG readings to steer a tractor with almost the same accuracy as
with manual steering [93]. Szczepaniak et al. developed models to assess the stability
and steerability of agricultural machines that could be adapted to drivers’ characteristics
to improve safety [94]. Sensors were also developed to measure vibrations experienced
by farmers using agricultural aircraft. The tri-axial accelerometer sensors were used to
measure the acceleration occurring at the level of the seats [95]. Kociolek et al. showed
that the operators on quad bikes were exposed to head and neck vibration higher than the
permissible level of exposure [96]. Similarly, Calvo et al. used three different accelerometers
to measure hand-to-arm vibration and occupational repetitive action (OCRA) level for
farmers who always used power tillers and the result indicated the vibration exposure was
far above the permissible level of exposure [97].

3.1.4. Summary

A summary of published articles shows that the utility of sensors, robots, and ML
algorithms, which are all parts of AI, impact the two main agriculture processes: planting
and maintaining the crops, and harvesting; and also human factors. The goals of these
technologies are to improve the working conditions in the farms by reducing the need for
humans in repetitive and hazardous tasks on farms. For an efficient design and training of
sophisticated HRI systems, a detailed study of each task is needed by creating work models
from operators to inform technology design and training [56]. Additionally, robotics could
be designed to perform more than one task simultaneously to enhance crop and flower
production on one hand [98], and harvesting on the other hand leading to improvements
in the safety and health of the workers in agricultural environments. In addition to
robotics, drones and biological sensors are expected to contribute to the safety and health
of farmworkers.

3.2. Oil and Gas

The oil and gas industries are defined as any industry directly involved in extracting oil
and gas material from the ground and related support activity. The industry uses processes
and machinery for the exploration, extraction, refining, transporting, and marketing of
petroleum products these days. The oil and gas industries are integrating various advanced
sensor technology for collecting data to be analyzed by ML algorithms and to monitor and
control the process involved in oil and gas production. The goal of using these technologies
is to increase efficiency, reduce costs and at the same time maintain a safe working condition
for workers in the oil and gas industry.
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The procedure for obtaining oil and gas is divided into three main sectors: upstream,
midstream, and downstream. The upstream sector is the exploration of underground and
underwater sources of crude oil and natural gas using different apparatus and methods.
Once oil or gas is found, it is removed to the surface. The transport of the extracted crude
products to the refineries in the midstream sector. The downstream sector involves the
refining of crude oil and natural gas and their retail distribution. It is essential to control,
monitor, maintain, and secure these processes in every industry and ensure the safety and
health of individuals involved in these processes [99].

Advances in ML algorithms, sensors, and robotic technologies to the oil and gas
industry have resulted in significant improvements in the safety and health of the workers
in their workplaces. A major part of operations in the oil and gas industry may take
place in remote locations, hostile and rough terrains where the weather is inclement and
harsh. These conditions seem to be worrisome for the safety and health of the workers.
Therefore, most AI/OSH papers focused on monitoring, maintaining, and managing
industrial operations as well as equipment to detect any potential condition that might be
a risk to the safety and health of the workers (Table 5). Smart robots have been used for
drilling, inspection, and erosion control in harsh environments in the oil and gas industry
which have been useful in improving the safety and health of the workers [8]. Three major
research areas (wireless sensor networks, internet of things, machine learning algorithms)
are explored further in this section.

Table 5. Oil and Gas AI/OSH algorithm, sensor and actuator research organized by the REDECA framework. Major
technologies described by each paper is mentioned and linked to the relevant papers [99–133]. Summary of each paper is
found in Appendix B.

REDECA
Component AI Algorithms (ML) Sensors Actuators Environment (Type of

Hazard)

Prob. R2

SVM: [107,109]
GMM: [107,109]
KNN: [107,109]
ANN: [128]

Temperature: [105,106,119]
Pressure: [105–107,109,119]
Transducers: [107]
GPS: [112]
Acoustics: [119]

Pipeline Leakage:
[100,105–107,112,119]
Gas Pressure: [105,106,119]
Flow: [119]
Noise: [119]
Temperature: [119]

Detect R1→R2

SVM: [107,132]
GMM: [107]
KNN: [107]
Transform: [113]
Localization: [118]

Temperature: [105,106,111,120]
Pressure: [105–107,109–111]
Transducers: [107]
Flow: [108]
Acoustic: [110,111,113,132]
Gas Sensor: [118,120]
Humidity: [120]
Windspeed: [120]

Pipeline Leakage:
[105–111,113,132]
Gas Pressure: [105,106,132]
Noise: [110,111]
Fire: [118]
Chemical: [118,120]

Int. R1→R2 Localization: [118]

Temperature: [100,101,103]
Pressure: [100,101,103]
Gas Sensor: [102,118]
RFID: [123]

Robot: [123]

Confined Space: [100]
Well head: [101]
Drilling: [102]
Pipeline Leakage: [103,123]
Fire: [118]
Chemical: [118,123]

Int. R2→R1

Prob. R3

Detect R2→R3

Int. R2→R3

Prob. Rec.

Int. R3
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3.2.1. Wireless Sensor Networks (WSN)

It is essential to maintain the health and safety of workers during the exploration of
oil and natural gas as the increase in temperature or gas levels could indicate a defect in the
wells. A WSN was developed by Barani et al. and Ibrahim et al. to remotely monitor the
conditions of oil wells using the level, temperature, and gas sensors [100,101]. Aliyu et al.
developed a wireless gas safety and monitoring system (WG-SMS), a gas leakage warning
system, containing a WSN made up of wireless environmental sensors that are shown to
detect toxic and combustible gases accumulating in gas wells. The sensors were solar and
battery-powered to reduce energy requirements and were shown to communicate with
a command center which would warn of gas leakage and locate workers in danger via
GPS [102]. There are several reports of WSN systems used to monitor the different stages of
transporting and storing oil and gas in the midstream sector. Disruption of the midstream
operations could lead to oil spills and gas leakage with detrimental consequences to
the wildlife, environment, and safety of the workers in this industry as well as other
humans. Gas leaks occur every year, with many of them leading to injuries, and deaths of
humans, equipment damage, and often disastrous environmental effects. The following
reports demonstrate the use of real-time data captured from pipeline sensor nodes (PSN)
measuring structural stability of the pipelines, oil and gas leakage, and analyses weather
and environmental conditions to generate a risk management protocol [103–114]. Ding
et al. developed a monitoring system to detect pipeline leakage through the negative
pressure wave (NPW) features which were collected through the pressure sensors and
ZigBee technology [7].

The WSN technology could also be applied to downstream operations of refining crude
oil and natural gas and then its retail distribution. Imran et al. used the WSN technology to
autonomously monitor and detect any defects in the different downstream operations [115].
Watching the machine conditions to expose any errors was proposed by Hou et al. by
using sensor nodes on the machine [116]. Algorithms were developed to analyze data from
the sensors for fault classifications. Jung et al. proposed and implemented a WSN based
monitoring system for pipe rack safety using data collected from field nodes connected to
remote servers by radio frequency transmission modules [117]. Chraim et al. developed
and evaluated a wireless gas leak detection and localization solution by using a monitoring
network of wireless devices and detection and localization algorithms. A detection rate of
91% is achieved [118].

A WSN pipeline monitoring system was used to detect and localized leakage and
blockage in oilfield pipelines [119]. Guo et al. used features from environmental sensors
such as wind speed and direction, humidity, and temperature to develop a real-time and
large area wireless monitoring system for gas leakage [120].

3.2.2. Internet of Things (IoT)-Robotics

Khan et al. describe a new Internet of Things (IoT)-based system to make data
collection from connected objects, as simple, secure, robust, reliable, and quick that could
be applied to any of the three sectors of the industry [121]. Priyadarshy et al. reviewed in
detail the IoT applications in wearable watches, smart helmets, and smart glasses [122].
These devices were used by oil field engineers in offshore fields for real-time assistance,
safety, and communication with the control tool for navigation and enhanced collaboration.

