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Introduction: Thoracic CT is a useful tool in the early diagnosis of patients with COVID-19. Typical ap-
pearances include patchy ground glass shadowing. Thoracic radiotherapy uses daily cone beam CT im-
aging (CBCT) to check for changes in patient positioning and anatomy prior to treatment through a
qualitative assessment of lung appearance by radiographers. Observation of changes related to COVID-19
infection during this process may facilitate earlier testing improving patient management and staff
protection.
Methods: A tool was developed to create overview reports for all CBCTs for each patient throughout their
treatment. Reports contain coronal maximum intensity projection (MIP's) of all CBCTs and plots of lung
density over time. A single therapeutic radiographer undertook a blinded off-line audit that reviewed
150 patient datasets for tool optimisation in which medical notes were compared to image findings. This
cohort included 75 patients treated during the pandemic and 75 patients treated between 2014 and 2017.
The process was repeated retrospectively on a subset of the 285 thoracic radiotherapy patients treated
between JanuaryeJune 2020 to assess the efficiency of the tool and process.
Results: Three patients in the n ¼ 150 optimisation cohort had confirmed COVID-19 infections during
their radiotherapy. Two of these were detected by the reported image assessment process. The third case
was not detected on CBCT due to minimal density changes in the visible part of the lungs.
Within the retrospective cohort four patients had confirmed COVID-19 based on RT-PCR tests, three of
which were retrospectively detected by the reported process.
Conclusion: The preliminary results indicate that the presence of COVID-19 can be detected on CBCT by
therapeutic radiographers.
Implications for practice: This process has now been extended to clinical service with daily assessments of
all thoracic CBCTs. Changes noted are referred for oncologist review.

© 2021 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Introduction

In December 2019, initial cases of COVID-19 were reported in
Wuhan China, and infections rapidly spread internationally.1 On the
30th January 2020 the World Health Organisation (WHO) declared
the outbreak as a public health emergency of international concern.
Advanced age and co-morbidities have both been linked with poor
outcomes of COVID-19.2
).
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Clinical presentation of the infection varies greatly, with early
predication indicating up to 80% patients could be asymptomatic, a
figure since revised to 17e20%3,4 Symptomatic patients experience
a range of symptoms including fever, dry cough, and dyspnoea
while more severe effects include respiratory failure, multi-organ
failure and death.5 Patients who are elderly or have underlying
co-morbidities are disproportionally affected by COVID-19 and at
increased risk of adverse outcomes.6,7 Cancer patients are partic-
ularly vulnerable with data indicating a higher risk of intensive care
unit (ICU) admissions, ventilator requirements and death compared
with the general population.2,8e10 Fatality rates ranging from 4 to
11% have been reported for patients of an advanced age or with
comorbidities. These factors are associated with higher cancer
served.
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incidence and could explain the link between COVID-19 and
cancer.10,12,14

Chest computed tomography (CT) can be a useful tool for early
diagnosis of COVID-19 with the majority of patients displaying
similar CT findings.11 The most common observations on CT are
ground-glass opacification (GGO's), air bronchograms, crazy-
paving patterns, and thickening of the adjacent pleura.12 The dis-
ease distribution in the initial chest CT is typically confined to the
middle and lower lobes of the lung and is pre-dominantly pe-
ripheral. As disease advances, follow up CT shows consolidation
and coalescing infiltrates as the central and upper lungs become
affected.13

Cancer patients receiving radiotherapy need to attend daily for
treatment without any delays, interruptions or premature termi-
nation to avoid suboptimal oncologic outcomes.15e17 Daily hospital
visits can increase the risk COVID-19 exposure, especially due to the
risk of spread from asymptomatic patients.14

Cone beam computed tomography (CBCT) is used routinely for
image guided radiotherapy (IGRT) to assure positioning and
visualisation of any anatomical changes.18 CBCT is a medical
imaging technique which forms a 3D representation of the pa-
tient.19 Local IGRT protocols specify daily CBCT for all lung and
oesophageal patients, facilitating assessment of healthy lung
tissue.20 Research demonstrates despite that inferior image
quality in CBCT (compared to diagnostic CT) retrospective iden-
tification of COVID-19 characteristics is feasible.21 Fifty percent of
patients can have radiographic abnormalities before the onset of
symptoms; CBCT may therefore allow early clinical detection and
treatment of COVID-19. Early diagnosis could improve patient
outcomes with timely detection of COVID-19 correlating with
improved prognosis11 in addition to improving departmental
safety through permitting appropriate management of COVID-19
positive patients. This manuscript reports on the use of radio-
therapy CBCTs and a semi-automated process to detect COVID-19
changes in lung anatomy by therapeutic radiographers as a
feasibility study for the multicentre CATCH (COVID associated
temporal changes) study.

