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Abstract

In studies of infant growth, an important research goal is to identify latent clusters of infants with
delayed motor development—a risk factor for adverse outcomes later in life. However, there are
numerous statistical challenges in modeling motor development: the data are typically skewed,
exhibit intermittent missingness, and are correlated across repeated measurements over time.
Using data from the Nurture study, a cohort of approximately 600 mother-infant pairs, we develop
a flexible Bayesian mixture model for the analysis of infant motor development. First, we model
developmental trajectories using matrix skew-normal distributions with cluster-specific parameters
to accommodate dependence and skewness in the data. Second, we model the cluster-membership
probabilities using a Pélya-Gamma data-augmentation scheme, which improves predictions of the
cluster-membership allocations. Lastly, we impute missing responses from conditional
multivariate skew-normal distributions. Bayesian inference is achieved through straightforward
Gibbs sampling. Through simulation studies, we show that the proposed model yields improved
inferences over models that ignore skewness or adopt conventional imputation methods. We
applied the model to the Nurture data and identified two distinct developmental clusters, as well as
detrimental effects of food insecurity on motor development. These findings can aid investigators
in targeting interventions during this critical early-life developmental window.
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INTRODUCTION

Infant motor development is an important predictor of health later in life. Early motor
development is associated with improved physical activity, cognitive function, and
educational attainment (Taanila et al., 2005; Aaltonen et al., 2015), while delayed
development is associated with increased sedentary time (Sanchez et al., 2017) and has been
linked to adult cognitive disorders such as schizophrenia (Filatova et al., 2017). Thus, there
is growing interest in identifying developmental patterns that may place infants at risk for
long-term adverse health outcomes. One approach to tackling this problem is to identify
underlying subgroups of infants with delayed motor development, and to isolate important
predictors of subgroup membership. Our goal, therefore, is to introduce a flexible latent
growth mixture model to detect high-risk developmental patterns and associated risk factors.

Our work is motivated by the Nurture study, a birth cohort of predominately black women
and their infants residing in the southeast United States (Benjamin Neelon et al., 2017). The
aim of the study was to examine how infant feeding, physical activity, motor development,
sleep, and stress contribute to infant weight gain. The second aim was to identify infant
subpopulations that exhibit unique motor development trajectories, and to examine cluster-
specific associations between household food security and motor development.

The Nurture data pose several statistical challenges. First, the repeated outcomes are
correlated across measurement occasions, and the pairwise correlations vary across
timepoints, suggesting the need for a flexible error term covariance structure. Second, the
development outcomes are skewed, with the direction of skewness varying over time. The
Nurture data also feature intermittent missingness. Thus, we require a framework capable of
addressing potentially nonignorable missing data. Finally, we seek to develop a model that
incorporates covariate information into both the multivariate regression model of infant
development trajectories and the clustering model.

To address these challenges, we propose a Bayesian multivariate mixture model for the
analysis of longitudinal skewed infant motor development data with intermittent missing
observations. Our approach builds on recent work on mixture models for skewed cross-
sectional data. Friihwirth-Schnatter and Pyne (2010) proposed a multivariate skew-normal
(MSN) model for high-dimensional flow cytometric data. However, their focus was on
marginal inference (ie, density estimation) rather than cluster-specific inferences, as is our
focus here. More recently, Lin et al. (2018) proposed a mixture of skew-¢factor analyzers for
settings in which cluster-specific inference is of primary interest (Lin et al., 2018). However,
like Frihwirth-Schnatter and Pyne (2010), their approach excluded covariates in the cluster-
membership model, a focal point in our study as we expect demographics to not only play a
key role in predicting cluster membership, but also help characterize developmental
trajectories within clusters. Additionally, their approach, while quite flexible, relied on a
computationally elaborate expectation-conditional maximization algorithm that does not
enjoy the inferential benefits of a Bayesian approach. Finally, the authors adopted a single-
imputation scheme for ignorable missing data that does not readily account for the
uncertainty in the imputation process without additional multiple imputation steps.
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Our proposed model extends these prior studies in a number of ways. First, our model
enables cluster-specific inferences for longitudinal growth trajectories, while
accommodating skewness patterns that may vary over time and across clusters. Second, our
model accommodates both time-dependent and time-invariant covariate designs. Third, we
estimate parameters in a Bayesian framework that introduces covariates into the cluster-
membership model using a novel application of Polya-Gamma data augmentation (Polson et
al., 2013). Fourth, we accommaodate intermittent missingness of longitudinal responses
under a “conditional ignorability” assumption, whereby the missing data mechanism is
assumed to be ignorable conditional on cluster assignment. Marginally, we allow for
dependence between the missing data mechanism and the missing responses, thus relaxing
standard missing at random (MAR) assumptions. We develop a Markov chain Monte Carlo
(MCMC) embedded imputation procedure in which missing observations are updated at
each MCMC iteration conditional on cluster allocation. Finally, we propose a Bayesian
modeling approach that makes use of convenient matrix skew-normal and skew-¢
representations. Our model is appropriate for settings where interest lies in identifying
clusters in longitudinal data with complex features, such as skewness, heavy tails, and
intermittent missing responses that are potentially missing not at random.