Kim et al. proposed an autonomous sensor-based system named sensor-based pipeline
autonomous monitoring and maintenance system (SPAMMS) that combines robot agent-
based technologies with sensing technologies for achieving active and corrective monitor-
ing and maintenance of the pipelines [123]. The sensor technology could also be applied
to remote terrain such as an underwater system. Felemban et al. surveyed methods for
anomalous events in the oil and gas industry, such as detection of pipeline leakage detection
with emphasis on software-based methods [124].

Some examples of such technologies include digitization of oil fields, real-time opti-
mization of drilling operations, the use of nanotechnology, WSN to aid gauging, reservoir
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modeling, and diagnostics [125]. Other examples include real-time data collected by sen-
sors are used to ensure better control and optimization of crude production, robots for
drilling, inspection, and damage control to enhance efficiency and personal safety, WSN
that monitors and improves production, as well as to detect and prevent issues with regards
to health and safety.

3.2.3. Machine Learning Algorithms

There are several reports in the literature demonstrating the contribution of several
types of ML methods in the three main sectors of the oil and gas industry. Successful ML
algorithms that have been effectively applied in the oil and gas industry include SVM, arti-
ficial neural networks (ANNs), and DL which contributed to provide a safer environment
for the workers in this industry. There are several reports of machine learning algorithms
used in the exploration of oil and gas [126], and drilling [127], reservoir engineering [128],
production operations [129], in the oil and gas industry.

The following are some examples of the application of robots with ML algorithms
used instead of humans for many tasks that could be risky for the workers and which could
facilitate monitoring of leakage, corrosion, or any other damage from remote facilities.
Smart robots could intervene to remote areas to assess soil composition during the oil
excavation stage [130]. RF and Landsat 8 OLI imagery algorithms were able to map land
oil spills [131] efficiently. Jin et al. used LS-SVM to detect leak levels on a gas pipeline
based on the acoustic wave method with high accuracy [132]. Robots are used in offshore
fields for drilling, inspection, and erosion control to enhance efficiency and personal safety.
Mashreq has developed another autonomous robot that has been used for pipelines and
other equipment inspections [133].

3.2.4. Summary

As a result, setting overall goals and delegating decision-making to autonomous
systems is one of the best things companies can do in such adverse conditions to improve
the safety and health of the workers. For example, the introduction of smart robots in
drilling and inspection of the various processes and equipment found in the harsh and
hazardous environment of the oil and gas industry has improved the safety and health
of their workers. These robots reduce worker exposure to extreme temperature, pressure,
and humidity. In addition, they are sent into confined spaces, thus reducing exposure
to physical and environmental hazards found in these spaces. Moreover, ergonomic-
related injuries such as lifting heavy items, bending, working in awkward postures, and
repetitive tasks have decreased significantly due to the application of smart robots in these
workplaces. Also, WSN technology has allowed workers to remotely monitor operations
in hazardous, and inaccessible environments, which prevent them from being exposed to
such environments.

3.3. Mining

AI and ML algorithms have essential roles to play in the mining industry by increasing
the efficiency of mineral exploration and improving workers’ safety and health. Like the oil
and gas industry, the mining industry puts the health and safety of miners in jeopardy due
to the remote and harsh mining environmental conditions. According to the NIOSH, the
fatality rate in the mining industry was reported as 10.4 per 100,000 employees in 2018 [134].
Mining operations could be divided into two stages, exploration and extraction. Mining
starts by exploring mineral deposits by collecting data from various remote sites. The next
step in the process is drilling and extracting the minerals. The exploration and extraction
stages of mining are performed in dangerous and hazardous conditions. Workers tend to
be in environments with tight working space, poor lighting, inadequate air supply, and
under unstable roofs. In addition, these environments tend to accumulate hazardous waste,
poisonous gases, metal and non-metal dust particles, toxic substances, and radioactive
materials. These factors tend to make mining operations dangerous and a significant source
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of adverse health outcomes for workers [135]. AI and ML algorithms can be applied to
develop autonomous drills that can locate the potential sites identified in the prospecting
stage and perform drilling activities [136].

Most of the reviewed papers focused on structural and environmental mine conditions
could be used to analyze the main routes that contain hazardous situations and eliminate
them by decreasing or completely removing workers from those conditions [136] (Table 6).
Also, ML techniques such as decision tree, RF, and NN can predict the outcome of mining
injuries and days away from work using an injury dataset provided by the Mine Safety
and Health Administration [137]. AI technologies supporting the safety and health of
mineworkers can be organized in two broad categories, sensors and wearable devices and
are explored further in this section.

3.3.1. Sensors

Deployed sensors can be split into three types: worker-based sensors, environmental
sensors, and autonomous robots. One of the first worker-based sensor systems was
developed by Johnson who used global positioning systems (GPS) to monitor workers’
locations and movements [138]. More recently, Baek et al. utilized blue-tooth-based motion
and speed sensors, and communication sensors modules to ensure a connection with a
worker in remote locations [139]. In addition, sensors used in the medical field to measure
physiological features such as body temperature, heart rate, blood pressure could be
utilized to monitor the health of the workers inside mines [140–142].

Environmental sensors are used to collect data on the conditions surrounding the
worker, including humidity, noise, toxic gases, temperature, light, and dust [143]. One
crucial system is an autonomous remote monitoring framework of wireless toxic gas
sensors that can monitor the levels of toxic gases, and provide warnings to protect the
health and safety of the mineworkers [79]. Another example is using sensors to monitor
humidity levels to combat bacterial growth and prevent worker exposure to harmful
bacteria [143]. Lastly, acoustic and ultrasonic optical fiber sensors can be used to monitor
the noise level [144–146].

Mobile autonomous robots and IoT technology play an important role in the occu-
pational safety and health of mineworkers as they provide real-time information about
the status of the mine and mine workers and allow the mine workers to avoid hazardous
areas [147]. Sinha et al. reported the use of IoT based on ZigBee techniques to actively
monitor underground mineworkers and provide immediate assistance during an emer-
gency [148]. As hundreds of mine workers are shown to be involved in machinery-related
injuries routinely, the IoT would provide a highly valuable intelligent machine monitoring
system [149] that could be effectively used in detrimental working conditions. Mishra et al.
developed and established a Zigbee-based WSN and extended it to IoT with an IP-enabled
gateway [150]. Lastly, Autonomous Support Systems could reduce the need for human
involvement in perilous mining operations such as roof support [151].

3.3.2. Wearable Devices

Wearable devices using different types of sensors can be used in a wide variety of
conditions such as to track motion and location, measure extreme environments, and
record physiological characteristics of workers, etc. These features could collectively be
incorporated to develop an efficient ML algorithm that could detect hazardous situations
more promptly to improve health and safety conditions in the mines. There are many
examples of wearable smart devices that integrate information from the environment,
motion levels, location and activity, and exposure to hazardous materials. The common
devices are helmets, watches, cameras, and activity trackers, which are all useful to improve
the overall health and safety of mineworkers.



Int. J. Environ. Res. Public Health 2021, 18, 6705 16 of 42

Table 6. Mining AI/OSH algorithm, sensor and actuator research organized by the REDECA framework. Major technologies
described by each paper is mentioned and linked to the relevant papers [134–158]. Summary of each paper is found in
Appendix C.

