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Abstract

In studies of infant growth, an important research goal is to identify latent clusters of infants with 

delayed motor development—a risk factor for adverse outcomes later in life. However, there are 

numerous statistical challenges in modeling motor development: the data are typically skewed, 

exhibit intermittent missingness, and are correlated across repeated measurements over time. 

Using data from the Nurture study, a cohort of approximately 600 mother-infant pairs, we develop 

a flexible Bayesian mixture model for the analysis of infant motor development. First, we model 

developmental trajectories using matrix skew-normal distributions with cluster-specific parameters 

to accommodate dependence and skewness in the data. Second, we model the cluster-membership 

probabilities using a Pólya-Gamma data-augmentation scheme, which improves predictions of the 

cluster-membership allocations. Lastly, we impute missing responses from conditional 

multivariate skew-normal distributions. Bayesian inference is achieved through straightforward 

Gibbs sampling. Through simulation studies, we show that the proposed model yields improved 

inferences over models that ignore skewness or adopt conventional imputation methods. We 

applied the model to the Nurture data and identified two distinct developmental clusters, as well as 

detrimental effects of food insecurity on motor development. These findings can aid investigators 

in targeting interventions during this critical early-life developmental window.
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1 ∣ INTRODUCTION

Infant motor development is an important predictor of health later in life. Early motor 

development is associated with improved physical activity, cognitive function, and 

educational attainment (Taanila et al., 2005; Aaltonen et al., 2015), while delayed 

development is associated with increased sedentary time (Sánchez et al., 2017) and has been 

linked to adult cognitive disorders such as schizophrenia (Filatova et al., 2017). Thus, there 

is growing interest in identifying developmental patterns that may place infants at risk for 

long-term adverse health outcomes. One approach to tackling this problem is to identify 

underlying subgroups of infants with delayed motor development, and to isolate important 

predictors of subgroup membership. Our goal, therefore, is to introduce a flexible latent 

growth mixture model to detect high-risk developmental patterns and associated risk factors.

Our work is motivated by the Nurture study, a birth cohort of predominately black women 

and their infants residing in the southeast United States (Benjamin Neelon et al., 2017). The 

aim of the study was to examine how infant feeding, physical activity, motor development, 

sleep, and stress contribute to infant weight gain. The second aim was to identify infant 

subpopulations that exhibit unique motor development trajectories, and to examine cluster-

specific associations between household food security and motor development.

The Nurture data pose several statistical challenges. First, the repeated outcomes are 

correlated across measurement occasions, and the pairwise correlations vary across 

timepoints, suggesting the need for a flexible error term covariance structure. Second, the 

development outcomes are skewed, with the direction of skewness varying over time. The 

Nurture data also feature intermittent missingness. Thus, we require a framework capable of 

addressing potentially nonignorable missing data. Finally, we seek to develop a model that 

incorporates covariate information into both the multivariate regression model of infant 

development trajectories and the clustering model.

To address these challenges, we propose a Bayesian multivariate mixture model for the 

analysis of longitudinal skewed infant motor development data with intermittent missing 

observations. Our approach builds on recent work on mixture models for skewed cross-

sectional data. Frühwirth-Schnatter and Pyne (2010) proposed a multivariate skew-normal 

(MSN) model for high-dimensional flow cytometric data. However, their focus was on 

marginal inference (ie, density estimation) rather than cluster-specific inferences, as is our 

focus here. More recently, Lin et al. (2018) proposed a mixture of skew-t factor analyzers for 

settings in which cluster-specific inference is of primary interest (Lin et al., 2018). However, 

like Frühwirth-Schnatter and Pyne (2010), their approach excluded covariates in the cluster-

membership model, a focal point in our study as we expect demographics to not only play a 

key role in predicting cluster membership, but also help characterize developmental 

trajectories within clusters. Additionally, their approach, while quite flexible, relied on a 

computationally elaborate expectation-conditional maximization algorithm that does not 

enjoy the inferential benefits of a Bayesian approach. Finally, the authors adopted a single-

imputation scheme for ignorable missing data that does not readily account for the 

uncertainty in the imputation process without additional multiple imputation steps.
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Our proposed model extends these prior studies in a number of ways. First, our model 

enables cluster-specific inferences for longitudinal growth trajectories, while 

accommodating skewness patterns that may vary over time and across clusters. Second, our 

model accommodates both time-dependent and time-invariant covariate designs. Third, we 

estimate parameters in a Bayesian framework that introduces covariates into the cluster-

membership model using a novel application of Pólya-Gamma data augmentation (Polson et 

al., 2013). Fourth, we accommodate intermittent missingness of longitudinal responses 

under a “conditional ignorability” assumption, whereby the missing data mechanism is 

assumed to be ignorable conditional on cluster assignment. Marginally, we allow for 

dependence between the missing data mechanism and the missing responses, thus relaxing 

standard missing at random (MAR) assumptions. We develop a Markov chain Monte Carlo 

(MCMC) embedded imputation procedure in which missing observations are updated at 

each MCMC iteration conditional on cluster allocation. Finally, we propose a Bayesian 

modeling approach that makes use of convenient matrix skew-normal and skew-t 
representations. Our model is appropriate for settings where interest lies in identifying 

clusters in longitudinal data with complex features, such as skewness, heavy tails, and 

intermittent missing responses that are potentially missing not at random.