NURTURE STUDY

The Nurture study is a birth cohort of predominately black women and their infants residing
in the southeastern United States from 2013 and 2017 (Benjamin Neelon et al., 2017). The
study followed mothers and infants for 12 months after birth and collected data on infant
gross motor development and household food security, among other measures. Infant
development was assessed quarterly at 3, 6, 9, and 12 months of age using the Bayley
composite scale of motor development (Bayley, 2006), a standard measure of infant
development ranging from 40 to 160, with higher scores indicating more advanced
development compared to normally developing infants. Household food security was
assessed using the 18-item US Household Food Security Survey Module restricted to the 10
items related to household food security measured during pregnancy (USDA, 2019).
Following standard protocol, a final dichotomous food security exposure was defined as
“food insecure” households and “food secure” households. The Institutional Review Board
of Duke University Medical Center approved this study and protocol.

Of the 666 infants who were consented into the study, 106 were missing Bayley score
measurements at all timepoints, 68 infants were missing Bayley scores at three timepoints,
72 infants were missing Bayley scores at two timepoints, 123 were missing Bayley scores at
one time-point, and 297 were not missing any Bayley scores. We restricted our analytic
sample to the 560 remaining infants who had at least one nonmissing Bayley score over the
study period. Of the 560 x 4 = 2240 possible observations, 471 (21%) were missing, leaving
an available-case sample size of 1769. Sample characteristics for the 560 participants are
given in Web Table 1. In the sample, 68% of infants were black and 39% of households
identified as food insecure during pregnancy. The Bayley motor development scores ranged
from 49.0 to 145.0 across visits, with a mean of 102.4 and standard deviation (SD) of 13.5.
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Figure 1 presents trajectory plots of the motor development scores for each infant in the
available-case sample, with an overlay of the mean score at each visit. The plot indicates
substantial heterogeneity in the trajectories. To quantify the mean trend, we fit a repeated-
measures model of the form: Y ;= X8+ e, where X;includes an intercept, a linear time
trend and effects for gender, race, and baseline food security status; and e;is a multivariate
normal error term with unstructured covariance pattern. The restricted maximum likelihood
estimate of the linear trend coefficient was —1.16 (Cl = [-1.29, —1.03]), suggesting an
average decline in motor development over time in the Nurture cohort relative to normally
developing infants. However, because most of the literature on infant motor development has
focused on the average effect over time (Shoaibi et al., 2019), little is known about trends for
specific subgroups of interest—for example, among infants who may be at high risk for
delayed motor milestone achievement. Importantly, these subgroups may not be obvious
from marginal trajectory plots such as Figure 1 and may only become evident through
appropriate modeling of germane features of the data such as skewness, missingness, and
explanatory covariates, among other factors. In this paper, we present methods for
uncovering latent subgroups by modeling these important features of the data.

Figure 2 presents centered and scaled residual densities from the repeated-measures model
used in Figure 1. The residuals were subset by visit to yield visit-specific residual density
plots. As shown in Figure 2, the residuals are skewed at each visit, particularly at 3 and 6
months, with the direction of skewness varying over time. Shapiro-Wilk tests accounting for
multiple testing rejected the null hypothesis of hormality at 6 months, contravening standard
assumptions. While there is a modest indication of skewness in the available-case sample, it
is not clear how skewness patterns vary across latent subgroups of infants, or how missing
observations impact skewness. We seek to answer these questions in subsequent analyses.

Additionally, the motor development scores are correlated over time, with pairwise
correlations ranging in an unstructured pattern. As an illustration, we fit three repeated-
measures models of the form used in Figure 1, but with varying correlation structures for the
errors: AR1, compound symmetric and unstructured. The AIC values for these models were
27 599, 27 517, and 27 478, respectively, indicating best fit under the unstructured pattern
among the patterns considered. We present the estimated correlation matrix from this model
in Web Table 2. Finally, the Nurture data feature intermittent missing data, with
approximately one third of the sample missing observations at any given visit (Web Table 1).
While it may be reasonable to assume that the missing data are MAR, as we have no a priori
reason to believe that the occurrence of missing observations is directly related to missing
Bayley scores, we relax this assumption below by assuming ignorable missingness
conditional on latent motor development cluster assignment.

