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Abstract

Real-world predictive models in healthcare should be evaluated in terms of discrimination, the 

ability to differentiate between high and low risk events, and calibration, or the accuracy of the 

risk estimates. Unfortunately, calibration is often neglected and only discrimination is analyzed. 

Calibration is crucial for personalized medicine as they play an increasing role in the decision 

making process. Since random forest is a popular model for many healthcare applications, we 

propose CaliForest, a new calibrated random forest. Unlike existing calibration methodologies, 

CaliForest utilizes the out-of-bag samples to avoid the explicit construction of a calibration set. We 

evaluated CaliForest on two risk prediction tasks obtained from the publicly-available MIMIC-III 

database. Evaluation on these binary prediction tasks demonstrates that CaliForest can achieve the 

same discriminative power as random forest while obtaining a better-calibrated model evaluated 

across six different metrics. CaliForest is published on the standard Python software repository 

and the code is openly available on Github.
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1 INTRODUCTION

Machine learning-based predictive algorithms have been touted as the new frontier of 

healthcare [5, 19]. Random forest has emerged as a popular methodology due to its ability to 

work with a mixture of data types, handle missing data, and achieve high predictive 

performance [2, 4, 12, 17, 27, 32, 33]. Yet, these models are often only evaluated on 

discrimination, or how well the model differentiates between high risk and low risk of the 

event, and fail to provide any analysis of calibration. Calibration, the accuracy of the actual 

risk estimates, is also essential to assess the usefulness of the model [1, 28]. An accurate 

probability estimate is crucial for clinical decision making. For example, if a predictive 

model predicts a woman has a 45% chance of breast cancer, the clinician may refer her for 

chemo-prevention trials [10]. Well-calibrated predictive models are imperative for 
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personalized medicine as they play an increasing role in both clinical care and translational 

research [14].

Unfortunately, a highly discriminative classifier (e.g., a classifier with a large area under the 

receiver operating characteristic (ROC) curve, or AUROC) may not be well-calibrated. 

Several machine learning approaches such as Naive Bayes, decision trees, and artificial 

neural networks have been shown to have exhibit poor calibration [3, 8, 31]. In fact, logistic 

regression model, a widely adopted predictive model in healthcare, may not be well-

calibrated [14]. As a result, various techniques have been proposed to calibrate existing 

predictive models [14, 21, 31] or directly incorporate calibration in the model itself [6, 13]. 

Under the former approach, some of the original training examples must be set aside for the 

purpose of calibration. Unfortunately, in the presence of a limited number of samples (a 

common scenario in healthcare data), this can negatively impact the discriminative power of 

the predictive model in addition to the calibration function itself. Instead, an alternative 

approach is to extend the machine learning model itself to avoid the construction of the 

calibration dataset. It was observed that models using bootstrap replicates, such as the 

random forest, can utilize the out-of-bag samples, or the samples not included from the 

bootstrap process [6]. However, the experimental results did not demonstrate considerable 

improvement compared to the separate calibration dataset.

Therefore, we propose CaliForest, a calibrated random forest that utilizes the variance of the 

individual out-of-bag predictions, to learn a robust calibration function. Instead of naively 

using the out-of-bag predictions which may only reflect one-third of the trees in the random 

forest, CaliForest utilizes the individual out-of-bag sample prediction from each tree. The 

key idea is to calculate the variance associated with each sample to estimate the certainty of 

the out-of-bag prediction. At a high level, if the individual sample predictions have a wide 

range or only appear in a few trees, then the model should be less certain about that 

particular sample. Thus, the variance can be utilized in the form of sample weights to learn a 

robust calibration function.

We compared the performance of CaliForest to random forest with a held-out calibration set 

and the standard random forest without any calibration. The calibration and discrimination 

of the models are evaluated on two risk prediction tasks obtained from the publicly-available 

MIMIC-III database. The empirical results on these binary prediction tasks demonstrate that 

CaliForest can improve calibration, evaluated across six different metrics, without sacrificing 

the discriminative power of random forest. We also published CaliForest as a Python 

package and the code is openly available on Github. This will enable practitioners and 

software developers to develop practical predictive models that achieve high discrimination 

and are well-calibrated.