2 ∣ NURTURE STUDY

The Nurture study is a birth cohort of predominately black women and their infants residing 

in the southeastern United States from 2013 and 2017 (Benjamin Neelon et al., 2017). The 

study followed mothers and infants for 12 months after birth and collected data on infant 

gross motor development and household food security, among other measures. Infant 

development was assessed quarterly at 3, 6, 9, and 12 months of age using the Bayley 

composite scale of motor development (Bayley, 2006), a standard measure of infant 

development ranging from 40 to 160, with higher scores indicating more advanced 

development compared to normally developing infants. Household food security was 

assessed using the 18-item US Household Food Security Survey Module restricted to the 10 

items related to household food security measured during pregnancy (USDA, 2019). 

Following standard protocol, a final dichotomous food security exposure was defined as 

“food insecure” households and “food secure” households. The Institutional Review Board 

of Duke University Medical Center approved this study and protocol.

Of the 666 infants who were consented into the study, 106 were missing Bayley score 

measurements at all timepoints, 68 infants were missing Bayley scores at three timepoints, 

72 infants were missing Bayley scores at two timepoints, 123 were missing Bayley scores at 

one time-point, and 297 were not missing any Bayley scores. We restricted our analytic 

sample to the 560 remaining infants who had at least one nonmissing Bayley score over the 

study period. Of the 560 × 4 = 2240 possible observations, 471 (21%) were missing, leaving 

an available-case sample size of 1769. Sample characteristics for the 560 participants are 

given in Web Table 1. In the sample, 68% of infants were black and 39% of households 

identified as food insecure during pregnancy. The Bayley motor development scores ranged 

from 49.0 to 145.0 across visits, with a mean of 102.4 and standard deviation (SD) of 13.5.
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Figure 1 presents trajectory plots of the motor development scores for each infant in the 

available-case sample, with an overlay of the mean score at each visit. The plot indicates 

substantial heterogeneity in the trajectories. To quantify the mean trend, we fit a repeated-

measures model of the form: Yi = Xiβ + ei, where Xi includes an intercept, a linear time 

trend and effects for gender, race, and baseline food security status; and ei is a multivariate 

normal error term with unstructured covariance pattern. The restricted maximum likelihood 

estimate of the linear trend coefficient was −1.16 (CI = [−1.29, −1.03]), suggesting an 

average decline in motor development over time in the Nurture cohort relative to normally 

developing infants. However, because most of the literature on infant motor development has 

focused on the average effect over time (Shoaibi et al., 2019), little is known about trends for 

specific subgroups of interest—for example, among infants who may be at high risk for 

delayed motor milestone achievement. Importantly, these subgroups may not be obvious 

from marginal trajectory plots such as Figure 1 and may only become evident through 

appropriate modeling of germane features of the data such as skewness, missingness, and 

explanatory covariates, among other factors. In this paper, we present methods for 

uncovering latent subgroups by modeling these important features of the data.

Figure 2 presents centered and scaled residual densities from the repeated-measures model 

used in Figure 1. The residuals were subset by visit to yield visit-specific residual density 

plots. As shown in Figure 2, the residuals are skewed at each visit, particularly at 3 and 6 

months, with the direction of skewness varying over time. Shapiro-Wilk tests accounting for 

multiple testing rejected the null hypothesis of normality at 6 months, contravening standard 

assumptions. While there is a modest indication of skewness in the available-case sample, it 

is not clear how skewness patterns vary across latent subgroups of infants, or how missing 

observations impact skewness. We seek to answer these questions in subsequent analyses.

Additionally, the motor development scores are correlated over time, with pairwise 

correlations ranging in an unstructured pattern. As an illustration, we fit three repeated-

measures models of the form used in Figure 1, but with varying correlation structures for the 

errors: AR1, compound symmetric and unstructured. The AIC values for these models were 

27 599, 27 517, and 27 478, respectively, indicating best fit under the unstructured pattern 

among the patterns considered. We present the estimated correlation matrix from this model 

in Web Table 2. Finally, the Nurture data feature intermittent missing data, with 

approximately one third of the sample missing observations at any given visit (Web Table 1). 

While it may be reasonable to assume that the missing data are MAR, as we have no a priori 

reason to believe that the occurrence of missing observations is directly related to missing 

Bayley scores, we relax this assumption below by assuming ignorable missingness 

conditional on latent motor development cluster assignment.

3 ∣ MODEL

In Section 3, we develop a model that accounts for the important features of the Nurture data 

described in Section 2. Section 3.1 begins with developing a finite mixture model and 

proposes a MSN regression framework for within-cluster inference. Section 3.2 proposes a 

multinomial regression model for cluster probabilities that utilizes Pólya-Gamma data 

augmentation for efficient Gibbs sampling. Section 3.3 discusses extensions to the 
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multivariate skew-t (MST) setting, and Section 3.4 proposes a missing data imputation 

scheme under the assumption of conditional ignorability.