REDECA
Component

AI Algorithms
(ML) Sensors Actuators Environment (Type of

Hazard)

Prob. R2 Robot: [147]
IoT: [147] General: [147]

Detect R1→R2

Motion: [139,153]
Accelerometer: [139,145]
Gyroscope: [145]
Magnetometer: [145]
GPS: [139]
Humidity: [143,150]
Sound: [143,145,146]
Temperature: [143,145,150]
Toxic gases:
[143–145,150,152,154]
Dust: [143,145]
Heart Rate: [145]
Infrared: [145]
Camera: [145,153]
Smoke: [145]
Silica: [146]

Smartphone: [145]
Smartwatch: [145]
Smart helmet:
[145,152–154]

General: [139,145]
Fall: [153]
Bacteria: [143]
Hearing: [143,146]
Toxic gases:
[143,144,150,152,154]
Temperature: [143,150]
Silica: [146]
Humidity: [150]

Int. R1→R2

Motion: [139,153]
Accelerometer: [139]
GPS: [139]
Camera: [153]

IoT: [149]
Smart helmet: [153]

General: [139]
Machinery: [149]
Fall: [153]

Int. R2→R1

Accelerometer: [145]
Gyroscope: [145]
Magnetometer: [145]
Heart Rate: [145]
Infrared: [145]
Camera: [145]
Sound: [145]
Smoke: [145]
Gas: [145]
Temperature: [145]
Dust: [145]

Smartphone: [145]
Smartwatch: [145] General: [145]

Prob. R3

Accelerometer: [145]
Gyroscope: [145]
Magnetometer: [145]
Heart Rate: [145]
Infrared: [145]
Camera: [145]
Sound: [145]
Smoke: [145]
Gas: [145]
Temperature: [145]
Dust: [145,155]

Smartphone: [145]
Smartwatch: [145]
Smart helmet: [155]

General: [145]
Fall: [151]
Silica: [155]

Detect R2→R3

Int. R2→R3

Prob. Rec.
ANN: [137]
DT: [137]
RF: [137]

General: [137]

Int. R3
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Helmets and Respirators

Helmets with wireless sensors are vital for the safety of the workers in the mining
industry [151]. Several commercial companies have developed smart helmets with sensors
to monitor the worker and their environments, such as Smart Helmet clip and Angel helmet.
Deloitte and Expert mining solutions have acquired the Smart Helmet Clip wearable device
with sensors that enable situational awareness including worker’s location and vital signs
and the presence of dangerous gasses in the environment [152]. Angel helmet contains
detecting systems of motion, impacts, active and passive location, and the position of the
workers, besides other effective communication systems [153].

Hazarika developed a safety helmet for coal mine workers, which is equipped with
methane and carbon monoxide gas sensor [154]. This sensor detects changes in the gas
concentrations, and the data is transmitted to the control room wirelessly. It will alert the
workers of unsafe methane or carbon-monoxide gas concentration thus efficiently prevent-
ing incidents. In addition, wearable respiratory dust monitors could protect workers from
exposure to hazardous substances found in mines such as crystalline silica [146].

Helmet-Cam, which is a device to assess the amount of dust around the workers in
the mine, has been tested at mineral mines [155]. This technology has several components
which are held together as a system through a safety vest. The components consist of a
real-time data-logging, a respirable dust monitor which is attached to the worker’s belt
or backpack, a video monitor, and a video camera which is attached to the helmet. The
captured video and dust data then transfers and analyzes to a software to measure the
concentration of respirable silica dust in the air.

Mardonova et al. have developed an integrated system to improve the health, safety,
and efficiency of the mineworkers [156]. Mardonova’s an expandable smart device combin-
ing a safety vest, eyewear, helmet, and watch. The system uses a mobile software system
that coordinates the information captured from the individual sensor.

Watches

Smartwatches integrate the functionality of a regular watch with added features
such as motion detection, global positioning system (GPS) navigation systems, and fit-
ness/health tracking features [157].

Parate et al. described a smartwatch that can measure smoking activities via sensors
that detect specific hand gestures such as smoking and separate them from many irrelevant
hand gestures [158]. Being able to delineate between normal and abnormal body move-
ments is essential in allowing the ML algorithm to understand the status of the worker
when they need help or assistance.

Smart Eyewear and Cameras

Smart eyewear with display screens is able to send alerts and notifications of workers
who are in remote locations [156]. Delabrida et al. describe a wearable device made of a
head-up display (HUD) assembled with Google Cardboard API and sensors that can mea-
sure the distance to an object and can take measurement of the wearers’ environment [6].

3.3.3. Summary

As a result, ML algorithms, sensors, autonomous technologies, and wearable devices,
are being developed to address the crucial needs of the mining industry while monitoring
the occupational safety and health handoff of the mine.

3.4. Transportation

Transportation networks are vital to the economy and societal development. Driver
fatigue-related traffic accidents are one of the main factors affecting the safety of workers
in the transportation industry [159,160]. The US National Highway Traffic Safety Admin-
istration estimates that in 2017, 91,000 police-reported crashes involved drowsy drivers
(https://www.nhtsa.gov/risky-driving/drowsy-driving (accessed on 8 August 2019)).

https://www.nhtsa.gov/risky-driving/drowsy-driving
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Operating a car involves a coordinated set of actions that require situational awareness and
prompt decisions, and impairment of awareness is linked to increased risk of crashes [161].
The majority of transportation related papers focused on fatigue related issues (Table 7).

Table 7. Transportation AI/OSH algorithm, sensor and actuator research organized by the REDECA framework. Major
technologies described by each paper is mentioned and linked to the relevant papers [159–210]. Summary of each paper is
found in Appendix D.

REDECA Component AI Algorithms (ML) Sensors Actuators Environment (Type of
Hazard)

Prob. R2
GMM: [203]
Helly model: [203]
ANN: [207]

Infrared: [170]
Camera: [170,207]
EMG: [180]
Pressure: [203]
Vehicular: [207]

Fatigue:
[170,180,203,207]

Detect R1→R2

SVM: [173–175,188,209]
CNN: [183,190–192]
Bayesian NN:
[178,182,202,208]
Digital Signal
Processing: [181]
Fuzzy NN: [186,187]
DL: [189]
Binary Decision
Classifier: [200,201]
ANN: [207]
NN: [210]

Infrared: [170,193,210]
Camera: [170,186–193,
200,205,206,208,210]
ECG: [173,181]
PPG: [174,208,209]
EOG: [175,181]
EEG: [178,181,183]
Vehicular:
[201,205–207,209,210]
Accelerometer: [209]
Gyroscope: [209]

Alarm: [191,208]
Smartwatch: [209]

Fatigue: [170,173–
175,178,181–183,186–
193,200–202,205–210]
Distraction: [193]

Int. R1→R2
CNN: [191]
Bayesian NN: [208]
SVM: [209]

Camera: [191,208]
PPG: [208,209]
Accelerometer: [209]
Gyroscope: [209]
Vehicular: [209]

Alarm: [191,208]
Smartwatch: [209] Fatigue: [191,208,209]

Int. R2→R1

Prob. R3 SVM: [168,173]

ECG: [173]
PPG: [174]
Infrared: [193]
Camera: [193]

Fatigue:
[168,173,174,193]
Distraction: [193]

Detect R2→R3

Int. R2→R3

Prob. Rec.

Int. R3

Fatigue is a physiological state of mind and body expressed by several signs and has
different intensities [162]. Examples of signs of fatigue include yawning [163], slow reaction
time [164], eyelid shutting [165], and loose steering grip [160]. One of the standards that all
fatigue algorithms are contrasted against is the Karolinska Sleepiness Scale (KSS) [166–168].
The KSS is one of the earliest tools used to measure fatigue levels using a self-administered
questionnaire [167]. The KSS is considered the gold standard in measuring fatigue, though
it is important to note that it is a subjective reporting method that is not real-time and
suffers from recall and reporting biases that might be needed to prevent crashes.

Fatigue could be classified into active, passive, and sleep-related fatigue [169]. There
is a connection between fatigue signs such as drivers’ blink duration and driving perfor-
mance [170–172]. It would be too complex to explicitly code every situation to generate
predictive crash models using the usual statistical methods. As a result, machine learning
algorithms would be more efficient in detecting and predicting driver fatigue by using
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information from drivers’ characteristics, vehicle characteristics, or both. Driver fatigue
detection algorithms can be categorized based on the data collected by the sensors. These
algorithms fit into four broad categories: biological, facial, vehicular, and hybrid algorithms.