2 BACKGROUND

In this section, we first describe the common published calibration metrics before reviewing 

existing calibration methods.
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2.1 Calibration Metrics

Unlike AUROC (or the c-statistic) which has been chosen as the de facto measure of 

discrimination in the literature, there is no single reliable measure of calibration. Assuming a 

binary (0/1) risk prediction task and a model that produces an estimated risk probability yi
for each subject i, the commonly published calibration metrics include the following:

• Brier score: The expectation of the squared losses between the actual outcome yi 

and the prediction yiThis score has been shown to measure both discrimination 

and calibration. A perfect calibration model achieves a Brier score of 0, a random 

model with a 50% prevalence rate achieves 0.25, and a perfect misforecaster 

achieves a score of 1.

• Scaled Brier score [26]: A standardized, prevalent-independent version of the 

Brier score with the range between 0 and 1. The score accounts for the mean 

prevalence of the event by dividing the Brier score by the “maximum” Brier 

score achieved by simply predicting the prevalence of the event. A perfect model 

achieves a scaled Brier score of 1.

• Hosmer-Lemeshow test statistic [11]: A statistical goodness-of-fit test to evaluate 

the difference between the predicted and observed event rates. The Hosmer-

Lemeshow C test statistic is defined with an equal number of predicted scores 

divided into 10 groups. A p-value of 1 indicates the model is well-calibrated.

• Spiegelhalter [24]: A statistical test to evaluate whether the Brier score is 

extreme. Spiegelhalter [24] observed that the expectation and variance of the 

Brier score could be calculated under the null hypothesis that the true unknown 

probability of the event was equivalent to the estimated probability. Thus, one 

could determine whether it was different from the observed prevalence. A p-

value of 1 denotes a well-calibrated model.

• Reliability-in-the-small [30]: The error in the average prediction associated with 

each group compared to the average prevalence within the group. The standard 

calculation divides the predicted scores equally into 10 groups. A value of 0 

means perfect calibration.

• Reliability-in-the-large [30]: The difference between the mean prediction and the 

observed fraction of positive outcomes. This is also referred to as the bias of the 

model. A value of 0 means the model was able to reproduce the sample means.

The formulas for the six different scores and test statistics are summarized in Table 1. Note 

that for both Hosmer-Lemeshow and Spiegelhalter, the formulas are for the test statistics that 

are then used to calculate the corresponding p-value using the chi-squared and normal 

distribution, respectively.

The six commonly published metrics have been shown to have limitations. For example, the 

Brier score may be lower for a model that is less well-calibrated than another [23]. Similarly, 

Hosmer-Lemeshow [25] can fail to detect overfitting and is only applicable to small 

samples. Therefore, a recent study of calibration metrics suggests that model calibration 

should be assessed using multiple metrics simultaneously [28].
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2.2 Calibration Methods

Several techniques have been proposed to improve the calibration of existing machine 

learning models. Existing techniques normally utilize a separate data set, the calibration set, 

to learn an appropriate calibration function. The calibration function then produces improved 

probability estimates.

2.2.1 Platt scaling.—Platt proposed the use of the sigmoid function to transform the 

classifier’s outputs into posterior probabilities [21]. In other words, a logistic regression 

model is fit to the classifier’s scores on the calibration set. Additional regularization is often 

applied to the target values to avoid a predicted probability of exactly 0 or 1. It has been 

noted that this method may not produce a well-calibrated model if the estimated 

probabilities are not spread out (e.g., located at the extremes or near the separating plane).

