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Hearing difficulty is linked to Alzheimer’s disease by common
genetic vulnerability, not shared genetic architecture
Fatin N. Zainul Abidin1,2, Helena R. R. Wells1,3, Andre Altmann 2,4 and Sally J. Dawson 1,4✉

Age-related hearing loss was recently established as the largest modifiable risk factor for Alzheimer’s disease (AD), however, the reasons
for this link remain unclear. We investigate shared underlying genetic associations using results from recent large genome-wide
association studies (GWAS) on adult hearing difficulty and AD. Genetic correlation and Mendelian randomization (MR) analysis do not
support a genetic correlation between the disorders, but suggest a direct causal link from AD genetic risk to hearing difficulty, driven by
APOE. Systematic MR analyses on the effect of other traits revealed shared effects of glutamine, gamma-glutamylglutamine, and citrate
levels on reduced risk of both hearing difficulty and AD. In addition, pathway analysis on GWAS risk variants suggests shared function in
neuronal signalling pathways as well as etiology of diabetes and cardiovascular disease. However, after multiple testing corrections,
neither analysis led to statistically significant associations. Altogether, our genetic-driven analysis suggests hearing difficulty and AD are
linked by a shared vulnerability in molecular pathways rather than by a shared genetic architecture.
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INTRODUCTION
Dementia and age-related hearing loss (ARHL) are two of the most
common age-related diseases, affecting ~50 million and 466 million
worldwide, respectively1,2. Both have a significant impact on the
health and wellbeing of the ageing population3–5 causing social
isolation, higher healthcare costs, and currently have limited
treatment options. Alzheimer’s disease (AD) is the most common
type of dementia causing progressive memory loss, including at later
stages severe cognitive dysfunction affecting basic language and
thinking skills. The biological hallmarks of AD are the accumulation of
extracellular amyloid β-peptide (Aβ) plaques and intracellular
neurofibrillary tangles, extensive neuronal loss, brain atrophy, and
inflammation. Aβ plaques appear to be central to initiating AD,
whereas neurofibrillary tangles correlate with the progression of AD6.
ARHL or presbycusis is the most common form of sensory loss in
older people and the third most common health condition in older
adults after heart disease and arthritis7. It is characterized by bilateral
hearing thresholds of >25 dB, often affecting the higher frequencies
first before progressing to lower frequencies, as well as hearing
difficulty with background noise2,8. The underlying pathological
mechanisms responsible for ARHL are not well understood but are
likely to involve a combination of pathologies acquired in different
components of the highly complex auditory pathway.
Recently, various studies have linked the incidence of dementia

and hearing loss with ARHL identified as the largest modifiable risk
factor for dementia5,9,10. A large number of studies have found a
link between ARHL and the risk of subsequent cognitive decline or
dementia and some have suggested that the use of hearing aids
can delay or prevent cognitive decline11–14. The reasons for the link
between the two conditions is currently unknown but various
hypothesis have been proposed. These include the following:
common pathological mechanisms acting on the auditory pathway
and brain such as vascular factors (e.g., diabetes, atherosclerosis,
and hypertension)15,16; the additional cognitive load required in
understanding poor auditory input interferes with other cognitive

functions such as language processing and memory17; long-term
deprivation of auditory inputs may lead to social isolation,
depression, and eventually dementia15. An alternative explanation
might be that hearing loss is an earlier manifestation of reduced
cognitive capacity. However, the specific pathogenetic mechan-
isms underlying these diseases and directionality of the relation-
ship between them are still unknown.
In this work, we aimed to investigate whether there is a shared

genetic association between ARHL and AD, which might explain the
link between the two and identify the biology underlying this
relationship. Investigation of causal effect of ARHL (and other risk
factors) on AD using statistical genetics methods is an active field of
investigation18–21. Revealing the reasons which underlie the link
might provide an opportunity for therapeutic approaches to both
conditions. To this end, we utilized summary statistics from two of the
largest genome-wide association studies (GWAS) into adult hearing
loss22 and late-onset AD by the International Genomics of Alzheimer’s
Project (IGAP)23. We examined the genetic architecture of hearing
difficulty and AD through recently developed methods in statistical
genetics including LD Score regression24, genetic correlation25–27,
partitioned heritability26,27 and two-sample Mendelian randomization
(MR)28. We also screened for mutual genetic risk factors for hearing
difficulty and AD using risk variants from studies available in MR-base
GWAS catalog28 using the two-sample MR method. Finally, we
conducted multiple gene list functional enrichment analyses to
dissect the biological systems underlying genes mapped to the
genetic risk variants/single-nucleotide-polymorphisms (SNPs) identi-
fied through GWAS for hearing difficulty and AD.