3.1 ∣ Multivariate skew-normal mixture model

We propose a finite mixture model that accommodates relevant features of the data, namely 

skewness, missing values, and dependence among the responses. While alternative mixture 

models (eg, Dirichlet process mixtures) provide flexibility for marginal inferences and 

density estimation, finite mixtures are appealing when the focus is on practical within-

cluster inferences. In such cases, the primary goal is to identify a small number of clinically 

relevant clusters to help design targeted interventions to improve health outcomes. However, 

to avoid misspecifying the number of finite mixtures, it is imperative to properly model the 

within-cluster distributions by accounting for important features, such as skewness or heavy 

tails. With this goal in mind, we present a repeated-measures regression model based on a 

MSN distribution—and by extension, a MST distribution—in which the Bayley scores 

across the J measurement occasions represent correlated responses. Specifically, let yi = (yi1, 

… , yiJ)T be a J × 1 vector of standardized Bayley scores for subject i (i = 1, … , n). We 

propose a mixture model of the form

f(yi) = ∑
k = 1

K
πkif(yi ∣ θk), (1)

where θk is the set of parameters specific to cluster k (k = 1, … , K) and πki is a subject-

specific mixing weight representing the probability that subject i belongs to cluster k. For 

now we assume that K is fixed; we discuss model-selection strategies for choosing the 

optimal value of K in Section 3.5.2.

For posterior inference, we introduce a latent cluster indicator variable zi taking the value k 
∈ {1, … , K} with probability πki. Given zi = k, we assume yi is distributed according to a J-

dimensional MSN density (Azzalini and Valle, 1996)

yi ∣ (zi = k) ∼ MSNJ(ζki, αk, Ωk), with density
f(yi ∣ zi = k) = 2ϕJ(yi; ζki, Ωk)Φ{αk

T(yi − ζki)}, (2)

where ϕJ(yi; ζki, Ωk) denotes a J-dimensional normal density with mean ζki and covariance 

matrix Ωk; Φ(·) is the CDF of a scalar standard normal random variable; ζki is a J × 1 vector 

of subject- and cluster-specific location parameters; αk is a J × 1 vector of cluster-specific 

parameters that control the skewness of each outcome in cluster k; and Ωk is a J × J cluster-

specific scale matrix that captures dependence among the J responses for subject i. When αk 

= 0, the MSN distribution reduces to the multivariate normal (MVN) distribution NJ(ζki, 

Ωk), where ζki represents a J × 1 mean vector and Ωk is a J × J unstructured covariance 

matrix.

We complete model (2) by incorporating covariates into ζki. We first discuss the general case 

in which the model includes both time-varying and time-invariant predictors; later, we 

present simplifications when only time-invariant covariates are included in the model. Here, 
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we adopt a convenient conditional representation of the MSN density (Azzalini and Valle, 

1996; Frühwirth-Schnatter and Pyne, 2010):

yi ∣ (zi = k, ti) = Xiβk + tiψk + ϵi, (3)

where Xi is a J × Jp design matrix that includes potential time-dependent covariates; βk = 

(βk11, … , βk1p, … , βkJ1, … , βkJp)T is a Jp × 1 vector of cluster- and outcome-specific 

regression coefficients; ti ~ N[0,∞)(0,1) is a subject-specific standard normal random variable 

truncated below by zero; ψk = (ψk1, … , ψkJ)T is a J × 1 vector of cluster-specific 

parameters that control skewness; and ϵi∣(zi = k) ~ NJ(0, ∑k) is a J × 1 vector of correlated 

error terms. Thus, conditional on ti and zi = k, yi is distributed as NJ(Xiβk + tiψk, ∑k). 

Marginally (integrated over ti), yi∣(zi = k) is distributed MSNJ(ζki, αk, Ωk), where through 

back-transformation the parameters ζki, Ωk, and αk can be obtained as described in Web 

Appendix B.

As detailed in Web Appendix B, conjugate full conditionals are available for all parameters 

in model (3), leading to straightforward Gibbs sampling when both time-varying and time-

invariant covariates are included in the model. However, the Nurture analysis described in 

Section 5 involves no time-varying covariates, only time-varying covariate effects. In such 

cases, we can express the MSN density more compactly using a matrix skew-normal 

(MatSN) representation. Structuring the data in this way greatly facilitates posterior 

computation by permitting low-dimensional matrix updates for the regression coefficients. 

For cluster k, let Yk be an nk × J matrix with rows yiT  for i = 1, … , nk, where nk is the 

number of subjects in cluster k. From Equation (2), it follows that Yk is distributed as

Yk ∣ Bk, αk, Ωk ∼ MatSNnk × J(XkBk, αk, Ink, Ωk), (4)

where Ink is the nk × nk identity matrix, and Xk and Bk are, respectively, nk × p and p × J 
matrices described in Web Appendix B.

If we set xi1 = 1 for all i, then the first row of Bk, (βk11, … , βk1J), represents time-specific 

intercepts that capture the time trend for the reference covariate group in cluster k. Adapting 

Equation (7) from Chen and Gupta (2005), the density function for Yk is

f(Yk ∣ Bk, αk, Ωk)
= 2nkϕnk × J(Yk; XkBk, Ink, Ωk)Φnk{(Yk − XkBk)αk}, (5)

where ϕnk×J(Yk; XkBk, Ink, Ωk) is the density function for a matrix normal (MatNorm) 

random variable of dimension nk × J with mean XkBk and scale matrices Ink and Ωk, and 

Φnk (·) denotes the CDF of an nk-dimensional standard MVN random variable.