2.2.2 Isotonic regression.—Zadrozny and Elkan [31] proposed a non-decreasing (or 

isotonic) step-wise regression function to address the shortcomings of Platt scaling. The 

benefit of this function is the non-parametric approach which avoids specifying the number 

of bins and the target function shape (e.g., sigmoid). However, the non-parametric isotonic 

regression model requires sufficient samples to properly learn the calibration curve, whereas 

Platt scaling may be preferred in the presence of limited calibration data.

2.2.3 Calibration of Random Forests.—There have been two existing works that 

have focused on the calibration of random forests for better probability estimation. Boström 

[6] observed that for each training sample, an out-of-bag prediction (i.e., prediction by 

averaging trees in the forest for which the sample is not in the training set) can be 

constructed from approximately a third of the trees in the forest. This value can then be used 

to scale the probability using a correction probability. Unfortunately, the experimental 

results did not illustrate considerable improvement when compared with the standard 

technique of utilizing a separate calibration dataset.

3 CALIFOREST

While out-of-bag (OOB) samples can serve as a calibration set, it is important to note the 

key difference between these samples and the calibrations samples. Each sample’s OOB 

prediction will reflect approximately one-third of the trees in the forest, as an average of 

63.2% of the training examples are used to grow an individual tree. Thus, the OOB 

prediction (i.e., predicting by averaging trees in the forest for which the sample is not in the 

training set) may not be truly representative of the actual random forest prediction itself, as 

two-thirds of the model is not participating in the estimation. Consequently, learning a 

calibration function using these noisy, OOB predictions may not yield a substantially better-

calibrated model (as demonstrated by the empirical results in [6]).

CaliForest mitigates the noise in the OOB predictions by utilizing each individual OOB 

sample prediction from each tree. The key observation is to calculate the variance of the 

individual tree predictions to estimate the certainty of the OOB prediction. Conceptually, if 

all the OOB sample predictions for a single sample across the various trees are similar, then 

it is more likely the other trees will produce a similar result. However, if all the OOB sample 
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predictions have a large range, then we should be less certain about that particular sample. 

The calibration model can then leverage this information in the form of sample weights to 

learn a robust calibration function. The process is illustrated in Figure 1.

3.1 CaliForest Sample Weights

For each sample, the estimated prediction from the random forest can be decomposed into 

two parts, the OOB prediction and the non-OOB prediction.

yi
val =

∑k
K fk xi

K
(1)

yi
val =

∑
k

K
fk xi 1 xi ∈ OOBk

∑
k

K
1 xi ∈ OOBk

yi
oob

+
∑

k

K
fk xi 1 xi ∉ OOBk

∑
k

K
1 xi ∉ OOBk

(2)

The OOB prediction can be obtained directly from the random forest, while the non-OOB 

prediction is unobserved. Thus, we can approximate the estimated sample prediction to be 

centered around the OOB prediction with some noise. Under the assumption that there will 

be sufficient trees, the noise will follow a normal distribution centered around 0 with 

unknown variance, σi2:

yi
val = yi

oob + εi, εi Normal 0, σi2 (3)

Since each sample will belong to a varying number of OOB samples (i.e., 0 to total number 

of trees), we estimate the variance of the noise using the Bayesian update associated with an 

Inverse Gamma conjugate prior. Thus, if the ith sample belongs to a large number of OOB 

samples and has a low sample variance, the estimate should be close to the corresponding 

sample variance, σi
oob. If the ith sample is not selected for any OOB samples, then it should 

take the maximum possible variance for a bounded random variable between 0 and 1, which 

is 0.25. Note that the prior variance is thereby assumed to be 0.25 (= β0/α0), or the 

maximum possible variance. Therefore, the variance is estimated using the following 

updates:

α = α0 + nioob/2 (4)

β = β0 + s i
2/2, wℎeres i

2 = Var fk xi ∣ xi ∈ OOBk (5)

σi2 = β/α (6)
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Each sample weight is then inversely proportional to the variance,σi2

wi = 1/σi2 = α/β (7)

The idea is that if the variance is small, then the estimated prediction from the random 

forest, yi
val will be close to the OOB prediction yi

00b. Therefore, the calibration model should 

trust this sample more. However, if the variance is large, then the estimated prediction may 

be quite different from the OOB prediction, and thus should be discounted in the learned 

calibration. The sample weights can then be passed with the OOB predictions to either the 

isotonic regression or logistic regression model.