RESULTS
Summary statistics of HDiff with AD
We first determined whether the two published GWAS demon-
strated overlapping significant loci. Using the two largest GWAS
for the respective disorders, late-onset AD (Kunkle et. al.)23 and
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HDiff (Wells et al.)22, there were no shared genome-wide
significant SNPs (P value <5e-8) or suggestive (P value <1e-5)
lead SNPs (Supplementary Figure 1). Both the quantile–quantile
plots and genomic inflation factors (λGC) of the genome-wide test
statistic, λGC= 1.31 for HDiff cohort, λGC= 1.09 for AD cohort
demonstrated that HDiff GWAS analysis had higher inflation
compared with AD GWAS even after the GC-correction.

Genetic correlation between HDiff and AD
Next, we tested whether shared variance between the two
disorders has common genetic causes, quantified by the amount
of genetic correlation. The total heritability estimated using LD
Score (LDSC) for HDiff and AD is 0.072 (sd= 0.003) and 0.071 (sd=
0.011), respectively. HDiff and AD exhibited low genetic correlation
(rg= 0.027, P value= 0.659). Removal of chromosome 19, which
contains the APOE locus, from the analysis did not affect this
observation (rg= 0.011, P value= 0.83). Thus, indicating little or no
genetic overlap. Similarly, there was no regional genetic correla-
tion between HDiff and AD (Fig. 1a) estimated using Heritability
Estimation from Summary Statistics (HESS).

Partitioned heritability
The previous analyses showed a lack of shared genetic loci and
lack of genetic correlation between AD and HDiff. Here, using
partitioned heritability, we sought to investigate whether the

heritability for HDiff and AD is enriched in the same genomic
functional annotations. The functional annotations include
protein-coding genes, their transcription start sites as well as
regions of histone modifications that signal the accessibility to the
DNA for processing. Partitioned heritability analysis showed
significant enrichment (proportion of h2/proportion of SNPs) for
both HDiff and AD in histone modification markers for active
enhancers/promoters (e.g., H3K27ac, H3K4me1, H3K9ac peaks),
super-enhancer, and transcription start sites (Fig. 1b).

MR on HDiff and AD
We used the method of MR to investigate the causal effect of one
disease on the other. The causal effects of HDiff (termed the
“exposure” in an MR analysis) on AD (referred to as the “outcome”)
and vice versa were investigated using two-sample MR analysis
(Fig. 2b). The number of independent genome-wide significant
SNPs (termed the “instruments”) were 34 for HDiff to AD MR
analysis and 11 for AD to HDiff (Supplementary Data 1 and 2) after
filtering of SNPs and harmonization step between exposure and
outcome SNPs. Using these SNPs, bidirectional MR analyses
detected a causal link between AD risk variants and increased
risk of hearing difficulty (Fig. 3a and Supplementary Table 1). No
evidence of a link between HDiff risk variants and AD was detected
(Fig. 3b and Supplementary Table 1). Examination of Fig. 3a
suggests this causal link between AD genetic risk and HDiff is

