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Abstract

Bis(cyclotryptamine) alkaloids have been popular topics of study for many decades. Five possible 

scaffolds for bis(cyclotryptamine) alkaloids were originally postulated in the 1950s, but only four 

of these scaffolds have been observed in natural products to date. We describe synthetic access to 

the elusive fifth scaffold, the piperidinoindoline, through syntheses of compounds now termed 

“dihydropsychotriadine” and “psychotriadine”. The latter of these compounds was subsequently 

identified in extracts of the flower Psychotria colorata. Our synthetic route features a stereospecific 

solid-state photodecarbonylation reaction to introduce the key vicinal quaternary stereocenters.

Since the initial isolation of calycanthine in 1888,1 bis(cyclotryptamine) alkaloids2 have 

captivated the attention of scientists worldwide. Interest in these natural products has been 

fueled by a combination of their biological activities and intricate structures. With regard to 

the latter, the identification and structural elucidation of bis(cyclotryptamine) alkaloids have 

a rich history.2a,b For example, although calycanthine was isolated in 1888, its structure 
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remained a mystery until 1954, when Robinson and Teuber first proposed a plausible 

structural identity.3 At that time, they suggested the existence of five possible distinct ring 

systems, depicted as 1–5, arising from common biosynthon 6 (Figure 1). On the basis of 

degradation studies, piperidinoindoline 5 was postulated as a constitutional isomer of 

calycanthine. However, in 1960, studies by Woodward4 and Hamor5 identified bridged 

bicycle 1 as the correct structure.

Over the subsequent six decades, many isolation reports,6 biosynthetic studies,7 and 

synthetic efforts have been disclosed.2 This has led to the discovery of more than 20 

bis(cyclotryptamine) alkaloids to date.2 Interestingly, of the five possible isomeric scaffolds 

originally proposed, only four have been confirmed to exist (i.e., 1–4) in isolated natural 

products.6 With regard to synthetic studies, completed total syntheses of natural products 

bearing scaffolds 1, 2, and 4 have been most common over the past few decades. Efforts to 

access piperidinoindoline scaffold 5 have been rare. In a seminal study, Scott and co-workers 

are believed to have accessed a compound bearing scaffold 5 in 1967.8 More recently, 

compounds bearing substituted piperidinoindoline scaffolds have been accessed in the 

context of communesin studies, as shown independently by our group and Tang’s group9 

and by Movassaghi’s group.10 Scaffold 5 has not been observed naturally.

Like many laboratories, we have been drawn to the bis(cyclotryptamine) alkaloids because 

of their remarkable structures. These compounds typically feature four nitrogen atoms, 

vicinal quaternary stereocenters (arising biosynthetically from the dimerization of a 

tryptamine derivative2a–c,7), and six interwoven rings. With the aim of potentially accessing 

the various isomeric members of the family, we targeted biosynthon 6. Overman,11 

Movassaghi,12 and others2,13 have elegantly demonstrated the success of this general 

approach to access pyrrolidinoindoline isomer 2 from preformed indoline (or related) ring 

systems.14 In this Communication, we demonstrate an alternative approach to 6 that relies 

on the stereospecific photodecarbonylation of a crystalline ketone to access the requisite 

vicinal quaternary centers, ultimately leading to the synthesis of an alkaloid bearing the 

elusive piperidinoindoline scaffold 5 and its identification in Psychotria colorata flower 

extracts.