MODEL

In Section 3, we develop a model that accounts for the important features of the Nurture data
described in Section 2. Section 3.1 begins with developing a finite mixture model and
proposes a MSN regression framework for within-cluster inference. Section 3.2 proposes a
multinomial regression model for cluster probabilities that utilizes Pélya-Gamma data
augmentation for efficient Gibbs sampling. Section 3.3 discusses extensions to the
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multivariate skew-#(MST) setting, and Section 3.4 proposes a missing data imputation
scheme under the assumption of conditional ignorability.

Multivariate skew-normal mixture model

We propose a finite mixture model that accommodates relevant features of the data, namely
skewness, missing values, and dependence among the responses. While alternative mixture
models (eg, Dirichlet process mixtures) provide flexibility for marginal inferences and
density estimation, finite mixtures are appealing when the focus is on practical within-
cluster inferences. In such cases, the primary goal is to identify a small number of clinically
relevant clusters to help design targeted interventions to improve health outcomes. However,
to avoid misspecifying the number of finite mixtures, it is imperative to properly model the
within-cluster distributions by accounting for important features, such as skewness or heavy
tails. With this goal in mind, we present a repeated-measures regression model based on a
MSN distribution—and by extension, a MST distribution—in which the Bayley scores
across the Jmeasurement occasions represent correlated responses. Specifically, let y;= (1,

.., ¥i) Tbe a Jx 1 vector of standardized Bayley scores for subject /(7= 1, ..., 7). We
propose a mixture model of the form

K
o)=Y, maf (il 00, &)
k=1
where 6, is the set of parameters specific to cluster K (k=1, ..., K) and r4;is a subject-

specific mixing weight representing the probability that subject 7belongs to cluster k. For
now we assume that K'is fixed; we discuss model-selection strategies for choosing the
optimal value of K'in Section 3.5.2.

For posterior inference, we introduce a latent cluster indicator variable z;taking the value &
€ {1, ..., K} with probability ms; Given z;= k, we assume y;is distributed according to a +
dimensional MSN density (Azzalini and Valle, 1996)

Yi | (zi = k) ~ MSN(Egj» o, ), with density

£ | 2 = k) = 265312 G QL (y; = Ei) @

where ¢y} Cxi Qg denotes a Fdimensional normal density with mean {y;and covariance
matrix Qg; ®(') is the CDF of a scalar standard normal random variable; y;is a Jx 1 vector
of subject- and cluster-specific location parameters; ay is a Jx 1 vector of cluster-specific
parameters that control the skewness of each outcome in cluster &; and Qis a Jx Jcluster-
specific scale matrix that captures dependence among the Jresponses for subject /. When ay
=0, the MSN distribution reduces to the multivariate normal (MVN) distribution N
Qy), where yjrepresents a Jx 1 mean vector and Qg is a Jx Junstructured covariance
matrix.

We complete model (2) by incorporating covariates into {; We first discuss the general case
in which the model includes both time-varying and time-invariant predictors; later, we
present simplifications when only time-invariant covariates are included in the model. Here,
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we adopt a convenient conditional representation of the MSN density (Azzalini and Valle,
1996; Frihwirth-Schnatter and Pyne, 2010):

Vil (zi = k,t) = X;By + tiwyi + €, ®)

where X;is a Jx Jodesign matrix that includes potential time-dependent covariates; B =
Bravs - Brap -+ By ﬁkjp)ris a Jp x 1 vector of cluster- and outcome-specific
regression coefficients; £~ N[g c0)(0,1) is a subject-specific standard normal random variable
truncated below by zero; wx= (v, ... , wx) isa Jx 1 vector of cluster-specific
parameters that control skewness; and €j(z;= k) ~ N A0, Y ») is a Jx 1 vector of correlated
error terms. Thus, conditional on #;and z; = k; y;is distributed as NAX Bk + tiyw Y 4)-
Marginally (integrated over &), yi(z;= &) is distributed MSN {Cx; ax Q), where through
back-transformation the parameters (x;, Q4 and a, can be obtained as described in Web
Appendix B.

As detailed in Web Appendix B, conjugate full conditionals are available for all parameters
in model (3), leading to straightforward Gibbs sampling when both time-varying and time-
invariant covariates are included in the model. However, the Nurture analysis described in
Section 5 involves no time-varying covariates, only time-varying covariate effects. In such
cases, we can express the MSN density more compactly using a matrix skew-normal
(MatSN) representation. Structuring the data in this way greatly facilitates posterior
computation by permitting low-dimensional matrix updates for the regression coefficients.

For cluster &, let Y, be an 775 x Jmatrix with rows y! for /=1, ... , 11, Where 7 is the
number of subjects in cluster k. From Equation (2), it follows that Y 4 is distributed as

Yy | Bi, 0, Q@ ~ MatSN,,, 5 (X By, o, Iy, ), )

where 1, is the 7, x g identity matrix, and Xy and Byare, respectively, /7, x pand px J
matrices described in Web Appendix B.