3.4.1. Biological Algorithms

Biological algorithms use real-time data collected from the heart, brain, and muscular
activity as indicators of the onset of fatigue [167]. Changes in the heart rate (HR) and
heart variability (HRV) from electrocardiograms (ECG) non-invasive sensors embedded in
steering wheels could be used to detect driver’s fatigue [173]. Changes in photo platysma
gram (PPG) readings could also be used to identify fatigue. Li et al. used a PPG sensor on
the steering wheel of the vehicle to measure HRV and the SVM algorithm to categorize
drivers into fatigued and alert states with a 95% accuracy compared to the gold standard
KSS and PERCLOS [174]. Another biological measurement is electro-oculography (EoG),
which is the measurement of the cornea-retinal potential difference between the back and
the front of the eye, Zhu et al. used an unsupervised machine learning algorithm to detect
fatigue [174]. EoG data was obtained from 22 participants with electrodes around their
eyes, and response error was shown to increase with fatigue. Since a sensor near the eye
could distract the driver, Zhang et al. developed a sensor on the forehead instead [175].
Electroencephalography (EEG) could similarly be used to assess the onset of fatigue in the
brain. The EEG signal is divided into five waves which are associated with different levels
of drowsiness [176–178]:

• Gamma (30–42 Hz)
• Beta (13–30 Hz): a measure of alertness and early sleep stage.
• Alpha (8–13 Hz): associated with relaxed status
• Theta (4–8 Hz): associated with deep sleep
• Delta (0.5–4 Hz): related to the early stage of sleep

The sensor could also be used to collect information regarding the level of muscle
activity from the surface of the skin using a surface electromyogram (sEMG) [179]. Bala-
subramanian et al. used sEMG to measure muscle activity changes in the shoulder, neck,
back, and wrist found that the power in 15–30 Hz frequency increased with fatigue [180].
Although these changes have a high correlation with fatigue, obtaining EEG and sEMG are
both intrusive methods that have limitations in their applicability.

Multiple biological features could be used to improve the performance of the fatigue
detection method. Sun et al. used recruited 30 participants to use wearable ECG and EEG
sensors and had the EoG sensors fixed on the vehicle ceiling to test his fatigue-detection
method [181].

Sun et al. observed that the following features were associated with fatigue: (1)
increased blink duration and frequency; (2) decreased power density of alpha and beta
waves; (3) decreased LF/HF; (4) increased SDNN; increased RMSSD, LF and HF.

Chai et al. categorized fatigue by developing a feed-forward Bayesian neural net-
work [182]. Their classification system used independent components by entropy rate
bound minimization analysis (ERBM-ICA) for the source separation. Also, the features
were extracted through an autoregressive (AR) method. At the end, the Bayesian neural
network was developed to classify fatigue state versus alert state. The model was evaluated
through sensitivity, specificity, and accuracy metrics which are of 89.7%, 86.8%, and 88.2%
respectively. In another study, a CNN model was developed to detect fatigue from the EEG
signals by Yang [183].

3.4.2. Facial Algorithms

Facial expressions, such as eye, mouth, and head movements are the most visible signs
of fatigue, and several commercial companies have developed fatigue detection systems
relying on drivers features such as yawning, blink duration, and frequency, percent of the
time the eyes are closed (PERCLOS), head movement [184]. Applied Science Laboratories
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(ASL) designed an eye-tracking system using a computer vision techniques system to
measure eye movement association with fatigue [185].

In another study, blinking frequency, eye-closed duration, mean of eye-opened level,
and yawing frequency were used as the physical features. Moreover, the percentage of non-
steering, the standard deviation of steering-angle, frequency of abnormal land deviation,
and standard deviation of vehicle speed were used as the vehicle features [186]. Sigari et al.
demonstrated that the face tracking method using a fuzzy classifier (fatigue levels: low,
normal, and high) was not optimal and complex when testing it on 5 participants in a real
driving environment [187].

Mandal (developed a vision-based fatigue detection system for bus drivers by moni-
toring and testing on 23 bus drivers in a real driving condition [188]. The system consisted
of various modules of head-shoulder detection, face detection, eye detection, eye openness
estimation, fusion, PERCLOS estimation.

Mouth movement data were also used to predict fatigue. Alioua et al. devel-
oped a non-intrusive fatigue detection system by monitoring yawning features with face
extraction-based SVM and a mouth detection approach based on circular Hough trans-
form (CHT) [189]. This system was able to detect fatigue with a 98% accuracy when
more features were included, but fatigue was simulated, and the number of participants
was not reported.

A different way to approach this problem is to allow deep learning algorithms to learn
the features. Dwivedi et al. developed a DL algorithm to select the visual elements for
fatigue classification [190].

In another study, the drowsiness of the drivers was monitored through eye movement
of the driver, CNN was developed as the ML algorithm to do the prediction of if the driver
is drowsy or not, and if he is able to drive safely or not, and the sound alarm was produced
when the driver was drowsy [191]. Also, a complex network (CN)-based broad learning
was developed to detect fatigue from the EEG signals [192].

Many commercial companies have developed facial algorithms to detect fatigue. Smart
Eye AB has designed Anti Sleep, a system that uses 3D head position, head orientation,
gaze direction, and eyelid closures to detect driver fatigue [193]. The OPTALERT developed
by Sleep Diagnostics Pvt, uses wireless glasses to record eyelid and pupil activity which
were used as an early warning to inform drivers about fatigue [194]. Driver Fatigue
Monitor System MR688, developed by Care Drive alerts the drivers in which detection of
features of fatigue or distraction is done by infrared image sensors that record the pupil
and head movement [195]. Op Guard is a real-time fatigue and distraction detection
system developed by Guard Vent using sensors to measure eye, head, and face movements,
and driver’s behavior. It sends immediate notification of fatigue to the driver by remote
personnel monitoring the drivers’ performance [196].

3.4.3. Vehicular Algorithms

Vehicle and steering wheel movement patterns can also be used to detect fatigue.
Toyota has developed the Toyota Sense P fatigue-detection system by collecting information
about the vehicle’s surroundings, lane deviation, and detection of pedestrians [197]. Nissan
Maxima tracks the driver’s steering patterns, and if it detects any unusual deviation from
the designed model, a warning signal is generated to alert the driver [198]. Volkswagen
also offers a similar lane tracking system, pedal use, and erratic steering wheel movements
to judge driver fatigue levels [199].

Fatigue reduces influences the driver’s performance that could be captured from
driving features such as steering wheel angle, lane deviation, load center position (LCP),
and posture changes.

Measuring steering angle could be used to identify driver fatigue. McDonald et al.
developed a fatigue-detection method using features such as lane departures from steering
wheel angle data (from modified observer rating of drowsiness) and a RF algorithm. Using
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72 participants, the RF algorithm had higher accuracy and ROC than PERCLOS and had a
comparable positive predictive value [200].

Li et al. used approximate entropy (ApEn) features which were collected under real
driving condition from the sensors mounted on the steering lever to monitor the level of
driver fatigue and the drowsiness of the drivers [201]. The data included 14.68 h of driving
on a Chinese highway, and the model yielded an accuracy of 78.01%. Li et al. illustrate that
ApEn features are useful, but further development is needed to improve accuracy.

Yang et al. recruited 12 subjects to measure a type of different sleep levels (par-
tial versus no sleep sleep-deprivation) test under a simulated driving environment [202].
Several stimulus-response tasks as well as routine driving tasks were performed to ana-
lyze the performance differences of drivers under various sleep-deprivation levels. They
also demonstrated that sleep deprivation affected rule-based than skill-based cognitive
functions where sleep-deprived drivers had power response to unexpected disturbances
degraded but were able to continue the routine driving tasks such as lane tracking, vehicle
following, and lane changing. Another feature used in fatigue detection is the LPC mea-
sured by pressure sensors placed in the seats. Furugori et al. showed that in a vehicle of
12 subjects, the LPC from body pressure sensors was at the beginning distributed through-
out the seat, but as time progressed, the pressure started to concentrate more or less at one
point toward the back of the seat [203].