Fig. 1 Genomic region-based analysis plots. a Manhattan-style plots of local genetic correlation and covariance (top) and local SNP
heritability (bottom) for HDiff and AD. Local genetic correlation corresponds to genomic regions that contribute significantly to the genome-
wide genetic correlation. Local genetic covariance corresponds to the similarity between HDiff and AD driven by genetic variations localized at
a specific region in the genome. b Heritability enrichment (% of heritability/% of SNP) values in HDiff and AD SNPs located in each of 27
genomic functional elements. Error bars represent jackknife standard errors around the estimates of enrichment. Key: CTCF CCCTC-binding
factor, DGF digital genomic footprint, DHS DNase I hypersensitive site, TFBS transcription factor binding site, TSS transcription start site, UTR
untranslated region. Single, double, and triple asterisks indicate significance at P < 0.05 after Bonferroni-correction in HDiff, AD, and both HDiff
and AD, respectively.
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being driven by a single SNP with a large effect on AD (rs7256200).
That SNP is in strong linkage disequilibrium (LD) with rs429358,
which is used to define the E4 allele of the APOE gene. Repeating
the MR analysis without this SNP abolished the causal link
between AD risk and HDiff, confirming that this link is due to APOE
variation (data not shown).
We also investigated whether a common “exposure” may affect

both HDiff and AD. Given the rich source of instruments and traits
available from studies in MR-Base database28, we conducted a
post hoc screening for potentially shared causative traits (Fig. 2c).
A total of 379 traits met our eligibility criteria (see methods
section) and were tested for their influence on HDiff and AD using
five different MR methods (Supplementary Data 3). Among all
those traits, we found that levels of metabolites glutamine29,
gamma-glutamylglutamine30, and citrate30 were each estimated
to be potential causal risk factors for both HDiff and AD in two or
more of the MR methods (Supplementary Table 2 and Fig. 3)
although none of the traits survived Bonferroni-correction
(adjusting for 379 tested traits). Negative betas for the MR
method for these traits to HDiff and AD (Supplementary Table 2)
suggest glutamine, gamma-glutamylglutamine, and citrate have a
protective effect on HDiff and AD, i.e., an increase in levels of those
metabolites result in a lower risk of disease.
For all genetic variants associated with glutamine, gamma-

glutamylglutamine, and citrate, we extracted corresponding HDiff
and AD summary statistics (Supplementary Table 3), and none of the
variants were individually associated with HDiff and AD risks at the
genome-wide significant threshold (P value <5e-08). However, the
“leave-one-out test” identified that one particular SNP (rs2657879)
was driving the causal association for both glutamine and gamma-
glutamylglutamine. This SNP is an exonic variant located in GLS2, a
gene encoding for Glutaminase 2 protein (Supplementary Table 3).
Furthermore, SNP rs2040771 was identified as driving the causal

association of citrate with HDiff and AD and the nearest gene to this
variant is SLC25A1 encoding Solute Carrier Family 25 Member 1, a
mitochondrial citrate transporter.

Gene set enrichment analysis
Pathway-based analysis in GWAS is widely used to discover gene
set functional associations. Gene set enrichment analyses of the
resulting HDiff and AD prioritized gene sets (Fig. 4), showed
overlapping functional annotations (Fig. 5). Although owing to the
small number of genes, no shared enrichment survived the a false
discovery rate (FDR) correction, there were several interesting
shared functional annotations at the P value <0.05 threshold (Fig.
5). Overall, they shared biological processes such as regulation of
endocytosis GO:0030010 and processes related to the neuronal
signaling pathway (synaptic vesicle transport GO:0048489, neuron
development GO:0048666), cellular component morphogenesis
GO:0032989, glycerolipid metabolism GO:0046486, adherens junc-
tion organization GO:0034332, cell-matrix adhesion GO:0007160.
Genes are also encoded for proteins found at perinuclear region of
cytoplasm, extrinsic of synaptic membrane, cell cortex, and clathrin
coat vesicles. In addition, we found prioritized genes in HDiff and
AD to also be involved in diseases such as cerebral atrophy,
cognitive changes, cardiovascular diseases, diabetes mellitus,
familial lichen amyloidosis, and adenoma of large intestine (Fig. 5).