If we set xp =1 for all / then the first row of By, (B, --- » Bra), represents time-specific
intercepts that capture the time trend for the reference covariate group in cluster & Adapting
Equation (7) from Chen and Gupta (2005), the density function for Y xis

SY g | By, o, Qp)

5
= 2%y s 1(Yis XiBi Ly, Q0P (Vi — XiBay ), ©

where ¢, x LY k& XiB i 1 Q4 Is the density function for a matrix normal (MatNorm)
random variable of dimension 77, x Jwith mean X B and scale matrices 1, and Qy, and
@, () denotes the CDF of an 7,-dimensional standard MVN random variable.

Further, let t,= (4, ..., t,,k)rdenote the n, x 1 vector of latent variables for cluster & By
extending Equation (3), it follows that the conditional distribution of Y 4 given tyis

Yy |ty ~ MatNorm,, 5 j(XiB, Ly Zp), ®)
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where Xj is an 77, x (p + 1) augmented design matrix formed by right column-binding t,to

X BE is a (p+ 1) x Jmatrix of regression coefficients formed by lower row-binding y =
(y1, ..., w) Tto By, and ¥ s the Jx Jcovariance of e;in Equation (3). Updating both wy
and By simultaneously using the augmented matrix B simplifies the MCMC sampler and is

equivalent to separate updates of yxand B when yand By are uncorrelated. This matrix
normal representation admits conditionally conjugate prior distributions, which in turn leads
to efficient Gibbs sampling for posterior inference. We formalize this in the following

proposition, which establishes the conditional conjugacy of B} and 4.

Proposition 1. LetBj; and  ,in Equation (6) have a joint matrix normal-inverse Wishart

(IW) prior, denoted MatNorm-IW (, . 1y x jBGk. Lok vok Vok), Of the form

7(BE,Zp) = 2B | Zp)n(Ek) = BE Z) | Bk Lok vok- Vor)
~ MatNorm(p +1)x J(Bak, Lok, Zi)IW (vok, Yok)»

where By is a(p+ 1) x J prior location matrix, Loy and\ oy are, respectively, (p+ 1) x (p+
1) and Jx J prior scale matrices, and vy denotes the prior degrees of freedom. Then, the full
conditional distribution of B is MatNorm, .. 1y x j(B%. L. Zx), where

BJ = LLou By + X/ TYp)
L= Lol +x¢ Txp~,

and’Xj; is the augmented covarfate matrix defined in Equation (6). Likewise, the full
conditional distribution of y i is IV vy, V), where

vg=v)+ng+p+1and
Vi = Vok + B% — By Lo Bf — By
+ (Y= XiBHT (Y - XiB)).

The proof is provided in\Web Appendix A.

Polya-Gamma multinomial regression for cluster probabilities

To accommodate heterogeneity in the cluster-membership probabilities, we model 7zx;as a
function of covariates using a multinomial logit model

ewlTﬁk
ﬂkiZPr(ZiZklwl‘)zﬁ,kz],...,K, )
Yho1e"i®h
where w;is an rx 1 vector of subject-level covariates, & is an rx 1 vector of cluster-specific
regression parameters. For identifiability, we choose category K'as reference and set 8, = 0.

To facilitate sampling, we adopt the efficient data-augmentation approach introduced by
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Polson et al. (2013), which expresses the inverse-logit function as a scale-normal mixture of
Pélya-Gamma densities. A random variable wis said to follow a P6lya-Gamma distribution
with parameters >0 and ¢ € R if

1 d 8s
b _
Jeolha =20 ; (5—1/2%+/ @4r?) ®

where g id Ga(b,1) for s=1, ... , 0o, Polson et al. (2013) establish that, for a logistic
regression model, the likelihood can be written as a scale-mixture of normal densities with
Pd6lya-Gamma precision terms w, resulting in closed-form MVN full conditional
distributions for logistic regression parameters. To extend the augmentation approach to the
multinomial setting, we first introduce the binary indicators Uy; = 1(z; = k), Where T(z, = k) is

the indicator function equal to 1 if (z;= &) and O otherwise. The conditional distribution of
8 given Uy = (Usy, ... , Uiy T and the remaining regression coefficients 8z, is

p®y | 2,85 £ k)

n
U .
= p@y | Ut 8y 2 )  pBp) [ | 71 = 7a)
i=1

1—-Ugi ©)]

where p(&y) is the prior distribution of & We rewrite rz4;as

T T
eWi Sk eWi Ok

mki =PrUgi=1 = = T T
Sh=1e% % BR o™i Ot o™i

where dividing throughout by X, ;¥  yields

ewszSk — Cki ellki

i = T = -,
1 +eWi Ok—cki 1+eki

. T .
with ¢; = log Y p + xe™i 5 and ny; = w! 8y — cx;. We Use cxjand 7, to reexpress Equation (9)