Methods

The work reported was approved through local quality
improvement and clinical audit committee (local QICA project
2749) and our local umbrella ethics approval (Ethics REC ref. 17/
NW/0060).

Patient data

The project was undertaken in two phases with two patient
cohorts. The first, the “optimisation cohort”, retrospectively
included a arbitrary convenient sample of 150 patients treatedwith
curative intent radiotherapy and daily online CBCT imaging.
Seventy-five patients were treated during the pandemic (i.e., after
March 2020). This cohort was used to optimise the semi-automatic
reporting tool. The optimisation cohort also included 75 patients
treated prior to the pandemic (i.e. between 2014 and 2017) as
controls, to test it false positives could be reported. The second
cohort, the “evaluation cohort”, retrospectively included all radical
lung and oesophagus patients receiving radiotherapy at our insti-
tution between January and June 2020 including the 75 from the
optimisation cohort.

Thoracic treatment at the authors institute involves daily CBCT's,
with treatment fractionation ranging from 3 to 33 fractions.
18
Semi-automatic reporting tool development

CBCT scans were acquired with Elekta XVI (Elekta Oncology
systems, Copenhagen, Sweden), version 5.01 to 5.03. Each daily
CBCT was converted into a coronal maximum intensity projection
(MIP). MIP rendering is a standard CT image analysis technique that
produces a single 2D image that is a projection of the highest
attenuating voxels of the image encountered by X-ray beam and
approximates a planar radiograph.22,17,9 We create the MIP images
using the standard software libraries from the Elekta XVI system
(the MIP operation is available in most common image processing
libraries). The tool reads the planning CT (pCT) and all available
CBCTs for a patient and sequentially plots the MIP images in date
order and generates a visual timeline of lung appearance. For that
purpose CBCTs were registered to the pCT using a rectangular re-
gion of interest (ROI) drawn to fit tightly around both lungs. The
pCT lung contours with a small negative margin were then used to
mask the lungs for density analysis and MIP generation in the pCT
and all CBCTs (i.e., MIP images were restricted to the lung tissues
alone). Pixel values outside the lungs were used for normalisation
of CBCT image intensities and all images were presented with a
fixed level and window. Density values were also plotted. Fig. 1
shows an example of the tool's output.

Rigid image registration was chosen over non-rigid, because the
latter tended to be affected by COVID-19 lesions, driving these
higher density regions towards the chest walls and reducing their
visibility. The margin used to mask the lungs during the analysis
was shrunk by 3mm as a compromise between sensitivity for small
changes occurring in the peripheral lungs and resilience to lung
contour changes that could lead to tissues outside the lungs (e.g.
the ribs) being mistaken for changes in lung density. Prior to MIP
generation, images were blurred in the A-P direction (s ¼ 1 cm)
with a 2 cm triangular kernel to reduce contrast from normal lung
structures while maintaining infection contrast. Typically, compu-
tation time was less than 1 min per report.

Using the optimisation cohort, a therapeutic radiographer
assessed all images and MIP summary reports blindly for potential
COVID related changes. This involved reviewing density change
graphs for any significant change followed by a review of each MIP
for any significant density changes throughout the treatment, with
particular focus on changes suspicious for COVID-19. Algorithm
settings were optimised during this phase and fixed thereafter.

The observer categorised suspicious density changes following
indications identified by previous research, including GGO's
distributed primarily in the lower and middle lobes of the lung that
progresses superiorly.13 Medical and radiotherapy records were
reviewed for COVID diagnosis, known symptoms or documented
COVID typical changes and compared to image findings. Records
were stored locally in MOSAIQ®, the integrated information system
used to collect patient imaging and radiotherapy treatment infor-
mation.23 Within this initial cohort RT-PCR (Reverse Transcriptase
Polymerase Chain Reaction) test was not routinely carried out,
therefore asymptomatic patients were not identified and not all
symptomatic patients were tested meaning many patients could
have been COVID-19 positive without detection.
Semi-automatic reporting tool evaluation

The second phase repeated this process retrospectively on the
evaluation cohort to assess the efficiency of the tool and process.
Two radiographers independently assessed the reports generated
by the tools with the radiotherapy imaging record (Rad1), and



Figure 1. Sample reports generated by the CBCT COVID-19 imaging tool. The tool provides a single report containing sequentially positioned lung MIP images, multiple slices of the
last CBCT to show the most up-to-date anatomy in more detail (typically of use when the tool is used for online daily assessment), an image indicating the location of the tumour,
and a longitudinal plot of the right and left lung mean density over time. All images are labelled with the day since the planning CT scan. Lung density values (mean in ‘HU’) are also
shown in the MIP images. Because of scatter, the apparent mean HU in the CBCTs always is higher than in the planning CT.
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evaluated medical notes (Rad2). Rad1 was blinded to patients’
medical notes and COVID status. The results of potential COVID
changes on CBCT or reported in the radiotherapy notes were later
correlated to the medical notes.
Results

Optimisation cohort

Three of 150 patients had confirmed COVID-19 based on RT-PCR
test. Two were diagnosed retrospectively using the reported CBCT
assessment tool and process. The other was not detected on CBCT,
as there were minimal lung parenchymal changes observed. Fig. 2
shows the report of two of those COVID-19 positive patients.