DISCUSSION
This study investigated whether there is evidence for a shared
genetic link between hearing loss and dementia and whether
hearing loss is independently or dependently related to the most
common form of dementia, AD. Hence, we performed genetic
correlation, partitioned heritability, MR, and gene set functional

Fig. 2 Assumptions of our genetic correlation and Mendelian randomization analyses. a Genetic correlation using LD score regression
between Hearing difficulty (HDiff) and Alzheimer’s disease (AD) genome-wide SNPs. b Bidirectional Mendelian randomization using exposure
instruments (e.g., genome-wide significant lead SNPs from HDiff GWAS) in causal association with outcome (e.g., AD). c Mendelian
randomization using SNPs from studies available in MR-base database as exposure instruments in causal association with the outcome for
each trait, HDiff, and AD.
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enrichment analysis studies using summary statistics from the
largest GWAS available for either disease to date originating from
UKBB22 and IGAP consortium23. The results do not support a broad
shared genome-wide genetic architecture between HDiff and AD
that could explain the link between the two conditions. However,
results from MR analysis provide some evidence to suggest that
AD causes greater hearing difficulty at the level of AD genetic risk
variants. The strength of these data are nominal as it does not
survive multiple testing corrections and is largely being driven by
APOE but if confirmed this causal link might suggest that hearing
loss is an early manifestation of AD rather than hearing loss

accelerating dementia or a common pathology being responsible
for both diseases. Some studies have previously reported an
association between APOE isoform and hearing loss in candidate
gene studies31,32. The recent work by Mitchell et al.21 reported a
moderate genetic correlation between the genetic AD-risk
phenotype33 and hearing difficulty. Our analysis, which used
clinical AD rather than genetic AD risk, could not confirm this
genetic correlation. Both studies agree that there was no evidence
for a direct causative link between AD and ARHL. However, the
underestimated effect of APOE-e4 on genetic AD risk (OR= 1.18;
Jansen et al.)33 compared with clinical AD (OR= 3.32; Kunkle

Fig. 3 MR regression plots for instrumental SNPs on x axis and outcome SNPs on y axis. MR regression plots for SNP effect on Hearing
difficulty plotted against SNP effect on a Alzheimer’s disease, c glutamine, e gamma-glutamylglutamine, g citrate and SNP effect on
Alzheimer’s disease plotted against SNP effect on b hearing difficulty, d glutamine, f gamma-glutamylglutamine, h citrate. MR regressions
were calculated under the Inverse variance weighted, MR-Egger, Weighted median, Simple mode, and Weighted mode approaches.
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et al.)23 may therefore miss the subtle effect of the APOE locus on
hearing phenotypes in the MR analysis.
Instead of a shared genetic architecture, we observe non-

overlapping gene sets that contributed to the same molecular
functions, implying potential shared pathways that contribute to
the two disorders. Furthermore, our post hoc systematic screening
suggested potential horizontal pleiotropies where one variant has
independent effects on multiple traits. This was observed in
variants associated with levels of metabolites glutamate, gamma-
glutamylglutamine, citrate, and both the HDiff and AD traits. Both,
glutamine and gamma- glutamylglutamine share a causal variant,
rs2657879, which is a coding variant located in the GLS2 gene
causing a benign missense mutation according to SIFT and
PolyPhen scores provided by the Variant Effect Predictor34. The
main function of GLS2 encoded protein Glutaminase 2 is the
catalysation of the hydrolysis of glutamine to stoichiometric
amounts of glutamate and ammonia35.
Glutamate is a key player in maintaining the stability of synaptic

signaling and the involved cells including glial cells (e.g.,
astrocytes) and neurons. Instability in the Glutamatergic pathway
usually caused by Glutamate excitotoxicity can hamper the
stability of neurons by allowing high levels of Ca2+ influx, thus,
activating a number of damaging enzymes and resulting in
neuronal cell death16,36. Neuronal cell death correlates clinically
with the progressive decline in cognition/memory and the
development of pathological neural brain atrophy seen in AD
patients37. It is well-known that in the noise-exposed and aging
ear, loss of sensory hair cells results in cochlear nerve fiber
degeneration. However, it was recently established that cochlear
nerve synapses can be damaged even when hair cells survive, one
such pathway is through glutamate excitotoxicity. This underlies
hidden hearing loss or synaptopathy38 where individuals report
difficulties with hearing in background noise despite normal
hearing thresholds in pure tone audiograms. Neuronal loss is
therefore fundamental in the development of both HDiff and AD.
On the other hand, little is known about the involvement of