Wakita et al. developed a GMM and the Helly models to identify driver fatigue.
Multiple features such as vehicle velocity, brake pedal, accelerator pedal, and distance
from car in-front were utilized to feed to the models [204]. The GMM model yielded better
results compared to the Helly model in terms of accuracy metric which were 81% on a
simulator and 73% on a real vehicle.

3.4.4. Hybrid Sensors

Integrating driver data features and vehicular features to detect fatigue could dras-
tically increase the accuracy of fatigue detection methods compared to a single feature
(from either the driver or the vehicle) approaches. Cheng et al. proposed a technique that
incorporates both driver characteristics as well as vehicle characteristics such as eyelid
closure, maximum close duration, and percentage of non-steering percentages, percentages
of on-center driving, the standard deviation of lane position [205]. A data fusion framework
was developed to model the data from the driver and the vehicle. To measure the feature-
level fusion, Fisher’s linear discriminant was used. Also, the Dempster Shafer evidence
theory was used in the decision level fusion process. In this study, the vehicle dependent,
and the driver dependent measures, were 81.9% and 86.9% accurate respectively. However,
the fusion of both measures were more accurate which was 90.7%.

Sun et al. developed a self-adaptive dynamic recognition model. The features were
collected from several sources. Also, the sequential levels of fusion were built at both
feature and the decision levels [206].

Naurois et al. developed a detection and prediction model using several physio-
logical and behavioral features, recorded driving behavior, driving time, and participant
information [207]. These features were then fed to the ANN model to detect fatigue. The
best result was obtained once physical features, driving time, and participant information
were employed.

Combinations of biological, and vehicular features have been shown to improve the
accuracy of the predictive algorithm [208–210]. A mobile-based support vector machine
(M-SVM) was able to classify the driver state with a 95.8% accuracy. Samiee et al. combined
features such as eye status, lateral position, SWA, ECG, EEG, and sEMG from 12 subjects to
have a prediction system with 94.63% accuracy [210].

In another work, a dynamic probability assignment (BPA) was introduced to the
decision-level fusion. In this approach, the weight of each feature changes dynamically,
and the combination of the previous fatigue state and the current step in the decision-level
fusion are used to improve the result of the fatigue driving detection. Using the fusion
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of all fatigue features offers an accuracy of 92.1% (an improvement of 90.8% for vehicle
features and 91.6% for facial features) and using only the most useful features offers an
accuracy of 93.8% [205].

As a result, due to the complexity of coding every situation to generate predictive
crash models using the usual statistical methods, driver fatigue detection algorithms have
been developed by using information from drivers’ characteristics, vehicle characteristics,
or both to detect and predict driver fatigue more efficiently.

3.5. Construction

The construction industry is described as a loosely coupled system with several issues
in a typical project [211]. One of these issues is the safety and health of workers at a
construction site. According to OSHA data, out of 4779 worker fatalities in private industry
in 2018, 1008 or 21.1% were in construction, and among construction fatalities, the leading
cause of fatality was falls [212]. Not surprisingly, the focus of most of the AI/OSH papers
was on detecting and predicting falls in construction sites (Table 8). Several types of sensors
are used to collect data, and a variety of machine learning algorithms are used to analyze
and detect falls that are explored further in this section.

Table 8. Construction AI/OSH algorithm, sensor and actuator research organized by the REDECA framework. Major
technologies described by each paper is mentioned and linked to the relevant papers [211–256]. Summary of each paper is
found in Appendix E.

REDECA Component AI Algorithms (ML) Sensors Actuators Environment (Type of
Hazard)

Prob. R2 SVM: [254] Pressure: [254]
Motion: [256] Fall: [254,256]

Detect R1→R2 ANN: [253]
KNN: [255]

Accelerometer: [253]
Audio: [255]

General Safety: [255]
Fall: [215,253]

Int. R1→R2 BIM: [215–221] General Safety: [216]
Falls: [215,217–221]

Int. R2→R1 KNN: [255] Audio: [255] General Safety: [255]

Prob. R3 ANN: [253] Accelerometer: [253] Fall: [253]

Detect R2→R3

ANN: [225,248,253]
KNN: [225,231,255]
RBF: [225]
PPCA: [225]
LDA: [225]
High level fuzzy: [226]
Petri net: [226]
GMM: [226]
HMM: [245,246]
SVM: [227–229,241,248]
Decision tree:
[230,232–235,244,251]
Computer Vision: [238]
Naïve Bayes: [242]
Pattern matching: [243]
Markov Chain: [247]

Accelerometer:
[225–230,234,238,251]
Gyroscope: [231–233]
Barometer: [232,233]
Electromyography:
[235,236]
Camera: [238]
Vibration: [241–244]
Audio: [242–255]
Pressure: [245]
Ambient: [246–248]

Fall:
[225–236,238,241–248,251]
General Safety: [255]

Int. R2→R3

Prob. Rec.

Int. R3 KNN: [255] Audio: [255] General Safety: [255]
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3.5.1. Fall Detection Sensors

Fall detection starts with the gathering of data from sensors. It is essential to have a
precise measurement of a fall event to develop an efficient fall-detection algorithm. Falls
are unexpected, rare, and diverse events. A fall is defined as “an event which results in a
person coming to rest unintendedly on the ground or other lower level, not as a result of
a major intrinsic event (such as stroke) or overwhelming hazard” [213,214]. There are no
typical methods for fall detection in terms of type of sensors, features to extract, and specific
ML algorithms to achieve better results. Fall detection has been detected through building
information modeling (BIM) technology in several studies [215–222]. Other reports of
fall detection methods in the literature could be divided into three categories: wearable
devices, ambiance sensor-based, and camera-based [214,223]. Detection of fall helps to get
first responders at the scene quickly and potentially reduce the negative health outcomes
related to the fall.

Wearable Devices

Advances in sensor technology have led to the development of non-intrusive small,
low-cost sensors that could be integrated into devices such as watches or phones, that can
monitor workers in real-time. The number of wearable sensors and their market size has
risen significantly and is anticipated to be around 3 billion wearable sensors by the year
2025 (Figure 6) [224]. One main reason that the market is achieving prominence is because
of the rising number of health and fitness monitoring applications globally such as the
health of the workers in the workplaces.

The most popular features extracted from these sensors are the magnitude of the
accelerometer called the signal magnitude vector (SMV) [225–235], the angular magnitude
of the gyroscope [232,233], and electromyography [236]. Robust fall detection methods
were developed based on acceleration features with sensors placed in the right position in
the body [237,238].

Camera-Based

A camera-based sensor is non-intrusive equipment for monitoring the user’s envi-
ronment and behavior by measuring the ratio of the width to the height of an image.
Low-cost cameras can detect changes in body movement [238–241] shape, posture, and
head movement.
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Ambiance Sensors

An ambient device collects information about the changes in the environment sur-
rounding the individual. An ambient sensor such as vibration patterns [242,243], pressure
sensors [244,245], detect changes in infrared patterns [246], an electric field [247] which can
be used for accurate measurements of various mobility and gait parameters used critically
in fall-detection systems [248]. An acoustic sensor makes use of a microphone sensor to
capture the movements of the users where Mel Frequency Cepstral Coefficient (MFCC)
features are extracted to be analyzed and detect the falls.

3.6. Developing Fall-Detection Algorithms

In almost all of the current research efforts to develop a fall-detection model, the
following steps are used: data collection from different sensors, extracting the relevant
features from the data, developing the classification models and prediction stage, and
finally, evaluating the fall-detection system [31]. Selecting the relevant features improves
the accuracy of the prediction method by reducing the size of the noise in the dataset [249].
The developed ML algorithm and the types of sensors that are used can affect the accuracy
values significantly. Mubashir et al. found vision-based devices are more robust for
detecting falls [250]. Yu et al. advocated for generic fall detection algorithms and the fusion
of different sensors such as wearable and vision sensors to provide more accurate fall
detection models [223].