The observer identified suspicious lung density changes over the
course of radiotherapy on CBCT images from a further 32 patients.
Fifteen were treated since the start of the COVID-19 pandemic and
17 were treated prior to 2020. This research confirmed lung density
changes during the course of radiotherapy treatment are not spe-
cific to COVID-19, occurring in 23 % of patients. Table 1 summarises
these findings.

For images reviewed retrospectively by a radiographer, changes
were not assessed by a clinician nor were the patients tested for
COVID-19 based on these results. One patient's MIPs demonstrated
changes to lung density similar to those reported in patients with
COVID-19 (Fig. 3) but no clinical symptoms were reported within
imaging and clinical notes. If seen prospectively this patient would
have been referred for further review and RT-PCR COVID-19 test.
19
Retrospective cohort

Four of 258 patients reviewedwere confirmed to have COVID-19
by RT-PCR test. Three of these patients were retrospectively (and
blinded) identified independently using CBCT reports, all prior to
the date of clinical detection. The fourth patient had no visible lung
density changes on CBCT. There were 7 patients with symptoms
suspicious of COVID-19 not confirmed by RT-PCR test, none of
whom had visible lung density changes. If reviewed prospectively,
3 of these 11 confirmed/suspected patients would have been
escalated for further review based on lung density changes.

Observers identified 23 patients that if seen prospectivelywould
have been highlighted for further evaluation. Unfortunately, none
of these patients were tested for COVID-19 given the limited testing
capacity at the time. Details are summarised in Fig. 4.

Mean time taken for observers to review all MIPs together per
patient was 12 s (range 9e16 s, SD 1.8 s). Beyond the detection of
COVID-19, the MIP reports facilitated the observation of other lung
density changes including atelectasis and pleural effusion as well as
non COVID-19 pneumonia (Fig. 5). Fig. 6 shows a patient treated in
2014 with lung CBCT appearance typical of COVID-19 infection,
demonstrating that the usefulness of the tool could be extended to
aggressive infections outside of COVID-19.
Discussion

Our tool was designed to facilitate rapid review of thoracic CBCT
by therapeutic radiographers to detect COVID-19 infections. This



Figure 2. Examples of COVID-19 positive patients (optimisation cohort). Top e these images show lung density changes identified by the observer at fraction 9 of 25 (arrow). This
patient became symptomatic on fraction 11 of 25 with a cough and received a RT-PCR test. The results were established on fraction 12 of 25 as positive. Bottom - CBCT images were
acquired in this patient for whom COVID-19 was not detected through CBCT analysis. The changes in lung density over time are minimal. Treatment has paused for this patient
following COVID-19 diagnosis until longer symptomatic (for 17 days) in line with Trust COVID response protocols at the time. Density changes may have occurred during the pause
in treatment where no CBCTs were made. This is an unavoidable limitation of retrospective evaluation.

Table 1
Summary of optimisation cohort.

Optimisation Cohort

Number of Patients (1e33 images per patient) reviewed 150
Number of scans determined to need further review 34
Number of Patients with Confirmed/Suspected COVID 3
Number of patients with COVID detected by CBCT alone 2
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tool allows radiographers to asses each CBCT without having to
review each image slice, and typically less than 1 min is spent on
reviewing a patient.

This work reports the first systematic screening of CBCT scans
acquired during RT for COVID-19. The ability to assess COVID-19
and non COVID-19 pneumonia on CT by radiologists has been
investigated with promising results for accuracy with 83%, 80% and
60% reported.24,25 In a study comparing repeat RT-PCR testing with
CT-based diagnosis, 75% of patients with positive CT but negative
RT-PCR findings later tested positive on RT-PCR.14 Similar results
were found within He et al. (2020)26 study who also identified 5
patients who had characteristic chest CT findings with negative
initial PCR which later positive RT-PCR tests. 40% of patients had
improvement in CT findings before serial RT-PCR results converting
20
from positive to negative, suggesting RT-PCR results lag behind
radiographic findings.27 It does need to be considered that all trials
were conducted on a small sample size and in single institutions so
generalisation is restricted. Combining the RT-PCR and the use of
imaging in the form of CBCT or diagnostic CT may provide more
accurate results. Research has shown that a combined approach has
improved sensitivity from 79 to 94%.14

This work demonstrates similar assessment is feasible using
daily CBCT routinely acquired as part of thoracic radiotherapy
standard of care. Within our retrospective cohort of 285 patients, 4
had confirmed COVID-19 identified through RT-PCR testing. Three
of these were also identified independently using CBCT imaging
data only. The remaining patient may not have been identified due
to a two week gap in treatment where no imaging occurred.
Another reason could be linked to COVID-19 not always affecting
the lungs but other organ systems, meaning no changes within the
lungs occurred.30 Seven patients within this cohort with suspected
COVID-19 were not tested to confirm this as there was no routine
patient testing at the time, however may have been referred on-
ward for confirmation based on CBCT imaging if seen prospectively.