citrate in neurodegenerative diseases including ARHL and AD. In
addition to the link to Glutamate suggested by the MR analysis,

synaptic activity emerged also as one of the shared biological
processes from the analysis of prioritized genes in both disorders.
Interestingly, the disease enrichment analysis suggested that
some of the prioritized genes were the risk genes for developing
cerebral atrophy, cognitive changes, cardiovascular diseases, and
diabetes mellitus. The latter two are well-recognized risk factors
for developing HDiff and AD39–41. High fat and sugar intake can
lead to increased free fatty acids and triglycerides and reduced
vascular supply to the brain and cochlea, thus promoting hearing
loss, brain atrophy, and cognitive declines42,43.
Overall, our analysis suggested a possible causal link from AD

genetic risk to HDiff, which was driven by the APOE gene. Both
disorders appear to share some common underlying molecular
processes, however, different genes involved in these processes
emerged from recent large GWAS for each of the disorders. As it is
not economically viable to perform pure tone audiometry in the
number of individuals required to detect genome-wide associa-
tions, our analysis utilized self-reported hearing data. This
encompasses both peripheral sound detection and central proces-
sing of the auditory input so the failure to identify any strong
common genetic component is notable. Furthermore, our analyses
indicated that the reported correlation between HDiff and increased
rate of dementia diagnoses may be due to underlying shared
upstream risk factors. For instance, the glutamatergic system is
central to neurobiology to both HDiff and AD, and both disorders
are linked to genes associated with diabetes and cardiovascular
diseases, both of which are risk factors for HDiff and AD. In
conclusion, our genetics-based analysis links the two disorders by
shared vulnerability rather than a shared genetic architecture.

METHODS
Participants
Our analyses were based on the largest publicly available GWAS for adult
hearing loss and late-onset AD. The hearing loss GWAS was conducted on
subjects from the UK Biobank comprising 250,389 subjects (87,056 cases
and 163,333 controls) and 9,740,198 SNPs22. Hearing loss in case subjects
was defined as subjects responded “Yes” to both questions “Do you have

Fig. 4 Flow chart for the gene mapping, prioritization, and gene set enrichment analysis. Gene lists of FUMA outputs based on position,
eQTL, chromatin interactions, and a gene-based associations (MAGMA) analysis were all compared using Venn diagram for HDiff and AD each.
The Gene set enrichment analysis of the prioritized genes in HDiff and AD was done using ToppCluster tool producing a list of shared
functional enrichment annotations.
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any difficulty with your hearing?” and “Do you find it difficult to follow a
conversation if there is background noise?” control subjects were selected
if their response to both questions was “No”. Participants included in their
study were of above 50 years of age22. Here, we used the same hearing
loss phenotype representation, HDiff throughout this study, and the
summary statistics for HDiff were obtained from the publicly accessible
repository (https://doi.org/10.5281/zenodo.3490750). The summary statis-
tics for late-onset AD were obtained from The National Institute on Aging
Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS), under
accession NG00075, the largest AD GWAS based on clinical diagnosis (this
is opposed to larger studies including parental diagnosis such as Jansen
et al.)33. Summary statistics were from stage 1 of the GWAS comprising
63,926 subjects (21,982 cases and 41,944 controls) and 11,480,632 SNPs23.
The analyses presented in this work were solely based on summary
statistics obtained from previously published analyses and therefore no
ethical approval was required and written informed consents were
obtained from all participants in respective studies.

Heritability and genetic correlation
In brief, heritability represents the degree of variability in a phenotypic trait
that comes from genetic differences and genetic correlation refers to the
amount of shared heritability between two traits. Estimating SNP-based
heritability and genetic correlation from published GWAS summary
statistics is important to investigate the genetic architecture of disorders
and to explore relationships between disorders. An LD score regression
was employed to quantify the shared genetic architecture between HDiff
and AD (Fig. 2a). We used the implementation in the LDSC software24 and
followed a standard pre-processing pipeline: summary statistics for HDiff
and AD were restricted to well-imputed HapMap3 SNPs; pre-computed LD

Scores using 1000 Genomes European data from 1000 Genomes Project
were downloaded; input files in the corrected format were used to run LD
Score regression; heritability and genetic correlation were estimated. LD
Score regression computes the genetic correlation across the entire
genome. In a complementary analysis, we computed also the regional
genetic correlation27 and regional heritability44 using the HESS method.