Further, let tk = (t1, … , tnk)T denote the nk × 1 vector of latent variables for cluster k. By 

extending Equation (3), it follows that the conditional distribution of Yk given tk is

Yk ∣ tk ∼ MatNormnk × J(Xk
∗Bk

∗, Ink, Σk), (6)
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where Xk
∗ is an nk × (p + 1) augmented design matrix formed by right column-binding tk to 

Xk, Bk
∗ is a (p + 1) × J matrix of regression coefficients formed by lower row-binding ψk = 

(ψ1, … , ψJ)T to Bk, and ∑k is the J × J covariance of ϵi in Equation (3). Updating both ψk 

and Bk simultaneously using the augmented matrix Bk
∗ simplifies the MCMC sampler and is 

equivalent to separate updates of ψk and Bk when ψk and Bk are uncorrelated. This matrix 

normal representation admits conditionally conjugate prior distributions, which in turn leads 

to efficient Gibbs sampling for posterior inference. We formalize this in the following 

proposition, which establishes the conditional conjugacy of Bk
∗ and ∑k.

Proposition 1. Let Bk
∗ and ∑k in Equation (6) have a joint matrix normal-inverse Wishart 

(IW) prior, denoted MatNorm‐IW (p + 1) × J(B0k
∗ , L0k, v0k, V0k), of the form

π(Bk
∗, Σk) = π(Bk

∗ ∣ Σk)π(Σk) (Bk
∗, Σk) ∣ (B0k

∗ , L0k, v0k, V0k)
∼ MatNorm(p + 1) × J(B0k

∗ , L0k, Σk)IW (v0k, V0k),

where B0k
∗  is a (p + 1) × J prior location matrix, L0k and V0k are, respectively, (p + 1) × (p + 

1) and J × J prior scale matrices, and v0k denotes the prior degrees of freedom. Then, the full 

conditional distribution of Bk
∗ is MatNorm(p + 1) × J(Bk

∗, Lk, Σk), where

Bk
∗ = Lk(L0k

−1B0k
∗ + Xk

∗ TYk)
Lk = (L0k

−1 + Xk
∗ TXk

∗)−1,

and Xk
∗ is the augmented covariate matrix defined in Equation (6). Likewise, the full 

conditional distribution of ∑k is IW(vk, Vk), where

vk = v0 + nk + p + 1 and
Vk = V0k + (Bk

∗ − B0k
∗ )TL0k

−1(Bk
∗ − B0k

∗ )
+ (Yk − Xk

∗Bk
∗)T (Yk − Xk

∗Bk
∗) .

The proof is provided in Web Appendix A.

3.2 ∣ Pólya-Gamma multinomial regression for cluster probabilities

To accommodate heterogeneity in the cluster-membership probabilities, we model πki as a 

function of covariates using a multinomial logit model

πki = Pr(zi = k ∣ wi) = ewiTδk

∑ℎ = 1
K ewiTδℎ

, k = 1, …, K, (7)

where wi is an r × 1 vector of subject-level covariates, δk is an r × 1 vector of cluster-specific 

regression parameters. For identifiability, we choose category K as reference and set δK = 0. 

To facilitate sampling, we adopt the efficient data-augmentation approach introduced by 
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Polson et al. (2013), which expresses the inverse-logit function as a scale-normal mixture of 

Pólya-Gamma densities. A random variable w is said to follow a Pólya-Gamma distribution 

with parameters b > 0 and c ∈ ℝ if

f(w ∣ b, c) = 1
2π2 ∑

s = 1

∞ gs
(s − 1 ∕ 2)2 + c2 ∕ (4π2)

, (8)

where gs ∼iid Ga(b, 1) for s = 1, … , ∞. Polson et al. (2013) establish that, for a logistic 

regression model, the likelihood can be written as a scale-mixture of normal densities with 

Pólya-Gamma precision terms w, resulting in closed-form MVN full conditional 

distributions for logistic regression parameters. To extend the augmentation approach to the 

multinomial setting, we first introduce the binary indicators Uki = 1(zi = k), where 1(zi = k) is 

the indicator function equal to 1 if (zi = k) and 0 otherwise. The conditional distribution of 

δk, given Uk = (Uk1, … , Ukn)T and the remaining regression coefficients δh≠k, is

p(δk ∣ z, δℎ ≠ k)

= p(δk ∣ Uk, δℎ ≠ k) ∝ p(δk) ∏
i = 1

n
πki

Uki(1 − πki)1 − Uki, (9)

where p(δk) is the prior distribution of δk. We rewrite πki as

πki = Pr(Uki = 1) = ewiTδk

∑ℎ = 1
K ewiTδℎ

= ewiTδk

∑ℎ ≠ k
K ewiTδℎ + ewiTδk

,

where dividing throughout by ∑ℎ ≠ k
K ewiTδℎ yields

πki = ewiTδk − cki

1 + ewiTδk − cki
= eηki

1 + eηki
,

with cki = log∑ℎ ≠ kewiTδℎ and ηki = wiTδk − cki. We use cki and ηki to reexpress Equation (9) 

as

p(δk ∣ z, δℎ ≠ k) ∝ p(δk) ∏
i = 1

n eηki

1 + eηki

Uki 1
1 + eηki

1 − Uki

= p(δk) ∏
i = 1

n (eηki)Uki

1 + eηki
,

(10)

where the product term denotes the likelihood from a logistic regression model. We can 

therefore apply the Pólya-Gamma sampler for logistic regression to update each δk one at a 

time based on the binary indicators Uki. First, we define for k = 1, … , K, the n × 1 vector 