3.2 Python Package

We developed califorest, an open-source Python package, to enable widespread usage of 

CaliForest. califorest builds on scikit-learn, a standard Python module that integrates a wide 

range of state-of-the-art machine learning algorithms [20]. By following the scikit-learn 

coding convention, a practitioner can easily deploy CaliForest to achieve both good 

discrimination and calibration. The package is published on the Python Package Index 

(PyPI), a standard Python software repository. Therefore, it can be installed using the 

standard “pip install califorest” command. Additionally, the code is also openly available on 

GitHub at https://github.com/yubin-park/califorest under the permissive MIT license. This 

will enable continuous and collaborative development.

The usage of the califorest package is identical to using any machine learning module from 

scikit-learn. First, the package is imported into the Python environment. The CaliForest 

algorithm is then applied by creating an instance of the CaliForest class. The CaliForest 

model is then trained by calling the fit function with two arguments, the input data array (or 

features) and the array of labels. Since CaliForest is a supervised estimator, it also provides 

the predict function to predict the class label for new data. Thus, the usage is as follows:

1 from c a l i f o r e s t import C a l i F o r e s t

2

3 model = C a l i F o r e s t ( )

4 model . f i t ( X_train , y _ t r a i n )

5 model . p r e d i c t ( X_test )

Therefore, CaliForest can be easily exchanged in existing software appplications that already 

utilize the RandomForest classifier from scikit-learn.

The califorest package also contains implementations for five of the six calibration metrics 

(except Brier score) described in Table 1. Note that scikit-learn already has an 

implementation for the Brier score. The calibration metrics also follow the evaluation metric 

convention introduced in scikit-learn. In particular, each metric has its own function and the 
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two arguments to be passed into the function are the true labels and the estimated risk. Thus, 

the usage for the scaled Brier score is as follows:

1 from c a l i f o r e s t import me t r i c s

2

3 me t r i c s . s c a l e d _ b r i e r _ s c o r e ( y_t rue , y_pred )

4 EXPERIMENTAL RESULTS

We will illustrate the benefits of CaliForest on several binary prediction tasks using real-

world electronic health records.

4.1 Data

We used MIMIC-III, a publicly-available, de-identified dataset that contains information 

about intensive care unit (ICU) patients from the Beth Israel Deaconess Medical Center [16]. 

We focused on two varieties of two common risk prediction tasks, mortality and long length-

of-stay (LOS). These prediction tasks were chosen since they have been highlighted as 

benchmark tasks in several existing works [9, 22, 29]. Moreover, random forests have been 

shown to achieve great performance on these tasks [7, 18]. The four binary prediction tasks 

are:

1. In-ICU mortality: Predict whether the patient dies during the ICU stay after ICU 

admission.

2. In-hospital mortality: Predict whether the patient dies during the hospital stay 

after ICU admission.

3. Length-of-stay > 3 days: Predict whether the patient will stay in the ICU longer 

than 3 days.

4. Length-of-stay > 7 days: Predict whether the patient will stay in the ICU longer 

than 7 days.

Table 2 summarizes the statistics for the four prediction tasks.

We used MIMIC-Extract [29], an open-source pipeline, to construct the data cohort and the 

four binary prediction tasks. We use the default cohort construction, which focuses on the 

patient’s first ICU visit and requires patients to be over 15 years old and have at least 30 

hours of data present. Only the first 24 hours of a patient’s data is considered. Time-varying 

labs and vitals are grouped together into hourly summary statistics, and static demographic 

features are one-hot encoded. All the values are mean-centered and scaled to have a unit 

variance. Missing data are imputed using the scheme outlined in [7]. For details of the data 

standardization and aggregation, see [29].
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4.2 Baseline Models and Evaluation Setup

CaliForest is compared with calibrated random forest and the uncalibrated random forest. 