Partitioned heritability
Some functional categories of the genome contribute disproportionately
to the total heritability of a complex trait. Partitioned heritability enables us
to estimate the amount of heritability that is associated with specific
genomic annotations. For example, this allows us to answer what amount
of the total heritability is located in protein-coding genes. We used
partitioned heritability to investigate whether the heritability for HDiff and
AD are enriched in the same genomic functional annotations. Total
heritability, h2, partitioned by functional annotations were calculated using
LDSC26. The European population of the 1000 Genomes project was used
as a reference panel.

Mendelian Randomisation
MR is a method that uses genetic variant associations for detecting
evidence of causal relationship between two traits. We performed MR to
investigate the causal relationship between HDiff and AD. In order to
establish causality, MR uses SNPs strongly associate with exposure (e.g.,
HDiff) as instrumental variables and tests whether these SNPs are jointly
affecting the other disease or trait (e.g., AD). Instrumental variables are only
valid if these key assumptions are fulfilled: (i) they associate with the
exposure of interest, (ii) share no common cause with the outcome and (iii)
do not affect the outcome except through the exposure45. MR focuses on

Fig. 5 Gene functional enrichment analysis. Functional annotations enriched at uncorrected P value <0.05 identified by ToppCluster tool
among prioritized HDiff and AD genes. None of the annotation survived multiple testing corrections at FDR level 0.05, however, interesting
functions are enriched even at the nominal level.
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few selected SNPs, typically exceeding genome-wide significance levels,
and is therefore conceptually different from genetic correlation, which
considers the entire genome. Bidirectional causal effects were estimated
between HDiff and AD using two-sample MR implemented in the MR-base
platform (TwoSampleMR v0.4.26)28 in R, see Fig. 2b.
We used SNPs that were independently associated with the potentially

causal trait, either HDiff (41 SNPs) or AD (14 SNPs) at genome-wide
significant level (P value <5e-8) that serve as instruments in the MR
analysis. Instrument SNPs were filtered to SNPs available in the outcome,
followed by harmonization of the instrument SNPs and SNPs in outcome
resulted in the removal of ambiguous, palindromic, and not inferable SNPs.
For the MR analysis from HDiff to AD, 7 SNPs were removed after filtering
and harmonization steps, resulted in 34 HDiff SNPs and 3 SNPs were
removed after the harmonization step for reversed MR analysis, resulted in
11 AD SNPs. We then performed MR analysis on the resulting exposure and
outcome SNPs (Supplementary Data 1 and 2).
The analysis was done using various MR methods available in MR-base

(i.e., inverse variance weighted (IVW), MR-Egger, weighted median, simple
mode, and weighted mode) where each method provided an estimate of
the causal effect of exposure on the outcome. IVW is the conventional MR
method that utilized combined ratio estimates from each SNP into an
overall estimate. In weighted median, weights are given to the ordered
ratio estimates, and the sum of weights is 1. In MR-Egger, the set of
instrument-outcome effect sizes is regressed upon the set of instrument-
exposure effect sizes and weighting the regression as in IVW. However, MR-
Egger does not constrain the intercept at the origin thus, making it a more
flexible method that could deal with invalid instruments46,47. Meanwhile,
simple and weighted mode using the mode of the unweighted and IVW
empirical density function, respectively, as the causal effect estimate48.
In order to screen for potentially shared causes between HDiff and AD, in

a post hoc analysis, we conducted a systematic MR analysis (Fig. 2c), where
all of the available instruments from MR-base were utilized. The HDiff
GWAS used samples from UK Biobank, thus to avoid biased estimates due
to (partial) sample overlap, traits were removed if their GWAS included
samples from UK Biobank. In addition, traits with instruments comprising
only one SNP were removed. MR regressions for 379 traits with
instruments mappable to HDiff and AD were analyzed (Supplementary
Data 3). Causal effects that are significant at a nominal P value of 0.05 were
reported. Leave-one-out analysis was conducted to determine whether a
variant strongly contributes to the observed significant relationship.

