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Osteosarcoma is a quickly developing, malignant cancer of the bone, which is associated with a bad prognosis. In osteosarcoma,
hypoxia promotes the malignant phenotype, which results in a cascade of immunosuppressive processes, poor prognosis, and a
high risk of metastasis. Nonetheless, additional methodologies for the study of hyperoxia in the tumor microenvironment also
need more analysis. We obtained 88 children patients with osteosarcoma from the Therapeutically Applicable Research to
Generate Effective Treatment (TARGET) database and 53 children patients with RNA sequence and clinicopathological data
from the Gene Expression Omnibus (GEO). We developed a four-gene signature related to hypoxia to reflect the immune
microenvironment in osteosarcoma that predicts survival. A high-risk score indicated a poor prognosis and immunosuppressive
microenvironment. The presence of the four-gene signature related to hypoxia was correlated with clinical and molecular
features and was an important prognostic predictor for pediatric osteosarcoma patients. In summary, we established and
validated a four-gene signature related to hypoxia to forecast recovery and presented an independent prognostic predictor

representing overall immune response strength within the osteosarcoma microenvironment.

1. Introduction

Osteosarcomas are primary malignant tumors of the bone
that are defined by the malignant cells’ production of osteoid
or immature bone. Osteosarcomas are rare; in the United
States, around 750 to 900 cases are identified each year, with
400 cases occurring in children and adolescents under the age
of 20 [1, 2]. It is most likely to develop in children and teen-
agers [3]. Osteosarcoma is particularly malignant, and it
grows across the body and metastasizes to the lungs [4, 5].
The 5-year rate of patients with localized osteosarcoma is
80%, while that of patients with metastatic osteosarcoma is
15-30% [6]. For those with metastatic osteosarcoma, the
survival rate is very low [7]. The advances in surgery, chemo-
therapy, and radiation therapy are highly significant since
they can decrease the occurrence of lung metastasis and

increase the long-term survival in patients with osteosarcoma
[8]. The poor prognosis is due to difficulty in early detection,
high incidence of metastasis, and relapse. The process by
which the tumor grows was not completely elucidated.
Hypoxia is a characteristic that happens when the intake
of oxygen is too inadequate to support the growth rate of
cancerous tumor cells [9]. Current reports have shown the
crucial effect of hypoxia on cell proliferation, tumor growth,
and cell differentiation [10]. Bone is one of the most vulner-
able organs to hypoxia and has been shown to play a major
role in metastasis, weak prognosis, and radiation tolerance
of osteosarcoma [11, 12]. Nonetheless, the regulatory struc-
ture remains uncertain. The study focuses on the tumor
microenvironment and immune cells that are active in tumor
progression. Studies have shown that the hypoxic microenvi-
ronment can encourage the mobilization of innate immune
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cells in tumors and reduce adaptive immunity in the tumor
microenvironment [13, 14]. As a result of the limited litera-
ture on the relationship between hypoxia and immunity,
new therapeutic techniques are required.

Approximately one-third of ongoing osteosarcoma clini-
cal studies (as reported by ClinicalTrials.gov) use targeted
medications that target all parts of cellular functions. It is
obvious that targeted therapy plays a critical role in the treat-
ment of osteosarcoma. In an SJSA-1 osteosarcoma xenograft
model, Chessari et al. discovered a potent isoindolinone
inhibitor of the MDM2-p53 interaction, which demonstrated
critical anticancer efficacy [15]. Trametinib and trastuzumab,
two MEK inhibitors, were investigated in a phase I/II clinical
study and a phase II clinical study for osteosarcoma or recur-
rent osteosarcoma, respectively [16]. However, there is still a
disconnect between what we know about osteosarcoma biol-
ogy and how it affects patients. In this research, we aimed at
hypoxia-related genes in osteosarcoma using the TARGET
and GEO databases to create a predictive model for predict-
ing its immune microenvironment in children with overall
survival (OS). This study may play a major role in aiding
medical professionals in making critical clinical choices.

2. Materials and Methods

2.1. Data Selection and Analysis. A total of 88 osteosarcoma
samples with RNA-Seq data and clinical details were retrieved
from the TARGET (https://ocg.cancer.gov/programs/target)
database. The GSE21257 collection containing 53 samples
was downloaded from GEO (https://www.ncbinlm.gov/geo)
as a validation set. The clinical features of the samples are pro-
vided in Table S1.