This workwas limited by the use of patient screeningmeasures,
resulting in a low prevalence of COVID-19 in patients treated
during the recruitment period, reducing the statistical confidence



Figure 3. Example of COVID-19 positive patient report (retrospective cohort). Patient MIP's reviewed retrospectively demonstrating COVID-19 like lung density changes, start of
change shown by orange symbol. Patient was asymptomatic and therefore not RT-PCT tested. Part of the observed HU variation demonstrated in the graph is due to differences in
imaging systems used, as the patient was moved between treatment units. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Figure 4. Summary of retrospective cohort.
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in our findings. These results should therefore be considered as
proof of principle. We have now implemented the assessment as
part of the local daily workflow, enabling continuous, on-going
evaluation. A multi-centre study would allow faster accumula-
tion of COVID-19 positive events; the CATCH study is a multicentre
study currently being established for this purpose. Another limi-
tation was the retrospective nature of this work, during a period
with limited COVID-19 RT-PCR testing capacity. As such it is un-
known if asymptomatic patients were missed, and conversely, if
21
the 23 patients identified who would have been highlighted for
further investigation were infected or not.

The radiographer assessment team found the use of MIPs in the
daily reports, with the images aligned to a common frame of
reference useful. The main advantage of using this technique is that
it simplifies visualisation regions of highest density change28,14 and
reducing the volume of data to be reviewed, reducing the review
time required per patient. Systematic review of the time required
for assessment was beyond the scope of this work.



Figure 5. Example of non-COVID-19 related changes demonstrated on the reports. Top - Atelectasis; Middle - Pleural effusion; Bottom - Pneumonia.

Figure 6. Example of patient (treated in 2014) with lung density changes comparable to COVID-19 changes.
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One disadvantage of MIPs is the loss in spatial resolution and
amount of data available,29 which may lead to missing information
indicative of COVID-19. However, Jabeen et al. (2019) demonstrated
a MIP technique has a high sensitivity and specificity in the thorax,
detecting even small pulmonary nodules missed on conventional
axial images.29

The observers recognised from the comparison of the overview
reports and corresponding image review notes that not all changes
observed on the real-time CBCT were observed on the recon-
structed MIPs. One example included a patient whose image notes
indicated lung density changes in the left upper lobe that was not
apparent on the MIP's or the density graphs. This could be due to
loss in data as images are projected or the margins and image
processing used in the analysis.

The use of a more automated method was proposed to reduce
resources, with automation being well established in reducing the
rates of medical errors through removing the human involvement
22
within checks and procedures.31 The initial plan for a clinical
prospective review was to use the density graphs produced to
indicate any density variation. Only the MIP's of patients with
density changes demonstrated would be reviewed by radiogra-
phers. However, the observers determined that a combined auto-
manual approach would be required as graphs were not accurate
enough as a single decision point. In practice, treatment radiog-
raphers would have to assess all MIP images and use the graphs as
more of an aid. Within a prospective clinical assessment, radiog-
raphers could also review the CBCT data should any changes
appear suspicious and the patient's clinical notes provided a
complete picture of the patient's situation.

Fast daily reviews of the evolution of changes in patients’ lung
densities, aided by tools similar to those we report, could permit
the identification of asymptomatic COVID-19 and other infections,
enabling appropriate management steps to be taken. Research has
shown that up to 46% of lung cancer patients experience an



A. Clough, J. Sanders, K. Banfill et al. Radiography 28 (2022) 17e23
infection during their radiotherapy,32 with early diagnosis meaning
earlier medication, reducing probability of gaps in treatment.

Following this initial retrospective work, prospective reviews
have begun by two therapeutic radiographers who access on-
treatment lung and oesophagus patients daily. Changes noted by
radiographers that are deemed as suspicious are referred for
oncologist review.

Conclusion

Lung density changes on CBCT suggestive of COVID-19 can be
identified by Therapeutic Radiographers. With the current wave of
COVID-19, it is likely that many more cases will be detected shortly.
This work is particularly pertinent in clinical set-up where frontline
RT-PCR testing for COVID-19 is not available routinely, but may also
find applications in the monitoring of lung tissue changes beyond
the current pandemic.
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