as
ki Uki | 1-Uyg;
@] 2.8y £ 1) o p(Br) H 7
1_1 1+¢ 1 + ki (10)
'lkl) ki
(e
= p(&)
zljl 1+ e'?kt

where the product term denotes the likelihood from a logistic regression model. We can
therefore apply the P6lya-Gamma sampler for logistic regression to update each &4 one at a

time based on the binary indicators Uy;. First, we define for k=1, ..., K| the nx 1 vector
Ugl-1/2 Ugn—1/2 T . . .
Uj = % + ¢kl k”w—k/ + ckn| - As shown in Web Appendix B, the conditional
n
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distribution of U} given w= (Wi, ... , Wk T is N,,(Ws,, O% 1), where Oy = Diag(wjq, ... ,
W) and W is an 77 x rdesign matrix with rows w! for /=1, ..., n. Thus, the full
conditional distribution of &4 is given by

By | 2,0k, 8y £ 1)

1 * 11
& p@expl - (UL - W) Oy (U - Wop) )

Assuming a N {(dox Soy) prior for & allows for Gibbs sampling for the clustering model as
detailed in Web Appendix B.

3.31 Extensions to multivariate skew-t distributions
To accommodate outliers and heavy tails, we extend Equation (1) by assuming, conditional
on z;= k, that y,;follows a MST distribution (Gupta, 2003):

vi | (z = k) "™ MST (&, oy, @, vp), with density

Jil zi = k) =211 ,(¥i5 Ckir @i i) Ty + 7

v+ J
o (y; — Ckily /m
1

where f(Y; Cki Qk Vi) denotes the CDF of a Jdimensional ¢distribution with location x;
covariance Q, and fixed degrees of freedom vy that may vary across clusters; 7, ;denotes
the distribution function of the scalar standard ¢distribution with v, + Jdegrees of freedom;

(12)

X

>

and 0y, = (y; - Qki)TQEI(yi - ¢&i)- As before, we adopt a conditional representation for y,to
facilitate Gibbs sampling (Frihwirth-Schnatter and Pyne, 2010). Specifically, we augment
the MSN conditional representation in Equation (3) by introducing subject-specific scale
terms, g, yielding an MST regression conditional on z; ¢; and djof the form:

i 1
= XiBr + =W + €,
Yi lﬁk /—di‘pk (—dl_ i (13)

where d;~ Gamma (% %) with £ being a prespecified known degrees of freedom parameter

common to all clusters, and #;and €;are defined as in Equation (3). In principle, £ may be
prespecified but vary across clusters (becoming &), though here we a constant value across
clusters for simplicity. For details on posterior inference, see Web Appendix B.

3.41 Cluster-specific imputation under conditional ignorability

To accommodate intermittent missing data, we propose a convenient MCMC-embedded
imputation algorithm in which we assume that the missingness mechanism is conditionally
ignorable given the cluster indicators z;, extending recent work on latent class pattern
mixture models for informative dropout (Roy, 2007). We use the term “MCMC-embedded”
to denote the fact that each missing value is imputed once per MCMC iteration using current
cluster-specific parameter values, allowing for convenient multiple imputation as part of the
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MCMC algorithm. Ensuring subjects have complete response vectors also enables us to
update the regression parameters in a compact manner, as described in Web Appendix B.
Here, z;functions as a discrete shared parameter that induces unobserved association
between the missingness process and the missing data. Suppose y,;has ¢; € (1, ... , J)
observed values, denoted y?%%, and J- g; intermittent missing values, denoted y?/**. Let R;=
(R, ..., R;) "be a Jx 1 vector of binary response indicators, such that Rjj=Lifinfant /has
a Bayley measurement at visit j. Under conditional ignorability, the conditional distribution
of Rjgiven (z; y?»s, y/iss) is

f(Rl I Zj = k, y?bs’ y;niss’ Xi’ Yk)

(14)
= f(R; | z; = k, ¥, X, 1),

where, in this context, X;is a Jx /m design matrix and yyis an /m x 1 vector of cluster-
specific parameters related to the missing data mechanism. As detailed in Step 4 of Web
Appendix B, z;serves as a latent shared parameter that induces marginal correlation between

Y55 and R;.

Under conditional ignorability, conditioning on z;ensures that R,;does not depend on the
missing observations y/*S. We can therefore impute y?*s$ from its conditional MVN

distribution given (z; ¢; y?%%) as described in Web Appendix B. While the complete data

vector y; = {y?%%, y55} follows a MVN distribution conditional on ¢, after marginalizing

1
over ¢, y;follows a joint MSN distribution. Thus, the proposed conditional imputation
procedure provides a convenient way of imputing missing MSN responses using samples
from more standard densities.