For both CaliForest and random forest, both the Platt scaling and isotonic regression 

function are used as calibration models. Thus, we evaluated five different models:

• CaliForest with isotonic regression (CF-Iso): Our model with the calibration 

model using the isotonic regression function trained on the sample weighted out-

of-bag samples shown in Figure 1.

• CaliForest with Platt scaling (CF-Logit): Similar to the CF-Iso model above 

except the calibration model is the Platt scaling function.

• Random forest calibration with isotonic regression (RC-Iso): The random forest 

model trained on 70% of the training data and the isotonic regression function is 

then learned on the 30% calibration set.

• Random forest calibration with Platt scaling (RC-Logit): Similar to the RF-IOS 

model above except the sigmoid function is learned on the 30% calibration set.

• Random Forest with no calibration (RF-NoCal): The standard scikit-learn 

random forest model learned on the entire training set without any calibration 

model applied.

We did not include the calibrated random forests proposed by Boström [6] as our 

experiments did not show any difference between this model and the Random Forest with 

isotonic regression.

Each model was evaluated using the same 10 Monte Carlo cross-validation samples, each 

with a 70–30 train-test split. We tuned the maximum depth of the decision tree and the 

number of estimators in the random forest model using the out-of-bag samples. It is 

important to note that since both isotonic regression and Platt scaling perform a monotonic 

transformation of the random forest model predictions, the sample rankings are 

predominantly preserved and thus their predictive performance (as measured by AUROC) is 

unlikely to change substantially. We compared each model based on the six commonly 

published calibration metrics (summarized in Table 1) evaluated on the test set. For the 

scaled Brier score, Hosmer-Lemeshow p-value, and Spiegelhalter p-value metrics, the higher 

the number (closer to 1), the better calibrated the model is. For the Brier score, reliability-in-

the-small, and reliability-in-the-large metrics, the lower the number (closer to 0), the better 

calibrated the model is.

4.3 Mortality Prediction

4.3.1 In-hospital mortality.—First, we present an in-depth case study on the in-hospital 

mortality prediction task. Figure 2 presents the AUROC (predictive performance) for the five 

different models over the two hyperparameters, decision tree depth and the number of 

estimators. The predictive performance improves as the individual trees are grown deeper 

(last column of plots with depth=10) and there are more trees (last row of plots with 

n_estimators=300). It can also be observed from the figure that both RC-Iso and RC-Logit 

have a slightly worse performance with deeper trees (depth ≥ 7) due to the difference in 
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training data. Since RC-Iso and RC-Logit are only trained on 70% of the data, the individual 

trees do not generalize as well.

To better understand the impact of the hyperparameters on the calibration performance, 

Figure 3 illustrates the Brier score for each of the five different models. As the trees become 

deeper and there are more trees, the Brier score improves which indicates the overall 

calibration of the models is better. The figure also illustrates the importance of learning a 

calibration function using a calibration set, as the calibrated models all have lower Brier 

scores than RF-NoCal. A closer comparison of the standard calibration approach (RC-Iso, 

RC-Logit) with the non-calibrated version (RF-NoCal) on Figures 2 and 3 illustrate the well-

known trade-off between discrimination and calibration for limited samples. However, 

CaliForest can achieve both comparable discriminative performance with the non-calibrated 

version and have the lowest Brier score amongst all the models. This illustrates the power of 

utilizing the sample weights to estimate a better calibration function.

Figure 4 plots the performance of the five models using depth = 10 and 300 trees across the 

six different metrics. For the top row (i.e., scaled Brier score, Hosmer-Lemeshow p-value, 

and Spiegelhalter p-value), a higher value signifies better calibration while for the lower row 

(i.e., Brier score, reliability-in-the-small, and reliability-in-the-large), a lower value indicates 

a better calibration model. Except for the reliability-in-the-large, across all other five 

calibration metrics, CF-Iso outperforms the other 4 models. In fact, the performance 

differences for the reliability-in-the-large are not statistically significant given the range of 

the values (≈ 1e − 5). As can be seen, the calibrated models generally outperform the 

standard random forest model across all the metrics.