Uk
∗ =

Uk1 − 1 ∕ 2
wk1

+ ck1, …,
Ukn − 1 ∕ 2

wkn
+ ckn

T
. As shown in Web Appendix B, the conditional 

Allen et al. Page 8

Biometrics. Author manuscript; available in PMC 2021 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution of Uk
∗ given w = (wk1, … , wkn)T is Nn(Wδk, Ok

−1), where Ok = Diag(wk1, … , 

wkn) and W is an n × r design matrix with rows wiT  for i = 1, … , n. Thus, the full 

conditional distribution of δk is given by

p(δk ∣ z, Ok, δℎ ≠ k)
∝ p(δk)exp − 1

2(Uk
∗ − Wδk)TOk(Uk

∗ − Wδk) . (11)

Assuming a Nr(d0k, S0k) prior for δk allows for Gibbs sampling for the clustering model as 

detailed in Web Appendix B.

3.3 ∣ Extensions to multivariate skew-t distributions

To accommodate outliers and heavy tails, we extend Equation (1) by assuming, conditional 

on zi = k, that yi follows a MST distribution (Gupta, 2003):

yi ∣ (zi = k) ∼ind MSTJ(ζki, αk, Ωk, vk), with density

f(yi ∣ zi = k) = 2ftJ(yi; ζki, Ωk, vk)Tvk + J

× αk
T(yi − ζki)

vk + J
vk + Qyi

,

(12)

where ftJ(yi; ζki, Ωk, vk) denotes the CDF of a J-dimensional t distribution with location ζki, 

covariance Ωk, and fixed degrees of freedom vk that may vary across clusters; Tvk+J denotes 

the distribution function of the scalar standard t distribution with vk + J degrees of freedom; 

and Qyi = (yi − ζki)TΩk
−1(yi − ζki). As before, we adopt a conditional representation for yi to 

facilitate Gibbs sampling (Frühwirth-Schnatter and Pyne, 2010). Specifically, we augment 

the MSN conditional representation in Equation (3) by introducing subject-specific scale 

terms, di, yielding an MST regression conditional on zi, ti, and di of the form:

yi = Xiβk + ti
di

ψk + 1
di

ϵi, (13)

where di ~ Gamma ξ
2 , ξ

2 , with ξ being a prespecified known degrees of freedom parameter 

common to all clusters, and ti and ϵi are defined as in Equation (3). In principle, ξ may be 

prespecified but vary across clusters (becoming ξk), though here we a constant value across 

clusters for simplicity. For details on posterior inference, see Web Appendix B.

3.4 ∣ Cluster-specific imputation under conditional ignorability

To accommodate intermittent missing data, we propose a convenient MCMC-embedded 

imputation algorithm in which we assume that the missingness mechanism is conditionally 

ignorable given the cluster indicators zi, extending recent work on latent class pattern 

mixture models for informative dropout (Roy, 2007). We use the term “MCMC-embedded” 

to denote the fact that each missing value is imputed once per MCMC iteration using current 

cluster-specific parameter values, allowing for convenient multiple imputation as part of the 
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MCMC algorithm. Ensuring subjects have complete response vectors also enables us to 

update the regression parameters in a compact manner, as described in Web Appendix B. 

Here, zi functions as a discrete shared parameter that induces unobserved association 

between the missingness process and the missing data. Suppose yi has qi ∈ (1, … , J) 

observed values, denoted yiobs, and J − qi intermittent missing values, denoted yimiss. Let Ri = 

(Ri1, … , RiJ)T be a J × 1 vector of binary response indicators, such that Rij = 1 if infant i has 

a Bayley measurement at visit j. Under conditional ignorability, the conditional distribution 

of Ri given (zi, yiobs, yimiss) is

f(Ri ∣ zi = k, yiobs, yimiss, Xi, γk)
= f(Ri ∣ zi = k, yiobs, Xi, γk), (14)

where, in this context, Xi is a J × m design matrix and γk is an m × 1 vector of cluster-

specific parameters related to the missing data mechanism. As detailed in Step 4 of Web 

Appendix B, zi serves as a latent shared parameter that induces marginal correlation between 

Y i
miss and Ri.

Under conditional ignorability, conditioning on zi ensures that Ri does not depend on the 

missing observations yimiss. We can therefore impute yimiss from its conditional MVN 

distribution given (zi, ti, yiobs) as described in Web Appendix B. While the complete data 

vector yi = {yiobs, yimiss} follows a MVN distribution conditional on ti, after marginalizing 

over ti, yi follows a joint MSN distribution. Thus, the proposed conditional imputation 

procedure provides a convenient way of imputing missing MSN responses using samples 

from more standard densities.