Ojetola et al. were able to discriminate between falls and other similar activities
by developing a decision tree model, which resulted in a precision value of 81% and a
recall value of 92% [251]. Noury et al. [252] and Yu et al. [223] summarized the systems,
algorithms, and sensors used for the automatic early detection of the fall and illustrated
the difficulty in comparing the performances of the different methods due to the lack of a
common framework [252]. The unsupervised learning methods in the research failed to
identify the first fall as it was not observed, and the supervised methods were likely to
misidentify regular movements as falls [252].

Detection of near-miss fall is also essential as it could evolve into fall incidents in
construction sites [253]. Zhang et al. demonstrated the use of smartphones to capture
near-miss falls and identify them with an ANN algorithm yielding a precision of 90.02%,
recall of 90.93%, and F1 score of 90.42%.

In case of an injury incident on a construction site where the location of workers
is needed for rescue efforts, Liu et al. developed position estimation algorithms based
on the strength of the radio signals received from multiple wireless access points inside
buildings [11].

In addition, machine learning algorithms could be used to detect and predict falls
from scaffolding structures. Sakhakarmi et al. designed a method of classifying scaffolding
failure cases and reliably predicting safety conditions based on strain data sets obtained
from scaffolding columns [254].

Lee et al. developed a sound recognition system. This technology was able to send
immediate notification and alarm to the workers when an incident took place. Also, it was
able to provide information regarding safety measures that workers should take in the case
of unsafe situations before they start their work activities. The sound features were then
fed to a ML algorithm to detect the falls [255].

ML algorithms developed by Yang et al. were able to predict potential fall incidents
using data of workers’ abnormal gait patterns in a construction site [256]. They found
the following four gait parameters (i.e., stride time, stride distance, average velocity, and
maximum foot clearance) were better at distinguishing hazardous environments.

As a result, various wearable devices, camera based and ambiance sensors, as well as
ML algorithms have been developed to detect the falls.
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4. Discussion

The application of AI in the realm of several industries has been described as the
Fourth Industrial Revolution [257]. Innovations in artificial intelligence through the use
of sensors, robots, ML algorithms have been shown to increase productivity and could
potentially improve the safety and health of workers in the workplace. Since the applica-
tion of AI in workplaces has increased over the past few years, it is very crucial to have a
thorough understanding of AI methods, and the effects of these methods on the workers
and workplaces as well. To aid in this understanding, this paper developed a the REDECA
framework to categorize and highlight the applications of AI in OSH. This novel approach
is a natural by-product of the literature developed. It was created by carefully reviewing
the literature and developing large categories where the papers in the literature fell. The
available OSH AI literature was compiled in tables by industry and by AI system element
to identify the key strengths, weaknesses, and opportunities. Tables 4–8 categorizes the
available literature by which element of the AI system each publication’s intervention
focused by the targeted AI approach in the REDECA (Figure 4) framework. This catego-
rization clearly and efficiently highlights the strengths, opportunities, and weaknesses of
using AI in OSH.

In brief, the construction industry and evaluating driver fatigue in the transporta-
tion industry had many AI algorithms identified in the peer-reviewed literature. These
algorithms spanned across most elements of the AI REDECA. Conversely, in agriculture,
mining, and oil and gas industries there were very few AI algorithms used. Similarly, we
see the agriculture and mining industries have many actuators, when other industries did
not. In all industries there were many papers published describing the use of sensors and
environment descriptors. The ability to be able to quickly view where there are gaps in the
literature across the AI system is strength of using this framework. Another strength of the
program is to be able to identify which part of the REDECA is missing AI involvement.

By separating the papers in the published literature into their targeted approach to
protecting workers using the AI REDECA it becomes clear that most AI interventions target
probabilities, detection, and interventions when a worker is in R1. In general, there is a
lack of developed and published material describing AI systems aimed at detecting when
someone goes from being exposed to a risk environment (R2) to being injured or put in
risk state 3. This then precludes one from establishing how long it will take to return to
healthy. There is also an opportunity to develop AI models targeting interventions to keep
workers from moving to R3 and interventions to minimize the damage from being in R3
and improve recovery time. When protecting workers, it is important to focus efforts on the
early stages of intervention with the goal of never having a worker in R3. Unfortunately,
this is not always possible and thus the opportunity uncovered by using this framework is
to develop AI systems targeted at reducing the probability and increasing the interventions
of workers in R3 of the AI REDECA (Figure 4). These elements are crucial to minimize
harm in the event of a workplace incidents.

This paper is not a systematic review of the AI literature. Our paper is the first survey
of the reach of existing applications of AI in OSH and documents several examples of how
AI can enhance the effectiveness of OSH interventions to protect workers in diverse work
sectors. The authors acknowledge the limitations of the current paper and recommend
several areas for further exploration:

(1) First and foremost, a systematic review of scientific journals, industry reports and
other practice journals may provide insights into more applications of AI in OSH
beyond the scope of this survey. Additionally, qualitative approaches may be needed
to fully understand the dynamics of AI-OSH teams in the field that have not been
captured in this survey.

(2) Our survey did not find any educational papers about AI curriculum or training in
OSH. A recent paper specifically highlights the need for OSH professionals, practi-
tioners, researchers, employers, and workers should develop a better understanding
of worker health, safety and well-being applications of AI [258]. A comprehensive
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scan of existing AI curricula in academia and training and skills needs among OSH
professionals in industry may provide a better understanding of future AI capacity
needs for OSH researchers and practitioners. For example, a significant increase in
the availability of funding for AI applications in healthcare over the past ten years
has led to a shift in the number of students and healthcare professionals with access
to AI training and the capacity to implement AI applications.

(3) Currently there is no dedicated funding source for AI research or practice in OSH.
The fourth industrial revolution (also known and Industry 4.0) is here and the NIOSH
Future of Work Initiative was launched in 2019 to identify novel research solutions,
practical approaches, and stakeholder opportunities to collectively address the future
of work [259,260]. AI, including deep leaning, neural networks and machine learning,
are priority topics and subtopics listed in the guiding framework for NIOSH research
and practice-based activities as part of this initiative [259]. We need to advocate
for resources to fund research and training of OSH professionals in governmental
agencies (NIOSH), academic institutions and industries to fully leverage the capacity
of AI to protect the health, safety and well-being of workers.

(4) AI will continue to play a very significant role in the design of future workplaces, work
health and worker well-being. It is anticipated that massive innovation in industries
driven by AI could potentially lead to the creation of new sectors for growth and jobs,
and eliminate several existing jobs. Recently the European Commission proposed
new rules and actions aiming to “turn Europe into the global hub for trustworthy
Artificial Intelligence (AI)” [260]. The goal is to “coordinate a plan with Member
States to ensure the safety and fundamental rights of people and businesses, while
strengthening AI uptake, investment and innovation across the EU” [260]. This aspect
of AI was not the focus of this paper but the authors recognize the potential of AI use
on occupational health equity (biased outcomes). OSH researchers and practitioners
need to advocate for a long-term strategy in partnership with government, AI experts
and industry for protecting the health, safety and well-being of all workers.

5. Conclusions

AI was founded in 1955 as an academic discipline with the idea that a machine can be
endowed with tools that can be made precisely to simulate human intelligence. AI will
be ubiquitous in the workplace across all industries and can be used to detect, evaluate
and predict hazardous events and environments to improve the health and safety of the
workers. Application of the REDECA framework has highlighted AI/OSH strengths and
opportunities for advances in sensors, robotics, and machine learning algorithms to greatly
improve working conditions in the agriculture, oil and gas, mining, transportation and
construction sectors. As AI applications across other industries continues to grow, there is
a need for collaboration among OSH and industry partners to more systematically explore
the benefits and challenges of AI applications in OSH to protect worker health, safety
and well-being.
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Appendix A

Table A1. Reports of AI Applications in the Agricultural Industry.