Gene mapping, prioritization, and functional enrichment
analysis
We sought to investigate whether genes implicated by the recent GWAS
on HDiff22 and AD23 are either shared or share a common biological
pathway. To this end, we first needed to convert locations with significant
SNPs to corresponding genes. We followed three complementary
strategies (Fig. 4): first, positional mapping was used to map SNPs to
genes based on physical distance, if they were within 10 kb from a known
protein gene. Second, expression quantitative trait loci (eQTL) mapping
was used by mapping SNPs to genes if the allele variation at the SNP is
associated with expression levels of a gene utilizing information of
different tissue types from databases (GTEx v8, Blood eQTL, BIOS QTL,
PsychENCODE, MuTHER, BRAINEAC). Genes with significant eQTL associa-
tions at a FDR of 0.05 were considered. Finally, Chromatin interaction
mapping was carried out by mapping SNPs to genes when there is a three-
dimensional DNA-DNA interaction between the SNP and gene. We used
the web-based platform FUMA (Functional Mapping and Annotation of
Genome-Wide Association Studies)49 all three strategies. FUMA parameters
for chromatin interactions include, all HiC built-in chromatin interaction
data, FDR threshold of 1e-6, 250 bp upstream and 500 bp downstream
from TSS as promoter region window, interaction overlapped with a
predicted enhancer region in any of the 111 tissue/cell types found in the
Roadmap Epigenomics Project.
Genes mapped using these three strategies were combined with gene-

based statistics computed by MAGMA50 from summary statistics. This
method was accessed through the FUMA web service. MAGMA combines
SNP association P-values within or in close proximity to protein-coding
genes to derive a P value describing the association of that gene. A
genome-wide significance was defined at P= 0.05/19,201= 2.6e-6). Each
of the four strategies produced a list of genes. A Venn diagram was used to
retrieve overlapping genes between four gene lists (Fig. 4). A comparison
of functional enrichments for HDiff and AD prioritized gene lists was carried
out using the ToppCluster suite50,51. Gene Ontology (GO) terms for

molecular function, biological process, cellular component, pathways,
human and mouse phenotypes, and disease annotation options were
selected for enrichment analysis. ToppCluster reported the enrichment P-
values at both uncorrected and corrected levels. Enrichment of features at
uncorrected level is useful for a smaller number of genes input and for
exploratory analysis. GO terms with uncorrected P value <0.05 in both
disorders were considered for discussion.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The summary statistics for HDiff are available from the publicly accessible repository
(https://doi.org/10.5281/zenodo.3490750). The summary statistics for late-onset AD
were obtained from The National Institute on Aging Genetics of Alzheimer’s Disease
Data Storage Site (NIAGADS), under accession NG00075. All other data supporting
the findings of this study are available within the paper and its supplementary
information files.

CODE AVAILABILITY
The HESS method was used to compute regional genetic correlation (https://
huwenboshi.github.io/hess/local_rhog/) and regional heritability ((https://huwenboshi.
github.io/hess/local_hsqg/). Partitioned heritability by functional category was done
according to (https://github.com/bulik/ldsc/wiki/Partitioned-Heritability) using LDSC
v1.0.1 (https://github.com/bulik/ldsc). Genetic correlations were calculated using LD
score (LDSC v1.0.1, https://github.com/bulik/ldsc). MR analyses between HDiff, AD, and
all other traits in MR-base platform (https://mrcieu.github.io/TwoSampleMR/) were done
using two-sample MR (TwoSampleMR0.4.26) in R version 4.0.0. Manhattan plot and
identification of lead SNPs were done using Functional Mapping and annotation of
genome-wide association studies (https://fuma.ctglab.nl/). A comparison of functional
enrichments for HDiff and AD prioritized gene lists was carried out using the
ToppCluster suite (https://toppcluster.cchmc.org/).
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