Finally, given z;= k, we independently model the Jresponse indicators for infant 7 as

Rij | (z; = k, ¥k, bi) ~ Bern(eju), j=1,....J
logit(¢hijx) = X/ 7k + by )
where xjis an /mx 1 vector of covariates, and yx is the /mx 1 vector of cluster-specific
regression parameters from Equation (14). We note that while the missing data regression
parameters may in principle be shared across clusters, cluster-specific parameters allow
investigators to identify different missing data patterns across clusters. Further, correctly
modeling cluster-specific missingness mechanisms is necessary to obtain appropriate
inference for cluster-specific parameters. Because the response indicators may be correlated
over time, we also include a subject-level random intercept by;conditionally distributed as
N(O, a,%) given z;= k. Although we assume conditional ignorability of R;and y?s given z
because the ¢;j, terms from model (15) appear in the full conditional update for z; (Web
Appendix B), R;and yS are marginally correlated, resulting in a marginal missing not at

random (MNAR) mechanism.
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Bayesian inference

3.5.11 Prior specification—We adopt a Bayesian approach and assign prior
distributions to all model parameters. For designs not involving time-dependent covariates,
we assign a joint MatNorm-IW,, . 1y x 7(Bok. Lok tok. Vok) t0 (B, ¥ &) as described in
Proposition 1. For time-varying designs, we assign independent MVN priors to B¢ and yy
from Equation (3); details are provided in Step 5(b) of Web Appendix B. For the
multinomial logit model, the regression parameters &= (841, ... , 84) | are assigned a
NAdox So prior for k=1, ..., K- 1, which is conditionally conjugate under the Pélya-
Gamma sampling scheme described in Section 3.2. Finally, from Equation (15), we assume
a N (9ox Gow prior for yxand an inverse-gamma IG(Ay4 Aog) prior for a,%, where Ay is a

scale parameter. In general, hyperparameters can vary across clusters, though they may be
shared across clusters in practice. For the skew-¢model, we assume d;~ Gamma (%, %),

where £is a prespecified value.

3.5.21 Posterior computation, assessment of MCMC convergence, label
switching, and model selection—The above prior specification induces closed-form
full conditionals for all model parameters, which can be efficiently updated as part of the
Gibbs sampler detailed in Web Appendix B. We monitor MCMC convergence through
standard diagnostics, such as trace plots and effective sample sizes. To address label
switching, a common issue for Bayesian mixture models, we implemented the iterative
Equivalence Classes Representatives (ECR) relabeling algorithm included in the
label.switching package in R (Papastamoulis, 2016). In our simulation studies and
application, we observed immediate convergence of the ECR algorithm, indicating no
evidence of label switching in our analyses. Because our primary objective is to identify a
small number of clinically meaningful motor development clusters, we adopt the widely
applicable information criterion (WAIC) to select the number of clusters K (Watanabe,
2010). In Section 4.3, we demonstrate that this measure accurately recovers the true number
of clusters under realistic parameter settings.

SIMULATION STUDIES

Simulation to compare the MSN model to the MVN model

Our first simulation compared MSN and MVN mixture models to investigate whether
ignoring skewness leads to poor inferences in a setting resembling the Nurture study. To
emulate the Nurture study, we simulated /7= 1000 subjects from the following model:

3
o) =) maf il o), (16)
k=1

where y;= (Va, ..., ¥in) | to conform to the J= 4 measurement occasions in the Nurture
study; 6 is the set of parameters specific to cluster & (k= 1, 2, 3), and y 16~ MSN4({x;
a Q0; Cui= (Cunty - Chin) T, Coen = B + BrppXi and x;is a N(0,1) covariate whose effect
varies across the Jmeasurement occasions. We modeled the cluster probabilities in Equation
(7) as a function of an intercept and one baseline covariate, wy, implying that 7= 2. We did
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not introduce missing data into this simulation, as we address missing data in the second
simulation study. As a result, the total number of complete measurements was N=nx J=
4000. The generated data included /m = 318 infants in cluster 1, /7, = 288 in cluster 2, and
=394 in cluster 3.

Because the model included no time-varying covariates—only time-varying effects—we
used the matrix normal formulation given in Proposition 1, yieldinga (p+ 1) x J=3 x 4
matrix Bj. We chose the matrix normal hyperparameters described in Section 3.5.1 to be

homogeneous across the three clusters by setting, for k=1, 2, 3, By, = 03 x4, Lox= I3, Vox
= ly, and g = J+ 2 = 6, which gives E(} 4) = 1. Similarly, for the clustering model, we set
do1 = dg2 = (0, 0)"and Sg1 = Sp = I, noting that & = 3 is the reference cluster. To
investigate the effect of ignoring skewness, we allowed the vector of skewness parameters,
ay, to vary across clusters; for cluster 3, we assumed no skewness (a3 = 0), implying MVN
data for this cluster. We then fit both MSN and MVN mixture models to data generated from
model (16). We ran the MCMC for 10 000 iterations with a burn-in of 1000. MCMC
diagnostics indicated rapid convergence and excellent mixing (Web Figure 1).

