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Background
Glioblastoma is the most common aggressive primary brain tumor having profound 
genomic heterogeneity and high recurrence rate [1]. Although the survival of GBMs 
has improved with the advancement of modern combination therapies, the prognosis of 
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Background:  Neoantigen based personalized immune therapies achieve promising 
results in melanoma and lung cancer, but few neoantigen based models perform well 
in IDH wild-type GBM, and the association between neoantigen intrinsic features and 
prognosis remain unclear in IDH wild-type GBM. We presented a novel neoantigen 
intrinsic feature-based deep learning model (neoDL) to stratify IDH wild-type GBMs 
into subgroups with different survivals.

Results:  We first derived intrinsic features for each neoantigen associated with sur-
vival, followed by applying neoDL in TCGA data cohort(AUC = 0.988, p value < 0.0001). 
Leave one out cross validation (LOOCV) in TCGA demonstrated that neoDL successfully 
classified IDH wild-type GBMs into different prognostic subgroups, which was further 
validated in an independent data cohort from Asian population. Long-term survival 
IDH wild-type GBMs identified by neoDL were found characterized by 12 protective 
neoantigen intrinsic features and enriched in development and cell cycle.

Conclusions:  The model can be therapeutically exploited to identify IDH wild-
type GBM with good prognosis who will most likely benefit from neoantigen based 
personalized immunetherapy. Furthermore, the prognostic intrinsic features of the 
neoantigens inferred from this study can be used for identifying neoantigens with high 
potentials of immunogenicity.
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most GBMs remains poor and varies considerably among patients [2], revealing a dismal 
median duration of 14 months [3, 4].

Neoantigens are from mutation-containing proteins that generate novel immunogenic 
epitopes [5]. High nonsynonymous mutation loads harbor more neoantigens presented 
to CD8+ T cells on restricted HLA-I subtypes [6–8], leading to stronger immunogenic-
ity and better overall survival in melanoma [9], lung cancer [10], and colorectal tumors 
[11]. However, in gliomas, higher mutational load means increased tumor aggressive-
ness [12]. Neoantigens are pivotal in personalized immunetherapies, promoting tumor-
specific T-cell responses and affecting antitumor immune responses in a number of 
preclinical models [13, 14]. Although high-quality neoantigen model performed well in 
identifying IDH wild-type GBMs with the longest survival [15], the number of high qual-
ity neoantigens were limited, making clinical application difficult. The occurrence and 
characterization of neoantigen in pan-cancer showed that all positions in neoepitopes 
containing more hydrophobic residues than the wild-type [16], but the comprehensive 
features of neoantigens associated with prognosis and immunoreaction in IDH wild-
type GBM remain elusive.

Deep learning models can derive features from noisy and raw data by learning high-
level representations [17, 18]. Their flexibility and adaptability lead to their wide applica-
tion in biomedical imaging [19], showing excellent level-accuracy in precise diagnosis 
and prognostic stratification of colorectal [20], prostate [21, 22], melanoma [23], and 
gliomas [24]. Deep learning also demonstrates its strong abilities in predicting Glioma 
grades [25], Glioma genetic mutation [26] and survival [27]. Recently, neoantigen-based 
machine learning is reported to predict neoantigen immunogenicity in colon and lung 
adenocarcinomas [28].

Here, we present a neoantigen intrinsic feature based deep learning model (neoDL), 
successfully stratifying IDH wild-type GBMs of TCGA into different prognostic sub-
groups (Additional file 1: Figure S1). Our model was further validated in an independ-
ent data from Asian population, even demonstrating its strong predictive power in some 
higher-grade gliomas, including Classical, Classical-like, Glioblastoma, IDH wild-type, 
Mesenchymal-like. GBMs identified by neoDL with better prognosis enriched in devel-
opment, and cell cycle. Our neoDL has important implications in diagnosis and prog-
nosis of IDH wild-type GBMs, and helps identify GBMs who most likely benefit from 
neoantigen based personalized immunetherapy.

Results and discussion
Identification of neoantigen intrinsic features associated with the overall survival of IDH 

wild‑type GBMs

Tumor mutational burden has been described as a predictor of tumor behavior and 
immunological response [29], with improved survival and immunotherapy response 
in melanomas [30], ovarian [31], and bladder carcinoma [32]. We calculated missense 
mutational load for 262 and 42 IDH wild-type GBMs in TCGA and Pri-cohort, respec-
tively, finding no statistically significantly different overall survival between higher and 
lower mutation loads (Fig. 1A, B), consistent with the previous research [15]. Similarly, 
mutation loads were found either not prognostic or related to worse survival in 16 dif-
ferent glioma subtypes (Additional file  1: Figure S2). High missense mutational load 
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harbored more neoantigens, rendering them more susceptible T-cell targets [33]. The 
neoantigen quantity also failed to predict the survival of IDH wild-type GBMs (Fig. 1C, 
D) and 16 different glioma subgroups (Additional file 1: Figure S3). DAI, defined as dif-
ference between binding affinity of wildtype and mutant-type peptides for MHC class 
I, was reported to be a better predictor of survival and immunogenicity in advanced 
lung cancer and melanoma [34]. We calculated the average DAI of each sample in both 
TCGA and Pri cohort, finding that DAI model failed in predicting the overall survival of 
IDH wild-type GBMs (Fig. 1E, F) and 16 different glioma subgroups (Additional file 1: 
Figure S4).