Figure 5 explores the relationship between the sample weights, the OOB prediction, and the 

isotonic fit. In Figure 5a, we observe that about a half of the samples have small weights 

(weight ≤ 50), while another half have a large weight (weight ≥ 200). This indicates that 

there are two groups of OOB predictions: reliable and unreliable predictions. The plot (5a) 

also illustrates the limitation of naively using the OOB prediction itself to learn the 

calibration function, as a significant portion of the OOB samples will be noisy.

Figure 5b plots the relationship between the OOB prediction and the sample weights. The 

majority of the small weights (weight ≤ 50) are associated with non-zero estimated risk 

yi
oob > 0.25  This suggests that a handful of trees are certain these samples should be 

positive and are pushing up the OOB prediction scores, but in fact there is a large variance in 

the estimated predictions themselves. Thus, the learned calibration function can potentially 

pull these values down. This is further substantiated in Figure 5c which showcases that the 

piece-wise step function isotonic regression has a linear relationship for the lower values 

before flattening out towards the larger OOB predictions.

4.3.2 In-ICU mortality.—Next, we evaluate the calibration of the various random forest 

models on the In-ICU mortality task. The best performance is achieved with deeper trees 

(depth = 10) and more trees (number of estimators=300). In addition, the discrimination is 

similar between CF-Iso, CF-Logit, RF-NoCal, while RC-ISo and RC-Logit have a slightly 

lower performance due to setting aside 30% for a calibration set as shown in Figure 6a.
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Figure 7 plots the performance of the five models on the six different calibration metrics. 

Similar to the in-hospital mortality task, CF-Iso generally achieves the best calibration. The 

exceptions where CF-Iso is not noticeably better are according to the Spiegelhalter p-value 

and the reliability-in-the-large. However, the variance of the Spiegelhalter p-value across the 

10 different cross-validation samples for CF-Iso is smaller than RC-ISO and RC-Logit. 

Also, the performance differences of the reliability-in-the-large are not statistically 

significant given the range of the values. Thus, Figure 7 suggests that CF-Iso is overall the 

best-calibrated model. The figure also showcases that calibrating the random forest model 

generally seems to help the overall-calibration compared to the non-calibrated case (RF-

NoCal).

4.4 Length-of-stay Prediction

4.4.1 Length-of-stay > 3 days.—Next, we evaluate the calibration of the various 

random forest models on predicting whether the patient will stay in the ICU longer than 3 

days. The best performance is achieved with deeper trees (depth = 10) and more trees 

(number of estimators=300). In addition, the discrimination is similar between CF-Iso, CF-

Logit, RF-NoCal, while RC-ISo and RC-Logit have a slightly lower performance due to 

setting aside 30% for a calibration set as shown in Figure 6b.

Figure 8 plots the calibration performance on the task of predicting Length-of-stay > 3 days. 

Similar to the previous two tasks, CF-Iso generally achieves the best calibration. Unlike the 

previous mortality prediction tasks, there is no clear benefit of setting aside a calibration set 

to improve the calibration. For scaled Brier score, Brier score, and the Hosmer-Lemeshow p-

value, there is no noticeable improvement in Figure 8. This coupled with the decrease in 

discriminative performance (shown in Figure 6b) illustrates the limitation of the separate 

calibration set.

4.4.2 Length-of-stay > 7 days.—Last, we evaluate the calibration of the various 

random forest models on predicting whether the patient will stay in the ICU longer than 7 

days. The best performance is achieved with shallower trees (depth = 5) and more trees 

(number of estimators=300). We observe that similar to the previous three tasks, the 

discrimination is similar between CF-Iso, CF-Logit, RF-NoCal, while RC-Iso and RC-Logit 

have a slightly lower performance due to setting aside 30% for a calibration set as shown in 

Figure 6c. Figure 9 plots the calibration performance of the models on 7 day LOS. As was 

the trend for the other three tasks, CF-Iso outperforms the other models.