The WAIC values for the MSN and MVN mixture models were 12 112 and 17 499,
respectively, indicating better fit for the MSN model, as expected. Table 1 presents posterior
mean estimates and 95% credible intervals (Crls) for cluster 1 from the MSN and MVN
models. Web Table 3 presents the results for the other two clusters. As expected, the MSN
model provided accurate estimates throughout, whereas the MVVN model consistently
produced incorrect estimates with poor coverage when data were skewed, as in clusters 1
and 2. In particular, ignoring skewness inflated the variance estimates under the MVVN model
as a way to compensate for the skewness in the data. However, when data were not skewed,
as in cluster 3, both models performed similarly (Web Table 3). Thus, the MSN model can
be reliably used in place of the MVVN model even when data are not overtly skewed.

Simulation to compare imputation methods

Next, we evaluated the effect of failing to account for the missing data model in Equation
(15). To do so, we generated /7= 1000 observations from a 3-cluster (K= 3) MSN mixture
model similar in design to Simulation 1. We then removed observations intermittently across
the four measurement occasions according to model (15), which included two continuous
covariates and an intercept, implying /m= 3 from Equation (15). The model also included a

random intercept with a common variance of o,% = 1 across clusters. After removing missing

data, the number of available measurements in each cluster was Ny = 1463, A, =819, and
N3 = 1209. We ran each model for 10 000 iterations with a burn-in of 1000. MCMC
diagnostics showed rapid convergence as shown in Web Figure 2.

We then fit two MSN mixture models to the simulated data, each with different missing data
assumptions. The first method assumed conditional ignorability, as described in Section 3.4,
where the missing responses and missing data pattern were assumed to be independent
conditional on z; and a model of the missing data pattern was fit as in Equation (15). The
second method assumed marginal ignorability, where the missing responses and missing
data pattern were assumed to be independent marginally (ie, not conditional on z). Thus, the
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marginal ignorability approach did not adopt a model of the missing data mechanism as in
Equation (15). Both imputation methods utilized MCMC-embedded imputation, where
missing values were updated from cluster-specific multivariate normal conditional
distributions at each MCMC iteration using the current values of parameters in the sampler.

As shown in Table 2, the conditional ignorability imputation method more accurately
recovered true parameter values when compared to marginal ignorability. This result
suggests that even when all other components of the model are correctly specified, making
the strict marginal ignorability assumption (and thus ignoring model (15) altogether) can
lead to biased estimates.

Simulation to validate choice of K

We conducted a final simulation to validate the use of WAIC for determining the number of
clusters, K. We generated four MSN data sets; one data set for each value of K= {2, 3, 4, 5}.
For each simulated data set, we fit the proposed Bayesian MSN model with K= {2, 3, 4, 5}
and computed WAIC in each case. For each scenario, we ran the MCMC algorithms for 10
000 iterations with a burn-in of 1000. MCMC diagnostics indicated rapid convergence for all
models (Web Figure 3). As shown in Web Table 5, the WAIC measure recovered the true
value of K'in all cases. For some simulations (eg, true K= 2), we were unable to fit the MSN
model when the fitted K'was large due to the occurrence of vacant clusters during MCMC
sampling. We have found that this generally occurs when the data do not support large
values of K.

APPLICATION TO NURTURE STUDY

We applied our proposed model to the Nurture data by fitting an MSN mixture model that
included Bayley scores centered and scaled by timepoint as the response, indicators for the
four study visits corresponding to timepoint-specific intercepts, and binary food security
status as the exposure of interest. The model also included time-invariant birth weight for
gestational age z-score, number of children in the household, and an indicator for
breastfeeding, as these likely impact infant development within each cluster. We allowed the
covariate effects to vary over time, resulting in a parameter dimension of p= 20 for this
component of the model (Table 3). For the multinomial logit cluster-membership model, we
included an intercept, birth weight for gestational age z-score, infant race, and infant gender
as covariates, as these variables are believed to affect the placement of infants into latent
development clusters. The 471 missing measurements were imputed using the MCMC-
embedded MNAR imputation method described in Section 3.4. The missing data model (15)
included a fixed intercept, birth weight for gestational age zscore, infant gender, infant race,
and a random intercept. To select the number of clusters, we fit several MSN models with
varying specifications for Kand used WAIC to choose the best fitting model. The WAIC
values were 9141, 10 088, 11 203, and 11 410 for K= 2, 3, 4, 5, respectively. We also fit 3-
df MST models with two to five clusters; these yielded WAIC values of 13 228, 13 934, 14
002, and 14 356 respectively, suggesting that the 2-cluster MSN model provided best fit
among all models considered. We ran each model for 10 000 MCMC iterations, with a burn-
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in of 1000. We observed fast MCMC convergence in all cases with no evidence of label
switching. MCMC diagnostics for the 2-cluster MSN model are presented in Web Figure 4.