Our retrosynthetic approach targeted biosynthon 6 as a potential means to access various 

bis(cyclotryptamine) scaffolds (Scheme 1). As 6 itself would not be isolable, we targeted a 

synthetic equivalent or congener by reduction of bis(lactam) 7 and late-stage C–N bond 

formation. In turn, brominated compound 7 would arise from ketone 9 via a solid-state 

photodecarbonylation reaction. This key step would proceed by Norrish type I 

photodecarbonylation of 9 followed by coupling of radical pair 8. Because of 

conformational restrictions imposed by the rigid reaction cavity of the crystal lattice, as 

illustrated by the dotted lines, the conversion of 9 to 7 was expected to occur with retention 

of stereochemistry. We have previously shown the success of such solid-state 

photodecarbonylation reactions in simpler systems.15–17 Moreover, this key step would 

complement the elegant radical-based approach for accessing cyclotryptamine alkaloids 

pioneered by Movassaghi and co-workers.12 Ketone 9 would be prepared from acid chloride 

10 and enolate 11.18

Dotson et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2 summarizes our synthesis of ketone substrate 9 and the attempted 

photodecarbonylation reaction. Arylmalonic ester 12 was converted to pyrrolidinone 13 
through alkylation with bromoacetonitrile followed by reductive cyclization. Subsequent 

methylation furnished pyrrolidinone 14, which served as a point of divergence. In one 

pathway, 14 was converted to acid chloride 10 through a two-step sequence involving 

saponification and treatment of the resultant carboxylic acid with oxalyl chloride and 

catalytic DMF. In the other sequence, 14 was saponified and then thermally decarboxylated 

to provide amide 15 in 79% yield. To unite the fragments, amide 15 was converted to its 

lithium enolate by deprotonation with LiHMDS. In situ trapping with acid chloride 10 
delivered ketone 9, the desired substrate for photodecarbonylation, as validated by X-ray 

crystallography.19 Of note, only the d,l-diastereomer of 9 was observed, which we attribute 

to a highly ordered transition state mediated by Li+ chelation on the basis of prior literature 

reports.16b With crystalline substrate 9 in hand, we attempted the key solid-state 

photodecarbonylation. However, only a small quantity of the desired product 7 was formed. 

Instead, the mass balance was attributed to competitive disproportionation, giving products 

15 and 16, as well as substantial nonspecific decomposition.20 Although the yield of 7 was 

low, thus limiting late-stage efforts, the formation of 7 served as a proof of principle that a 

solid-state photodecarbonylation could forge the critical vicinal quaternary stereocenters 

with easily modifiable functional groups in place on the aromatic rings.

To improve the efficiency of the photodecarbonylation reaction, we explored structural 

derivatives of ketone substrate 9. Our most promising findings are shown in Figure 2.17 In 

four linear steps, pyrrolidinone 13 was converted to ketone 17 bearing removable p-

methoxybenzyl (PMB) protecting groups (Figure 2A; see the Supporting Information for 

details). With the hope of being able to introduce other N-substituents and identify a 

crystalline substrate, we then attempted to enact oxidative cleavage of the PMB moieties 

using ceric ammonium nitrate (CAN). However, this led to the formation of imide products 

18 and 19. Given that both compounds were high-melting crystalline solids, we tested them 

in the solid-state photodecarbonylation reaction (Figure 2B). Whereas symmetrical ketone 

18 proved completely unreactive, even under prolonged irradiation, we were delighted to 

find that hemiacyl ketone 19 underwent the desired reaction to furnish 21 after N-

deprotection. Of note, despite going through the intermediacy of a radical pair with no 

configurationally inert stereocenters, this decarbonylative C–C bond-forming reaction 

proceeded with high diastereoselectivity and established the vicinal quaternary stereocenters 

present in biosynthon 6.16c,21

The dramatically different reactivities of ketones 18 and 19 can be rationalized by the 

analysis shown in Figure 2C and inspection of the single-crystal X-ray structures (see Figure 

2B)19 for the two compounds. Solid-state photodecarbonylation requires stabilization of the 

breaking C–C σ-bonds by neighboring π-systems.15,22 The extent of these hyper-

conjugative interactions in substrates 18 and 19 can be correlated to the dihedral angle 

between the breaking C–C σ bond and the nearest C–C-bond of the aromatic π-system (see 

bonds highlighted in blue in Figure 2C). A dihedral angle of 90° is ideal, allowing for 

maximum orbital overlap. Alternatively, when the dihedral angle is 0°, the C–C σ-bond and 

π-system are orthogonal, resulting in no electronic stabilization. In considering ketone 18, 
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the two relevant dihedral angles are 85° and 20°, the latter of which presumably leads to 

negligible orbital overlap and failed bond homolysis. On the other hand, the relevant 

dihedral angles in ketone 19 are 69° and 68°, which we surmise provide sufficient orbital 

overlap to facilitate decarbonylation.