Finally, given zi = k, we independently model the J response indicators for infant i as

Rij ∣ (zi = k, γk, bki) ∼ Bern(ϕijk), j = 1, …, J
logit(ϕijk) = xijT γk + bki,

(15)

where xij is an m × 1 vector of covariates, and γk is the m × 1 vector of cluster-specific 

regression parameters from Equation (14). We note that while the missing data regression 

parameters may in principle be shared across clusters, cluster-specific parameters allow 

investigators to identify different missing data patterns across clusters. Further, correctly 

modeling cluster-specific missingness mechanisms is necessary to obtain appropriate 

inference for cluster-specific parameters. Because the response indicators may be correlated 

over time, we also include a subject-level random intercept bki conditionally distributed as 

N(0, σk
2) given zi = k. Although we assume conditional ignorability of Ri and yimiss given zi, 

because the ϕijk terms from model (15) appear in the full conditional update for zi (Web 

Appendix B), Ri and yimiss are marginally correlated, resulting in a marginal missing not at 

random (MNAR) mechanism.
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3.5 ∣ Bayesian inference

3.5.1 ∣ Prior specification—We adopt a Bayesian approach and assign prior 

distributions to all model parameters. For designs not involving time-dependent covariates, 

we assign a joint MatNorm‐IW(p + 1) × J(B0k
∗ , L0k, v0k, V0k) to (Bk

∗, ∑k) as described in 

Proposition 1. For time-varying designs, we assign independent MVN priors to βk and ψk 

from Equation (3); details are provided in Step 5(b) of Web Appendix B. For the 

multinomial logit model, the regression parameters δk = (δk1, … , δkr)T are assigned a 

Nr(d0k, S0k) prior for k = 1, … , K − 1, which is conditionally conjugate under the Pólya-

Gamma sampling scheme described in Section 3.2. Finally, from Equation (15), we assume 

a Nm(g0k, G0k) prior for γk and an inverse-gamma IG(λ1k, λ2k) prior for σk
2, where λ2k is a 

scale parameter. In general, hyperparameters can vary across clusters, though they may be 

shared across clusters in practice. For the skew-t model, we assume di ~ Gamma ( ξ
2 , ξ

2), 

where ξ is a prespecified value.

3.5.2 ∣ Posterior computation, assessment of MCMC convergence, label 
switching, and model selection—The above prior specification induces closed-form 

full conditionals for all model parameters, which can be efficiently updated as part of the 

Gibbs sampler detailed in Web Appendix B. We monitor MCMC convergence through 

standard diagnostics, such as trace plots and effective sample sizes. To address label 

switching, a common issue for Bayesian mixture models, we implemented the iterative 

Equivalence Classes Representatives (ECR) relabeling algorithm included in the 

label.switching package in R (Papastamoulis, 2016). In our simulation studies and 

application, we observed immediate convergence of the ECR algorithm, indicating no 

evidence of label switching in our analyses. Because our primary objective is to identify a 

small number of clinically meaningful motor development clusters, we adopt the widely 

applicable information criterion (WAIC) to select the number of clusters K (Watanabe, 

2010). In Section 4.3, we demonstrate that this measure accurately recovers the true number 

of clusters under realistic parameter settings.

4 ∣ SIMULATION STUDIES

4.1 ∣ Simulation to compare the MSN model to the MVN model

Our first simulation compared MSN and MVN mixture models to investigate whether 

ignoring skewness leads to poor inferences in a setting resembling the Nurture study. To 

emulate the Nurture study, we simulated n = 1000 subjects from the following model:

f(yi) = ∑
k = 1

3
πkif(yi ∣ θk), (16)

where yi = (yi1, … , yi4)T to conform to the J = 4 measurement occasions in the Nurture 

study; θk is the set of parameters specific to cluster k (k = 1, 2, 3), and yi∣θk ~ MSN4(ζki, 

αk, Ωk); ζki = (ζki1, … , ζki4)T, ζki1 = βkj1 + βkj2xi, and xi is a N(0,1) covariate whose effect 

varies across the J measurement occasions. We modeled the cluster probabilities in Equation 

(7) as a function of an intercept and one baseline covariate, wi1, implying that r = 2. We did 
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not introduce missing data into this simulation, as we address missing data in the second 

simulation study. As a result, the total number of complete measurements was N = n × J = 

4000. The generated data included n1 = 318 infants in cluster 1, n2 = 288 in cluster 2, and n3 

= 394 in cluster 3.

Because the model included no time-varying covariates—only time-varying effects—we 

used the matrix normal formulation given in Proposition 1, yielding a (p + 1) × J = 3 × 4 

matrix Bk
∗. We chose the matrix normal hyperparameters described in Section 3.5.1 to be 

homogeneous across the three clusters by setting, for k = 1, 2, 3, B0k
∗ = 03 × 4, L0k = I3, V0k 

= I4, and v0k = J + 2 = 6, which gives E(∑k) = I4. Similarly, for the clustering model, we set 

d01 = d02 = (0, 0)T and S01 = S02 = I2, noting that k = 3 is the reference cluster. To 

investigate the effect of ignoring skewness, we allowed the vector of skewness parameters, 

αk, to vary across clusters; for cluster 3, we assumed no skewness (α3 = 0), implying MVN 

data for this cluster. We then fit both MSN and MVN mixture models to data generated from 

model (16). We ran the MCMC for 10 000 iterations with a burn-in of 1000. MCMC 

diagnostics indicated rapid convergence and excellent mixing (Web Figure 1).