2.2. The Integration of Immune Cell Types. CIBERSORT, a
method developed by Newman et al. (https://cibersort
.stanford.edu/), is a process for estimating the relative abun-
dances of types of cells in a mixed population of cells [17].
We calculated how proportionally immune cell types were
distributed across the low and high hypoxia risk groups.
The score given to each immune cell class in each study is
equivalent to 1.

2.3. The Development of a Hypoxia Risk Model. The genes
related to hypoxia statistically relevant in univariate analysis
were then shown to be significant in multivariate analysis
which produced the risk score formula [18], which is risk
score = 3, X, + 3, X, +---+f,X,, where X, X,, -, X, were
the level of the considered predictors and the “B” parameters
were respective regression coefficients.

2.4. Survival Analysis. Overall survival between the high and
low hypoxia risk groups was evaluated by a log-rank test in R
software (version 3.8.2). Univariate analysis was carried to
identify prognosis predictors, and multivariate analysis was
performed to assess if the score for risk is predictive of sur-
vival. We gathered data to determine the model’s capability
to assess the outcomes of patients.

2.5. GSEA. The gene set enrichment study was conducted to
decide whether there was a substantial variation in the genes
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that are expressed between the high and low-risk classes of
the MSigDB  (c5.bp.v7.0.symbols.gmt;  h.all.v7.0.cym-
bols.gmt) [19]. The gene set permutations were tested 1,000
times to illustrate its capacity to function consistently. The
phenotype label was used to forecast adverse events.

2.6. PPI Network. The STRING database was used in building
a PPI network. Cytoscape was also used to measure the node
degree of the PPI [20], which is the number of relationships
to filter the key genes.

3. Results

3.1. Application of a Hypoxia Risk Signature to Assess
Prognosis of Children with Osteosarcoma. The genes involved
in hypoxic responses were derived through the GSEA study
(hallmark; hypoxia), which was performed under conditions
with hypoxia. To better explain the molecular interactions
that arise while a stressed cell is deoxygenated, we performed
PPI studies utilizing the STRING database (http://string-db
.org). Figure S1 charts the top 150 genes which have the
highest degrees involved in the reaction to hypoxia.

To assess the prognosis for osteosarcoma patients based
on an analysis of gene expression, by using univariate and
multivariate regression, we conducted the list of top 100
genes in the TARGET training set. The researchers observed
that 19 genes related to hypoxia were correlated with chil-
dren’s OS (Figure 1(a)). Four hypoxia-related genes were
selected to create a predictive model. These genes were
EFNAI, P4HAI, STC2, and MAFF (Figure 1(b)). The risk
score formula was constructed as

risk score = (0.74 x EFNAL1 + (0.63 x PAHAL)

1
+(0.31 x STC2) + (0.62 x MAFF). (v

All four genes were shown to be linked to each other in
association with other genes (Figures 1(c) and 1(d)).

3.2. The Predictive Consequences of a Hypoxia-Induced
Signature in Osteosarcoma Patients. Due to the effect on
tumor cells under hypoxia, we also investigated whether the
hypoxia signature has prognostic significance. Using the
scores, we determined the rank and then grouped the
patients into high- and low-risk categories depending on
the median ranking (Figure 2(b)). Figure 2(a) reveals that
the expressions of EFNA1l, P4HA1l, STC2, and MAFF
increased as risk scores increased in the TARGET and GEO
datasets, which means that children with elevated risk appear
to establish a hypoxic microenvironment. Our studies sug-
gest that the people who are in the high-risk group had a con-
sistently higher risk of death (Figures 2(c) and 2(d)). In
addition, Kaplan-Meier research was conducted to determine
the predictive importance of the hypoxia-related signature in
children with osteosarcoma. The figure depicts that a high
risk of hypoxia was correlated with poor overall survival in
the TARGET cohort, which is confirmed by GEO results.

3.3. Gene Expression in reaction to Hypoxia Is Associated with
Clinicopathological Features in Osteosarcoma in Children. In
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F1GuRE 1: Characterizing hypoxia risk signatures in osteosarcoma to assess mortality and clinical outcomes: (a, b) development of a hypoxia
susceptibility signature to assess children with osteosarcoma prognosis through univariate and multivariate Cox analyses; (c, d) Spearman
relation study of a four-gene signature in TARGET and GEO databases.

order to explore the biological functions of hypoxia in tumor-
igenesis and development, we examined the relationships
between four genes linked to hypoxia and certain character-
istics of children with osteosarcoma, including if they had
metastasized. Gene expression values and metastasis status
were compared (Figure 3(a)), showing that gene P4HAIL
increased in the metastasis group (Figure 3(b)).