Table 3 presents posterior means and 95% Crls for the 2-cluster model. In cluster 1, we
observed a significant detrimental effect of food insecurity at each timepoint. However, in
cluster 2, we only observed a significant detrimental effect of food insecurity at months 9
and 12, though the effect sizes were more modest than in cluster 1. These trends are also
displayed in Figure 3. We observed a significant positive effect of breastfeeding in cluster 1,
but not in cluster 2, suggesting that breastfeeding may especially benefit infants exhibiting
delayed motor development. We did not observe a significant effect of either birth weight for
gestational age zscore or number of children in the household. From the Pélya-Gamma
multinomial logit component, we found that female infants were more likely to belong to
cluster 1. From the missing data model, the intercepts suggest that more missing
observations occur for infants in cluster 1 compared to those in cluster 2 for the reference
covariate group. Moreover, female infants in cluster 1 had significantly higher log-odds of
missing a measurement compared to male infants in cluster 1, while black infants in cluster
2 had significantly lower log-odds of missing a measurement compared to other infants.

As shown in Table 3, the skewness estimates for cluster 1 indicate little evidence of
skewness, as all associated 95% Crls contained zero. However, in cluster 2, the predicted
Bayley scores were negatively skewed at 6 months, in agreement with the preliminary
analysis presented in Section 2. This suggests that the skewness observed in the data was
driven primarily by the healthy-developing class, highlighting the model’s ability to discern
different skewness patterns across clusters. Further, the clusters identified by the model were
distinct from one another, as 510 (91%) of infants remained in the same cluster across the
postburn-in MCMC iterations. Finally, the estimated covariance and correlation matrices
(Web Table 6 and 7, respectively), indicated an unstructured pattern for both clusters, with
greater variability in cluster 2.

DISCUSSION

We have developed Bayesian MSN and MST for skewed longitudinal data that feature
intermittent missingness. The model has many appealing features: it accounts for skewness
in the infant development scores, associations among repeated measures, and allows for
efficient inference of the cluster assignment probabilities. The model can be applied to
skewed as well as symmetric data, since the symmetric version is contained as a special
case. Additionally, the model handles missing data under a conditional ignorability
assumption that relaxes standard MAR assumptions.

Through simulations, we showed that ignoring skewness in even moderately skewed data
results in incorrect inference, whereas the MSN mixture model recovers the true parameter
values when the data are skewed. Furthermore, we showed that failing to account for
conditional ignorability results in biased estimates when the response mechanism depends
on cluster assignment. Finally, we conducted simulations to validate the use of WAIC,
supporting the use of this measure in practice.
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We applied our method to the Nurture data to assess the effect of household food security
during pregnancy on motor development scores and to investigate possible clustering of
infant development trajectories. We identified two distinct clusters of infants: one with
delayed motor development and significantly impaired by food insecurity, and a second that
exhibited healthy motor development and was only modestly affected by food insecurity
toward the end of infancy. This suggests that household food insecurity may compound the
negative impacts of delayed motor development. On the other hand, we found that
breastfeeding improved motor development among infants with delayed development. These
results add to the growing body of literature on the effect of household food security on
infant outcomes.

To extend this work, the model could accommodate dropout in addition to intermittent
missingness using a cluster-specific discrete time-to-event model. Additionally, cluster-
specific shared parameters could link the outcome and missing data models, relaxing the
conditional ignorability assumption. More broadly, the method should prove useful in a
range of settings involving multivariate skew data with informative missing responses. From
a practical perspective, investigators looking to model clustered repeated-measures data can
use the diagnostics described in Section 2 to determine whether the MSN model is
appropriate. Given that the computational demand of the MSN and MST models is
negligible compared to the MVVN model, we recommend fitting the MSN or MST model first
and using the estimated skewness parameters to determine whether simplifications to the
MVN model can be made.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scaled residual plots at each visit based on a repeated-measures linear regression model with
Bayley score as the outcome Note. Sample skewness statistics and A-values from Shapiro-

measurements for /7= 560 infants
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FIGURE 3.
Predicted motor development trajectories for each cluster and food security group in the

application to the Nurture data NMote. The model included timepoint-specific intercepts, time-
invariant birth weight for gestational age z-score, the number of children in the household,
and an indicator for breastfeeding. Estimated trajectories are given for a typical infant with a
birth weight for gestational age zscore of 0, who was not breastfed, and who had 2.5 other
children in the household. Solid lines indicate cluster 1 and dashed lines indicate cluster 2.
Light shading represents food-secure infants, while dark shading represents food-insecure
infants
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