Study
AI Applications

Tasks OSH Relevance or OutcomeSensor/
Robot

Algorithm/
Technology

[43] Robotics NA Introduction of robotics for
land preparation

Reducing the manual work, Prevention of
musculoskeletal disorders (MSDs) which
is caused over time by repetitive works

[55] Robotics NA Melon detection autonomous Reducing the manual work while
detecting the melon faster

[81] LiDAR sensors NA Tracking robot position from
the workers

Reducing possible injuries of the workers
due to the HRI

[87] Robot sprayer NA Semiautomatic teleoperation of
HRI system

Reducing possible injuries due to the HRI,
Reducing the manual work, Preventing
diseases due to the exposure to the toxic

pesticides

[90] HRI NA
Detection of fatigue, workload,
and awareness for the human

operator

Preventing possible injuries due to fatigue
and over workload

[91] Agricultural robot
sprayer NA Situation awareness for

operator and robot

Reducing possible injuries due to the HRI,
Reducing the manual work, Preventing
diseases due to the exposure to the toxic

pesticides

[94] NA DL, simulation

Simulate steering a tractor
with almost the same accuracy

as the manual steering by
analyzing EMG

Reducing manual work, preventing MSDs
due to the repetitive steering

[96–98] Triaxial sensors NA

Monitoring the level of
exposure of the workers to

vibration and repetitive
activities.

Prevention of MSDs which is caused over
time by repetitive works

Appendix B

Table A2. Reports of AI Applications in the Oil and Gas Industry.

Study
AI Applications

Tasks OSH Relevance or OutcomeSensor/
Robot Algorithm/Technology

[100] Temperature and gas
sensors

WSN technology using
At mega 2560 controller

Oil well monitoring
and control

Prevention of the workers from
exposure to high-pressure line and
equipment, extreme temperature

environment, hazardous chemical,
explosion, and fires

[101] NA ZigBee technology
Remote Monitoring
and Control of the

pipelines

Prevention of the workers from
exposure to hazardous chemical,

explosion, and fires
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Table A2. Cont.

Study
AI Applications

Tasks OSH Relevance or OutcomeSensor/
Robot Algorithm/Technology

[102] Gas safety system for
oil drilling sites WSN technology Monitoring the oil

drilling sites

Prevention of the workers from
exposure to ergonomic related injuries
such as lifting heavy items, bending,
working in awkward postures, and

repetitive tasks

[103]
Pressure, Temperature,

Acoustic, Vibration
sensors

Simulation-based on
MATLAB and C++

An efficient oil and gas
pipeline monitoring

systems

Prevention of the workers from
exposure to extreme temperature,

high-pressure line and equipment, and
ergonomic related injuries due to the

repetitive exposure to vibrations

[104] Flow sensors
WSN technology and

game theoretic
approach

Pipeline monitoring

Prevention of the workers from
exposure to high-pressure line and

equipment, hazardous chemical,
explosion and fires

[105] Pressure and
temperature sensors

Simulation-based
Microcontroller, Zigbee

Monitoring of oil and
gas pipelines

Prevention of the workers from
exposure to high-pressure line and

equipment, hazardous chemical,
extreme temperature environment,

explosion, and fires

[106] Pressure, Temperature,
sensors WSN technology Monitoring of oil and

gas pipelines

Prevention of the workers from
exposure to high-pressure line and

equipment, hazardous chemical,
extreme temperature environment,

explosion, and fires

[107] Pressure transducers SVM, KNN, GMM
algorithms

Leakage detection and
size estimation

Prevention of the workers from
exposure to high-pressure line and

equipment, hazardous chemical,
extreme temperature environment,

explosion, and fires

[108]

Ultrasonic transducers,
flow sensors,

Transit-Time Ultrasonic
Flow Meter(TTUF),
Doppler Ultrasonic
Flowmeter(DUF)

WSN technology Detection of leaking in
long pipelines

Prevention of the workers from
exposure to hazardous chemical,

explosion, and fires

[109] Pressure transducers SVM, KNN, and GMM
algorithms Leakage detection

Prevention of the workers from
exposure to high-pressure line and

equipment, hazardous chemical,
explosion, and fires

[110]

Magnetic
induction-based,

pressure and Acoustic
sensors

WSN technology Monitoring
underground pipeline

Prevention of the workers from
exposure to the high-pressure line and

equipment, and hearing injuries

[111] Pressure, Temperature,
Acoustic sensors WSN technology Monitoring

Underwater pipelines

Prevention of the workers from
exposure to extreme temperature,

high-pressure line and equipment, and
hearing injuries

[112] NA
graded network, GPRS,

Anko-TC series,
OMNet++

Remote monitoring
terrestrial petroleum

pipeline cathodic
protection system

Prevention of the workers from
exposure to hazardous chemical,

explosion, and fires
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Table A2. Cont.

Study
AI Applications

Tasks OSH Relevance or OutcomeSensor/
Robot Algorithm/Technology

[113] Acoustic sensor SVM, Wavelet
Transform technology

Hierarchical leak
detection and

localization method in
natural gas pipeline

monitoring

Prevention of the workers from hearing
injuries

[115]
Pressure, Temperature,

Acoustic, Vibration
sensors

WSN technology

Autonomously monitor
and detect any defects

in the different
downstream operations

Prevention of the workers from
exposure to extreme temperature,

high-pressure line and equipment, and
ergonomic related injuries due to the

repetitive exposure to vibrations

[116]
Sensor nodes on the
machine, Vibration,
and stator current

WSN technology
Autonomously monitor
and detect any defects

in the operations

Prevention of the workers from
ergonomic related injuries due to the

repetitive exposure to vibrations

[118] Propane sensors WSN technology,
Localization algorithms

A gas leak detection
and localization with a
detection rate of 91%

Prevention of the workers from
exposure to hazardous chemical,

explosion, and fires

[119]
Pressure, Temperature,

Acoustic flow rate
sensors

WSN technology

Using pipeline
monitoring system to
detect and localized

leakage and blockage
in oilfield pipelines

Prevention of the workers from
exposure to extreme temperature,

high-pressure line and equipment, and
hearing injuries

[120]
Gas, wind,

temperature, and
humidity sensors

WSN technology

features from
environmental sensors

such as wind speed
used to develop a

real-time and large area
wireless monitoring

system for gas leakage

Prevention of the workers from
exposure to high-pressure line and

equipment, hazardous chemical,
explosion and fires, extreme
temperature and humidity

environments

[120] NA IoT Data collection
Prevention of the workers from

exposure to extreme environments, fall
sites

[122]

Different sensors in
wearable watches,
smart helmets, and

smart glasses

IoT

Used by oil field
engineers in offshore

fields for real-time
assistance, safety, and
communication with
the control room for

navigation and
enhanced collaboration

Prevention of the workers from
exposure to extreme temperature,

high-pressure line, and equipment,
hazardous chemical, explosion and fires,

vehicle accidents, falls, working the
confined space, and ergonomic related

injuries such lifting heavy items,
bending, working in awkward postures

[123]

Sensor-based Pipeline
Autonomous

Monitoring and
Maintenance System

(SPAMMS)

WSN technology

Active and corrective
monitoring and

maintenance of the
pipelines

Preventing the workers from exposure
to hazardous chemical, explosion, and

fires

[124]
Pressure, temperature,

acoustic, vibration
sensors

Radio-frequency
identification (RFID

Detect anomalous
events such as pipeline

leakage detection

Prevention of the workers from
exposure to extreme temperature,

high-pressure line and equipment, and
ergonomic related injuries due to the

repetitive exposure to vibrations
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Table A2. Cont.