3.4. The Hypoxia Risk Signature Is an Important Instrument
for Prognosis Evaluation. The risk signature was modeled
using the ROC (receiver operating characteristic) curve
method on survival analysis from the TARGET and GEO data-
sets. AUC was 0.779 at one year, 0.783 at three years, and 0.801
at five years, suggesting a strong predictive value (Figure 4(a)).
This research was tested using GEO criteria (Figure 4(b)).
Univariate and multivariate Cox survival analyses were
done to assess the prognostic importance of a hypoxia signa-

ture on the survival of patients with osteosarcoma. The uni-
variate study found that a high risk for hypoxia was linked
to low survival (Figure 4(c)). Other factors such as metastatic
status were also related to poor survival. Multivariate analysis
found that a high risk of hypoxia for children with osteosar-
coma was substantially correlated with a significantly lower
overall survival of children with osteosarcoma.

3.5. Gene Set Enrichment Analysis. To further validate that
these elevated risk groups had altered signaling mechanisms,
we evaluated the GSEA comparing the high vs. low hypoxia
groups. Gene sets were elevated in the high-risk group in the
TARGET database, such as hedgehog signaling pathway, nitro-
gen metabolism, and abc transporters (Figure 5, Table S2).

3.6. Immune Landscape in Children with Osteosarcoma
between High and Low Hypoxia Risk. Accumulating evidence
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FIGURE 2: Prognostic importance of the four-gene signature in osteosarcomas: (a) a heat map displaying four-gene expression patterns in two
groups from TARGET and GEO databases; (b, c) the patient status distributed in the two risk groups; (d) the death ratios for the two groups;

(e) the survival curves for patients depending on risk.

shows that tumor microenvironments can protect tumors
from immune defenses by promoting immune escape and
inhibiting immune effector cells. Here, we studied whether
a hypoxic hypoxia signature of an immune microenviron-
ment could be evaluated.

CIBERSORT was used to identify variations in the
immune penetration of 22 different immune cell forms
between low- and high-risk children with osteosarcoma. In
Figure 6(a), the outcomes of patients in the TARGET data-
base and GEO dataset are summarized. Patients with elevated
levels of hypoxia risk have a significantly higher number of
immune suppression and immunosuppressive cells
(Figure 6(b)). The microenvironment can be influenced by
the immunosuppressive cells.

3.7. An Elevated Hypoxia Risk Suggests a Suppressive
Immunologic Environment. The cancer-immunity cycle helps

explain how cancer and immunotherapy function. The
research examines how cancer cells are destroyed by the
immune system: cancer cell antagonism, cancer antigen
introduction, priming and activating, trafficking of T cells
to tumors, intratumoral T cell aggregation, cancer cell recog-
nition by T cells, and cancer cell death [21]. The study
analyzes the expression of various genes in the high- and
low-risk groups. Gene details are downloaded from the TTI
database [22] (http://biocc.hrbmu.edu.cn/TIP/index.jsp). As
shown in Figures 7(a) and 7(b), immune genes that lead to
a reduced chance of contracting cancer were more highly
expressed in the high-risk group, suggesting low activity of
these mechanisms in these patients.

Focused on previous studies showing that immune
checkpoint molecules can be upregulated in reaction to hyp-
oxia [23], we conducted an analysis of the expression level of
molecules in the low- and high-risk groups in the TARGET
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dataset. We found that PD1, which is thought to be upregu-
lated in hypoxic environments, has high expression in the
high-risk group (Figures 7(c) and 7(d)). Certain cytokines
were elevated in high-risk groups attributed to hypoxia

(Figure 7(e)).

4. Discussion

The treatment of osteosarcoma and the prognosis have not
improved significantly over the past three decades. In recent
decades, high-throughput sequencing has become an
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essential instrument in biomedical science and is used for
prognosis forecasting, cancer recurrence monitoring, and
clinical stratification since it will be important to apply to
osteosarcoma and identify possible key targets for therapy.