The WAIC values for the MSN and MVN mixture models were 12 112 and 17 499, 

respectively, indicating better fit for the MSN model, as expected. Table 1 presents posterior 

mean estimates and 95% credible intervals (CrIs) for cluster 1 from the MSN and MVN 

models. Web Table 3 presents the results for the other two clusters. As expected, the MSN 

model provided accurate estimates throughout, whereas the MVN model consistently 

produced incorrect estimates with poor coverage when data were skewed, as in clusters 1 

and 2. In particular, ignoring skewness inflated the variance estimates under the MVN model 

as a way to compensate for the skewness in the data. However, when data were not skewed, 

as in cluster 3, both models performed similarly (Web Table 3). Thus, the MSN model can 

be reliably used in place of the MVN model even when data are not overtly skewed.

4.2 ∣ Simulation to compare imputation methods

Next, we evaluated the effect of failing to account for the missing data model in Equation 

(15). To do so, we generated n = 1000 observations from a 3-cluster (K = 3) MSN mixture 

model similar in design to Simulation 1. We then removed observations intermittently across 

the four measurement occasions according to model (15), which included two continuous 

covariates and an intercept, implying m = 3 from Equation (15). The model also included a 

random intercept with a common variance of σk
2 = 1 across clusters. After removing missing 

data, the number of available measurements in each cluster was N1 = 1463, N2 = 819, and 

N3 = 1209. We ran each model for 10 000 iterations with a burn-in of 1000. MCMC 

diagnostics showed rapid convergence as shown in Web Figure 2.

We then fit two MSN mixture models to the simulated data, each with different missing data 

assumptions. The first method assumed conditional ignorability, as described in Section 3.4, 

where the missing responses and missing data pattern were assumed to be independent 

conditional on zi, and a model of the missing data pattern was fit as in Equation (15). The 

second method assumed marginal ignorability, where the missing responses and missing 

data pattern were assumed to be independent marginally (ie, not conditional on zi). Thus, the 
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marginal ignorability approach did not adopt a model of the missing data mechanism as in 

Equation (15). Both imputation methods utilized MCMC-embedded imputation, where 

missing values were updated from cluster-specific multivariate normal conditional 

distributions at each MCMC iteration using the current values of parameters in the sampler.

As shown in Table 2, the conditional ignorability imputation method more accurately 

recovered true parameter values when compared to marginal ignorability. This result 

suggests that even when all other components of the model are correctly specified, making 

the strict marginal ignorability assumption (and thus ignoring model (15) altogether) can 

lead to biased estimates.

4.3 ∣ Simulation to validate choice of K

We conducted a final simulation to validate the use of WAIC for determining the number of 

clusters, K. We generated four MSN data sets; one data set for each value of K = {2, 3, 4, 5}. 

For each simulated data set, we fit the proposed Bayesian MSN model with K = {2, 3, 4, 5} 

and computed WAIC in each case. For each scenario, we ran the MCMC algorithms for 10 

000 iterations with a burn-in of 1000. MCMC diagnostics indicated rapid convergence for all 

models (Web Figure 3). As shown in Web Table 5, the WAIC measure recovered the true 

value of K in all cases. For some simulations (eg, true K = 2), we were unable to fit the MSN 

model when the fitted K was large due to the occurrence of vacant clusters during MCMC 

sampling. We have found that this generally occurs when the data do not support large 

values of K.

5 ∣ APPLICATION TO NURTURE STUDY

We applied our proposed model to the Nurture data by fitting an MSN mixture model that 

included Bayley scores centered and scaled by timepoint as the response, indicators for the 

four study visits corresponding to timepoint-specific intercepts, and binary food security 

status as the exposure of interest. The model also included time-invariant birth weight for 

gestational age z-score, number of children in the household, and an indicator for 

breastfeeding, as these likely impact infant development within each cluster. We allowed the 

covariate effects to vary over time, resulting in a parameter dimension of p = 20 for this 

component of the model (Table 3). For the multinomial logit cluster-membership model, we 

included an intercept, birth weight for gestational age z-score, infant race, and infant gender 

as covariates, as these variables are believed to affect the placement of infants into latent 

development clusters. The 471 missing measurements were imputed using the MCMC-

embedded MNAR imputation method described in Section 3.4. The missing data model (15) 

included a fixed intercept, birth weight for gestational age z-score, infant gender, infant race, 

and a random intercept. To select the number of clusters, we fit several MSN models with 

varying specifications for K and used WAIC to choose the best fitting model. The WAIC 

values were 9141, 10 088, 11 203, and 11 410 for K = 2, 3, 4, 5, respectively. We also fit 3-

df MST models with two to five clusters; these yielded WAIC values of 13 228, 13 934, 14 

002, and 14 356 respectively, suggesting that the 2-cluster MSN model provided best fit 

among all models considered. We ran each model for 10 000 MCMC iterations, with a burn-
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in of 1000. We observed fast MCMC convergence in all cases with no evidence of label 

switching. MCMC diagnostics for the 2-cluster MSN model are presented in Web Figure 4.