Study
AI Applications

Tasks OSH Relevance or OutcomeSensor/
Robot Algorithm/Technology

[125]
Autonomous Systems

Wireless Sensor
Networks

WSN technology

Digitization of oil
fieldsreal-time

optimization of drilling
operationsthe use of

nanotechnologyto aid
gauging, reservoir

modeling, and
diagnostics

Prevention of the workers from
exposure to extreme environments,
vehicle accidents, falls, working the

confined space, ergonomically related
injuries such lifting heavy items,

bending, working in awkward postures

[126] Smart robots
AVA classification as an

unsupervised ML
algorithm

Exploration of oil and
gas autonomously

Prevention of the workers from
exposure to extreme environments falls

[131] NA RF and Landsat 8 OLI
imagery algorithms Map land oil spills

Prevention of the workers from
exposure to hazardous chemical,

explosion, and fires

[132]
Pressure, Temperature,

Acoustic, Vibration
sensors

LS-SVM machine
learning algorithm,

acoustic wave method

Detect leak levels on a
gas pipeline

Prevention of the workers from
exposure to high-pressure line and
equipment, extreme temperature

environment, hazardous chemical,
explosion, and fires

[133] Autonomous robot NA Inspection of pipeline
and other equipment

Prevention of the workers from
exposure to extreme environments,
vehicle accidents, falls, working the
confined space, ergonomic related
injuries such as lifting heavy items,

bending, working in awkward postures

Appendix C

Table A3. Reports of AI Applications in the Mining Industry.

Study
AI Applications

Tasks OSH Relevance or OutcomeSensor/
Robot

Algorithm/
Technology

[137] NA Decision tree,
RF, NN

Predicting mining accident
and days away from work

Preventing from accidents in the
mining industry by predicting it

[139] GPS NA Monitoring locations and
movements

Preventing from fall injury by
measuring the gait stability, estimating
the fall risk, preventing from entering

the workers to the hazardous
environments by identifying the

location of a workers and warning

[139]

Motion and speed
sensors,

Communication
sensors

NA
Monitor the movement of the
workers in remote locations
and communicate with them

Preventing from a fall injury, ensuring
the safety of the workers by staying
connected and communicating with

them while they are in the mine

[143] Environmental sensors NA Collecting data from
surrounding of the workers

Preventing the workers from harmful
bacteria due to high level of humidity,

high temperature, hearing damage,
and toxic gases in the mine
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Table A3. Cont.

Study
AI Applications

Tasks OSH Relevance or OutcomeSensor/
Robot

Algorithm/
Technology

[144] Toxic gases sensors NA Monitoring the level of the
toxic gases

Protection of the workers from
exposure to the toxic and inflammable
gases and prevention of fire explosion

in the mine for their safety

[146] Acoustic sensors, and
wearable dust sensors NA

Monitoring the noise level and
monitoring the level of

exposure to crystalline silica

Preventing hearing damage and
hearing loss of the workers due to the

high level of noise in the mine and
prevention of respiratory diseases due

to the exposure to crystalline silica
over time

[147] IoT and smart robots NA
Monitoring the real-time

information of the mine and
mineworkers

Exploring inaccessible areas
underground which hazardous

situations occur with unpredictable
risks that are too severe for human

activity

[152] Smart Helmet Clip
wearable sensor NA

Monitoring the surrounding of
the workers to identify the
presence of the dangerous

gasses

Prevention of the exposure of the
workers from toxic and inflammable
gases, fire, and explosion in the mine

for the safety of the workers

[153] Angel helmet NA Monitoring location and
positioning of the workers

Preventing from fall injury by
measuring the gait stability, estimating
the fall risk, preventing from entering

the workers to the hazardous
environments by identifying the

location of a workers and warning

[154] Safety helmet with CH4
and CO gas sensors NA Monitoring the level of the

CH4 and CO gases

Protection of the workers from
exposure to the CH4 and CO which

are toxic and inflammable in the mine
for their safety

[155] Helmet-Cam NA Monitoring the concentration
of silica dust

Prevention of respiratory diseases due
to the exposure to crystalline silica

over time

[156]

Smart devices
combining a safety vest,
eyewear, helmet, and

watch

NA

Monitoring the health and
safety of workers in different

aspects and monitoring
activity of the workers to

prevent fall injury

Preventing the workers from head and
body injuries through wearing smart

eyewear, safety vest, and helmet,
preventing the workers from high
temperature, hearing damage, and
toxic gases in the mine through the

smartwatch, and preventing from fall
injury of the worker at the mine

[157] Smartwatch NA Monitoring the motion and
health of the workers

Preventing from fall injury by
measuring the gait stability, estimating
the fall risk, preventing from entering

the workers to the hazardous
environments by identifying the

location of a workers and warning

[158] Smartwatch NA
Distinguishing the normal

from the abnormal posture of
the workers

Prevention of the fall injures and
reducing risks for MSDs which is
caused over time by repeating the

abnormal posture of the workers in
the mine
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Appendix D

Table A4. Reports of AI Applications in the Transportation Industry.

Study
AI Application

TaskSensor/
Robot Algorithm/Technology

[173] non-invasive sensors
embedded in steering wheels SVM Fatigue detection through analyzing ECG

features

[174] PPG sensor on the steering
wheel SVM Fatigue detection through analyzing PPG

features

[175] Computer vision Sensors on
the forehead SVM Fatigue detection by analyzing the EoG features

[176] EEG sensors Bayesian neural network
Assessment of mental workload, detection of

fatigue and drowsiness by analyzing
EEG features

[179] sEMG Power in band Fatigue detection by analyzing the sEMG
features

[181] ECG, EEG, EoG Digital signal processing Fatigue detection by analyzing the ECG, EEG,
EoG features

[184] Computer vision Various ML models
Fatigue detection by analyzing the mouth, eye,

head movements, and facial expressions as
features

[186] Computer vision Various ML models Fatigue detection by analyzing the face tracking
method

[188] Computer vision SVM Fatigue detection by analyzing the mouth
movement features

[189] Computer vision DL Fatigue detection by analyzing the mouth
movement features

[199] Computer vision RF Detecting fatigue through analyzing steering
wheel angles

[200] Computer vision Binary decision classifier Detection of fatigue through analyzing the
steering wheel angles as features

[203] Driving simulator GMM and the Helly model
Fatigue detection by analyzing vehicle velocity,

brake pedal, accelerator pedal, and distance from
car in-front as features

[204] Multiple onboard sensors Linear discriminant Fatigue detection through analyzing both driver
characteristics and vehicle characteristics

[205] Computer vision, vehicle
movement sensors

two-stage data fusion
framework

Fatigue detection by analyzing driver and
vehicle characteristics

[206] Computer vision, vehicle
movement sensors ANN Fatigue detection by analyzing the physiological

and behavioral features of the driver

[207] Computer vision, vehicle
movement sensors M-SVM Fatigue detection by analyzing the combinations

of biological, and vehicular features

OSH relevance or outcome in all cases is ‘preventing accident due to fatigue’.
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Appendix E

Table A5. Reports of AI Applications in Wearable Devices in Construction.

Study
AI Application

Sensor/Robot Algorithm/Technology

[224] Accelerometer Comparator system
[226] Accelerometer High level fuzzy, Petri net, GMM
[228] Accelerometer SVM
[229] Accelerometer Decision tree
[231] Accelerometer, gyroscope k-NN
[232] Accelerometer, gyroscope, barometric altimeter Decision tree
[233] Accelerometer, barometric pressure, Gyroscope Decision tree
[234] Accelerometer, cardio tachometer Decision tree
[235] Electromyography Decision tree
[240] Smartphone Decision tree
[241] Vibration SVM
[242] Vibration, microphone Naïve Bayes
[243] Special Piezo pressure transducer Pattern matching
[244] Special Piezo pressure transducer Decision tree
[245] Special Piezo pressure transducer HMM

OSH relevance or outcome in all cases is ‘detection and prevention of fall’. Tasks in all cases are ‘Detecting fall
through ML algorithm by analyzing the data which collected through sensors’.
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