Having installed the key vicinal quaternary stereocenters, we turned our attention to the 

elaboration of 21 to a bis(cyclotryptamine) alkaloid (Scheme 3). N-Methylation of 21 
proceeded smoothly to furnish 7 in 84% yield. Next, several attempts to effect double C–N 

bond formation were put forth, but most were deemed unsuccessful, presumably because of 

the highly sterically hindered nature of the C–Br bonds in 7. Eventually, we found that a 

modification of Ma’s copper-catalyzed azidation procedure could be implemented to furnish 

bis(azide) 22.23 Bis(azide) 22 could not be isolated cleanly, despite significant effort, and 

had to be used directly in the subsequent step.24 With the requisite nitrogen atoms installed, 

we then attempted a challenging reduction cascade by treating 22 with LiAlH4 at 90 °C. To 

our surprise, this led to the formation of 25 bearing the elusive piperidinoindoline scaffold.
25,26 The structure of 25, a compound we have termed “dihydropsychotriadine”, was 

ultimately confirmed by single-crystal X-ray diffraction.19 Interestingly, bhesine (26), or 

variants thereof, were not observed. One plausible pathway from 22 to 25 involves double 

azide reduction to furnish intermediate 23, double 5-exo-trig cyclization/transamidation to 

give 24, double cyclization to give the piperidine rings,27 and single amidine reduction.28 

Despite the mechanistic possibilities for the formation of other isomers (e.g., scaffolds 1–4) 

during the reduction of 22, we did not observe any major byproducts by 1H NMR analysis. 

However, the formation of other isomeric products cannot be ruled out at this time.

Prior to unambiguously establishing the structure of 25 by X-ray diffraction, we had 

surmised that 25 could be an aminal stereoisomer of 26. Therefore, 25 was treated under 

Ley–Griffith oxidation conditions to ablate the aminal stereocenter.29 The product, which we 

obtained in 74% yield, was compared to an authentic sample of dehydrobhesine (27) 

obtained from extracts from P. colorata.6a Although our synthetic sample did not match 27, 

the isolation sample also contained a previously unidentified compound representing ~10% 

of the sample mass. This compound was found to spectroscopically match our synthetic 

oxidation product. On the basis of the crystallographic characterization of 25 and NMR 

analysis of the oxidation product, we propose the depicted piperidinoindoline structure for 

compound 28. Because of its presence in the extracts from P. colorata, 28 is presumed to be 

a naturally occurring metabolite that we have now termed “psychotriadine”.30

In summary, we have developed a synthetic route to access “psychotriadine”, a previously 

unknown bis(cyclotryptamine) alkaloid bearing the elusive piperidinoindoline scaffold. Our 

approach features a stereospecific solid-state photodecarbonylation reaction to convert fully 

substituted ketone substrate 19 into 21 bearing vicinal quaternary stereocenters. The success 

or failure of this key step correlates to the solid-state geometry of the ketone substrate. 

Following late-stage C–N bond formation and a reduction cascade, the piperidinoindoline 

framework could be accessed. Reanalysis of P. colorata flower extracts revealed the presence 

of “psychotriadine”, suggesting that it is likely a naturally occurring alkaloid. These studies 

not only underscore the value of solid-state photodecarbonylation chemistry in total 
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synthesis but also demonstrate that all five of the distinct bis(cyclotryptamine) alkaloid 

frameworks originally proposed are represented in nature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Ketodiesters. J. Org. Chem 2001, 66, 4468–4475. [PubMed: 11421764] (b)Campos LM; Dang H; 
Ng D; Yang Z; Martinez HL; Garcia-Garibay MA Engineering Reactions in Crystalline Solids: 
Predicting Photochemical Decarbonylation from Calculated Thermochemical Parameters. J. Org. 
Chem 2002, 67, 3749–3754. [PubMed: 12027689] (c)Ng D; Yang Z; Garcia-Garibay MA 
Engineering Reactions in Crystals; gem-Dialkoxy Substitution Enables the Photodecarbonylation 
of Crystalline 2-Indanone. Tetrahedron Lett. 2002, 43, 7063–7066.