Malignant tumors often exhibit dysregulation in cellular
oxygen metabolism. It was shown in various studies that hyp-
oxia played a role in the development of this cancer [24].
Beyond the role of oxygen supply, the precise role of hypoxia
in osteosarcoma remains uncertain. In this study, we
explored the role of four genes (EFNA1, P4HA1, STC2, and
MAFF) profiled in a previous study on osteosarcoma. EFNA1
is a transmembrane protein, and EFNAI1l expression is
upregulated in a number of tumor cells, including gastric
cancer, colorectal cancer, and hepatocellular cancer [25].
Large levels of an enzyme linked with cancer survivability
have a weak prognosis for cancer patients. PAHA1 is an
essential enzyme in hemoglobin synthesis [26]. Previously,
it has been shown that P4HA1 stabilizes hypoxia-inducible
factor la (HIF1a) by modulating the levels of its glycolytic
substrates, a-ketoglutarate, and succinate, thus mediating
cellular transformation of cancer cells [27]. The STC2 pro-
tein encodes a secreted homodimer and is expressed in a
broad range of tissues. The protein has autocrine and/or
paracrine roles [28]. Studies have demonstrated that STC2
is oncogenic in several forms of cancer. The aberrant STC2
expression has significant consequences for the prediction,
incidence, metastasis, and prognosis of different cancers,
including various cancers of the liver, colon, and prostate
[29]. MAFF is a part of the essential leucine zipper (bZIP)
transcription factor Maf family and plays a key role in
numerous physiological and pathological processes, includ-
ing signal transduction, hematopoiesis, central nervous
system activity, and tumorigenesis [30, 31]. With the four-
gene signatures, it was seen that this was an independent fac-
tor that affects the prognosis of osteosarcoma and that the
model had a stronger effect in forecasting osteosarcoma.

Our GSEA revealed that hedgehog signaling pathway,
nitrogen metabolism, and abc transporters were enriched
in the high-risk group in the TARGET database. Onishi
et al. reported that hypoxia can activate the hedgehog
signaling pathway in a ligand-independent manner by
upregulation of Smo transcription in pancreatic cancer
[32]. Kodama et al. found that accumulation in glutamine
nitrogen metabolism can contribute to the malignant pro-
gression of tumors [33]. abc transporters also have been
considered for their contribution to cancer cell biology
recently, and they may play a potential role in cancer
development [34].

Many studies have been conducted investigating the
processes by which hypoxia controls the immune response
in tumor cells [35, 36]. The lack of oxygen will negatively
affect the differentiation and work of immune cells and their
subsequent cytokine development [37]. The immune system
can detect and eliminate tumor cells [38, 39]. Nonetheless,
the tumor microenvironment could interact with this
immunotherapy reaction by blocking various checkpoints
through which the therapy operates [40]. Regulation of
NK cells and tumor antigen-specific T cells is a key step that
must take place for an antitumor immune response [41].
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Hypoxia prevents T and NK cell development and activa-
tion in animal models [42]. Our analysis showed that chil-
dren with osteosarcoma at high risk of experiencing
hypoxia had an elevated number of CD4 cells, suggesting
an immunosuppressive disorder.

Cytokines have the capacity to control immune
responses. Immune cell exhaustion is one of the main factors
supporting tumor progression [43]. The hypoxic microenvi-
ronment of tumors is associated with VEGF and stimulates
tumor development [44]. CCL28, a crucial mediator between
oncogenic f-catenin signaling and the stomach tumor
microenvironment, is shown to have an integral part of
cancer development by either facilitating cancer cell prolifer-
ation or metastasis or by forming the tumor immune micro-
environment [45]. In our research, the immune system is
weakened in the high hypoxia community, contributing to
greater suppression of the immune system. Immune check-
point proteins safeguard against cancer and support tumor
immunosuppression. Tumors defend themselves using
immunotherapy modalities and clinical goals (e.g., CTLA-4,
PD-L1, and PD1) [46, 47]. In our research, immunosuppres-
sive cytokines and PD1 have high expressions in participants
with higher risk of developing hypoxia.

This is the first analysis to construct and evaluate a risk
model related to hypoxia based on four genes and then use
it as a prognostic factor for osteosarcoma patients. Our
results indicate that hypoxia triggers immune cell death in
osteosarcoma and can contribute to better management of
the condition.
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