Table 3 presents posterior means and 95% CrIs for the 2-cluster model. In cluster 1, we 

observed a significant detrimental effect of food insecurity at each timepoint. However, in 

cluster 2, we only observed a significant detrimental effect of food insecurity at months 9 

and 12, though the effect sizes were more modest than in cluster 1. These trends are also 

displayed in Figure 3. We observed a significant positive effect of breastfeeding in cluster 1, 

but not in cluster 2, suggesting that breastfeeding may especially benefit infants exhibiting 

delayed motor development. We did not observe a significant effect of either birth weight for 

gestational age z-score or number of children in the household. From the Pólya-Gamma 

multinomial logit component, we found that female infants were more likely to belong to 

cluster 1. From the missing data model, the intercepts suggest that more missing 

observations occur for infants in cluster 1 compared to those in cluster 2 for the reference 

covariate group. Moreover, female infants in cluster 1 had significantly higher log-odds of 

missing a measurement compared to male infants in cluster 1, while black infants in cluster 

2 had significantly lower log-odds of missing a measurement compared to other infants.

As shown in Table 3, the skewness estimates for cluster 1 indicate little evidence of 

skewness, as all associated 95% CrIs contained zero. However, in cluster 2, the predicted 

Bayley scores were negatively skewed at 6 months, in agreement with the preliminary 

analysis presented in Section 2. This suggests that the skewness observed in the data was 

driven primarily by the healthy-developing class, highlighting the model’s ability to discern 

different skewness patterns across clusters. Further, the clusters identified by the model were 

distinct from one another, as 510 (91%) of infants remained in the same cluster across the 

postburn-in MCMC iterations. Finally, the estimated covariance and correlation matrices 

(Web Table 6 and 7, respectively), indicated an unstructured pattern for both clusters, with 

greater variability in cluster 2.

6 ∣ DISCUSSION

We have developed Bayesian MSN and MST for skewed longitudinal data that feature 

intermittent missingness. The model has many appealing features: it accounts for skewness 

in the infant development scores, associations among repeated measures, and allows for 

efficient inference of the cluster assignment probabilities. The model can be applied to 

skewed as well as symmetric data, since the symmetric version is contained as a special 

case. Additionally, the model handles missing data under a conditional ignorability 

assumption that relaxes standard MAR assumptions.

Through simulations, we showed that ignoring skewness in even moderately skewed data 

results in incorrect inference, whereas the MSN mixture model recovers the true parameter 

values when the data are skewed. Furthermore, we showed that failing to account for 

conditional ignorability results in biased estimates when the response mechanism depends 

on cluster assignment. Finally, we conducted simulations to validate the use of WAIC, 

supporting the use of this measure in practice.
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We applied our method to the Nurture data to assess the effect of household food security 

during pregnancy on motor development scores and to investigate possible clustering of 

infant development trajectories. We identified two distinct clusters of infants: one with 

delayed motor development and significantly impaired by food insecurity, and a second that 

exhibited healthy motor development and was only modestly affected by food insecurity 

toward the end of infancy. This suggests that household food insecurity may compound the 

negative impacts of delayed motor development. On the other hand, we found that 

breastfeeding improved motor development among infants with delayed development. These 

results add to the growing body of literature on the effect of household food security on 

infant outcomes.

To extend this work, the model could accommodate dropout in addition to intermittent 

missingness using a cluster-specific discrete time-to-event model. Additionally, cluster-

specific shared parameters could link the outcome and missing data models, relaxing the 

conditional ignorability assumption. More broadly, the method should prove useful in a 

range of settings involving multivariate skew data with informative missing responses. From 

a practical perspective, investigators looking to model clustered repeated-measures data can 

use the diagnostics described in Section 2 to determine whether the MSN model is 

appropriate. Given that the computational demand of the MSN and MST models is 

negligible compared to the MVN model, we recommend fitting the MSN or MST model first 

and using the estimated skewness parameters to determine whether simplifications to the 

MVN model can be made.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Longitudinal profile plot of infant development trajectories, with mean Bayley motor 

development score shown in black Note. Plot is based on the N = 1769 available 

measurements for n = 560 infants
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FIGURE 2. 
Scaled residual plots at each visit based on a repeated-measures linear regression model with 

Bayley score as the outcome Note. Sample skewness statistics and P-values from Shapiro-

Wilk (SW) tests are provided in the legends. Plots are based on the N = 1769 available 

measurements for n = 560 infants
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FIGURE 3. 
Predicted motor development trajectories for each cluster and food security group in the 

application to the Nurture data Note. The model included timepoint-specific intercepts, time-

invariant birth weight for gestational age z-score, the number of children in the household, 

and an indicator for breastfeeding. Estimated trajectories are given for a typical infant with a 

birth weight for gestational age z-score of 0, who was not breastfed, and who had 2.5 other 

children in the household. Solid lines indicate cluster 1 and dashed lines indicate cluster 2. 

Light shading represents food-secure infants, while dark shading represents food-insecure 

infants
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