(23). Zhu W; Ma D Synthesis of Aryl Azides and Vinyl Azides via Proline-Promoted CuI-Catalyzed 
Coupling Reactions. Chem. Commun 2004, 888–889.

(24). Optimization efforts for this step were regrettably cut short because of COVID-19-related 
laboratory shutdowns, although preliminary optimization studies showed that the double 
azidation step could be achieved in 51% yield (according to 1H NMR analysis with an external 
standard, average of two experiments).

(25). Although the two-step yield from 7 to 25 proceeds with a 78% loss of mass balance, we surmise 
that most of this (>65%) occurred during the cross-coupling step (based on 1H NMR analysis of 
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crude 22). Therefore, if isomeric products resulted from the reduction of 22 they were present in 
< 13% yield.

(26). “Dihydropsychotriadine” (25) has not yet been found in nature. Whether this compound is 
naturally occurring remains an open question.

(27). Presumed intermediate 24 could plausibly undergo cyclization to form either a six-membered 
ring (observed) or a five-membered ring. It is surprising that the latter was not observed, as 
related reductive cyclizations have been reported to form the five-membered ring under similar 
conditions (see refs 11a–c). Of note, the studies disclosed in refs 11a–c, which include alkyl 
substituents on the oxindole nitrogens, presumably involve reduction of the oxindole to the 
aldehyde oxidation state followed by a reversible, thermodynamically controlled cyclization to 
form a five-membered ring. We speculate that the system disclosed herein may undergo a 
kinetically controlled cyclocondensation of the amine onto the oxindole to form a six-membered 
ring.

(28). Other possible mechanisms exist for the conversion of 22 to 25 that do not involve formation of 
bis(oxindole) 24 (see Scheme S5).

(29). Oxidation conditions adapted from:Higuchi K; Sato Y; Tsuchimochi M; Sugiura K.; Hatori M; 
Kawasaki T First Total Synthesis of Hinckdentine A. Org. Lett 2009, 11, 197–199. [PubMed: 
19055376] 

(30). Calculations suggest that 28 is 8.7 kcal/mol higher in energy than 27 (ωB97XD/6-31G(d,p)). As 
such, it is unlikely that 27 spontaneously rearranges to 28 during isolation. It is plausible that the 
substrate in a lower oxidation state, “tetrahydropsychotriadine”, could readily isomerize to give 
calycanthine or chimonanthine. Related scaffolds reminiscent of “tetrahydropsychotriadine” have 
only been isolated previously when constrained by the presence of additional ring systems (see 
refs 9 and 10). Preliminary efforts aimed at reducing 25 to the corresponding geminal diamine 
either were met with decomposition or led to recovered starting material (see Figure S4).
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Figure 1. 
Possible bis(cyclotryptamine) alkaloid constitutional isomers 1–5 arising from common 

biosynthon 6.
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Figure 2. 
Preparation of substrates 18 and 19, solid-state photodecarbonylation studies, and 

explanation for reaction outcomes (the R groups on imides 18 and 19 have been removed 

from the X-ray renderings for clarity).
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Scheme 1. 
Retrosynthetic Analysis of Biosynthon 6 with Key Stereospecific Radical Combination in 

the Crystalline State
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Scheme 2. 
Synthesis and Photodecarbonylation of Ketone 9
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Scheme 3. 
Total Synthesis of “Psychotriadine” (28) Bearing the Piperidinoindoline Scaffold (the 

Chloride Counterion of the X-ray Structure of 25 Has Been Omitted for Clarity)
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