5 DISCUSSIONS

We introduced CaliForest, a calibrated random forest model, to improve the calibration of 

random forest without sacrificing the discrimination ability of the model. CaliForest utilizes 

the OOB samples to learn the calibration model. However, instead of blindly trusting the 

OOB predictions, CaliForest considers the variance of the OOB prediction to determine the 

importance of the sample. By accounting for the uncertainty in the non-OOB predictions, the 

learned calibration function can substantially improve the calibration of the models.
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We demonstrated CaliForest on four binary prediction tasks using MIMIC-III data. Our 

empirical results illustrate the benefits of utilizing the OOB predictions to estimate the 

sample weights and predictions, which are both then used to learn the calibration function. 

The results across the four tasks suggest that using isotonic regression as the calibration 

method maintains the same discrimination of the standard random forest, while improving 

the calibration of the model measured on a variety of calibration metrics.

An interesting observation drawn from the experiments is that CaliForest using the Platt 

scaling function as a calibration model did not always yield improved calibration. One 

hypothesis is the sigmoid function was not an appropriate calibration function for these 

tasks, as the risk predictions may be biased. Another hypothesis is that the sample weights 

need to be tailored for the sigmoid function separately. Further exploration of the sample 

weights for the Platt scaling function is left for future work. In addition, CaliForest can be 

generalized to encompass other calibration functions such as the adaptive calibration 

procedure introduced in [14] or the Venn-Abers predictors [15].

CaliForest is published on the standard Python software repository under the califorest 

package and the code will be openly available on Github (URL: https://github.com/yubin-

park/califorest). The package enables software developers to easily exchange existing 

software deployments that utilize the random forest classifier from scikit-learn with 

CaliForest for improved calibration. Moreover, the release of the califorest package also 

enables calibration to be examined more thoroughly, with the calibration metrics described 

in Table 1 already implemented.
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Figure 1: 
An illustration of the CaliForest process. The key observation is the use of the individual 

predictions on the out-of-bag sample to calculate a weight associated with each sample.
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Figure 2: 
[In-hospital Mortality] AUROC over different hyperparameters with maximum tree depth = 

[5,7,10] (column) and number of estimators = [100,200,300] (row).
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Figure 3: 
[In-hospital Mortality] Brier Score over different hyperparameters with maximum tree depth 

= [5,7,10] (column) and number of estimators = [100,200,300] (row).
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Figure 4: 
[In-hospital Mortality] Calibration metrics for the five models with depth = 10 and number 

of estimators = 300.
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Figure 5: 
[In-hospital Mortality] Sample weight characteristics for CF-Iso using depth = 10 and 

number of estimators = 300.
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Figure 6: 
AUROCs for the best hyperparameter for the ICU-Mortality, 3 and 7 Day LOS prediction 

tasks.
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Figure 7: 
[ICU Mortality] Calibration metrics for the five models with depth = 10 and number of 

estimators = 30.
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Figure 8: 
[3 Day LOS] Calibration metrics for the five models with depth = 10 and number of 

estimators = 300. The calibration performance of CF-Logit is not displayed due to its 

unstable performance.
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Figure 9: 
[7 Day LOS] Calibration metrics for the five models with depth = 5 and number of 

estimators = 300. The calibration performance of CF-Logit is not displayed due to its 

unstable performance.
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Table 2:

The summary statistics for the four prediction tasks.

Task Samples Features Prevalence

In-hospital Mortality 23,937 7,488 10.52%

In-ICU Mortality 23,937 7,488 7.09%

Length-of-stay > 3 23,937 7,488 42.96%

Length-of-stay > 7 23,937 7,488 7.70%
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