An immunogenic neoantigen must possess structural and physical properties dis-
tinct enough to promote efficient recognition by T cells [35]. We calculated a total of 
2928 features for each neoantigen and its wild-type peptide, including physical–chemi-
cal properties, AA (amino acid) features, and AA descriptors at each absolute posi-
tion, composed-dipeptide and tripeptide at the site of mutation, and the dipeptides and 
tripeptides related to the mutation site, and complete sequence (Fig. 2A). The Shannon 
entropy and the AA composition were also calculated. We then performed Cox regres-
sion to estimate the association between the feature values and overall survival in IDH 
wild-type GBMs of TCGA, finding 189 prognostic features (termed as valid features) 
(Fig. 2B), among which the most significant positive associations were aliphatic AA in 
the absolute site 4 (Mutated peptide 4 Aliphatic), ST-scales4 descriptors of site 3 and 
4 compose-dipeptide (Mutated peptide 3–4 ST4), and Nonpolar AA in the absolute 
site 4 (Mutated peptide 4 Non.polar). The most significant negative associations were 
theVHSE-scales6 descriptors, PP1 descriptors, and polar AA at the absolute position 
4 (MT.peptide 4 VHSE6, MT.peptide 4 PP1, MT.peptide 4 polar). After calculating the 
correlation of valid features, we discovered that correlated feature modules were con-
sistent across IDH wild-type GBM (Fig. 2C) and 16 different glioma subtypes in TCGA 
cohort (Additional file 1: Figure S5).

To further evaluate the prognostic value of valid features, we conducted Cox regression 
analysis in an independent data of Pri cohort, revealing 22 valid features significantly 

Fig. 1  Missense mutational load, number of neoantigens and DAI fail to predict the survival of IDH wild-type 
GBMs. A–F Stratification of GBMs based on missense mutational load for A TCGA cohort, and B Pri cohort; on 
number of neoanigens for C TCGA cohort, and D Pri cohort; on DAI for E TCGA cohort, and F Pri cohort. n is 
number of patients. p value was from log-rank test. red (or blue) line is high (or low) mean value
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associated with the overall survival (Fig.  2D). The most significant positive associa-
tions were VHSE-scales6 at the 7 sites (Mutated peptide 7 VHSE6), basic AA at the site 
5 (Mutated peptide 5 basic), VHSE-scales5 at the 6 site (Mutated pep 6 VHSE5). The 
most significant negative associations were mainly related to the characteristics of the 
positions 3 and 4 composed-dipeptide, including protFP2, VHSE-scales2, and molecular 
weight. Particularly, 12 features had shown strong mutual correlation, mainly associated 
with the molecular weight and molecular size/volume of the position 3,4 composed-
dipeptide, and molecular electrostatic of the position 2–4 composed-tripeptide (Fig. 2E). 
Moreover, the 12 features were protective factors (HR < 1) in both TCGA cohort (Fig. 2F) 
and Pri cohort (Additional file 1: Figure S6).

Deep learning model using neoantigen intrinsic features predicted IDH wild‑type GBMs 

with better survival

Deep learning methods learn high-level representations with multilayer computational 
models, and are advantageous in learning high-dimensional datasets [17]. LSTM can 
avoid the problem of vanishing gradient [36], and has the ability to remember all previ-
ous data. To stratify IDH wild-type GBMs, we constructed a valid feature-based deep 
learning model including three hidden layers (two LSTM layers and one fully connected 
layer) with 128, 32, 8 nodes, respectively (Fig. 3A). We chose the Sigmoid function as 
neuron activation function for fully connected layer, MSE as the loss function and Adam 

Fig. 2  Prognostic neoantigen intrinsic features. A The classes of neoantigen-intrinsic features including 
characteristics at each absolute position, dipeptide, tripeptide, Mutant position, Mutant position 
dipeptide&tripeptide. Red numbers are the positions of amino acids in neoantigen. B, D Volcano plots 
representing log2(HR) (x-axis) and − log10 (p value) (y-axis) for each feature. B All features in TCGA cohort; 
D valid features in Pri cohort. Horizontal dashed line represents p value of 0.05 and the vertical one is HR of 
1. Colored spot represents p value lower than 0.05, with red (or blue) representing HR above (or below) 1. 
C, E Correlations between valid features. C TCGA cohort; E Pri cohort. Red (or blue) is positive (or negative) 
correlation. F Forest plot for 12 peptide features in TCGA cohort.· p value < 0.1; *p value < 0.05; **p value < 0.01
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as the iterative optimizer with the number of iterations set as 1000. When setting 1000 
epochs when training the model, loss approaches to zero and accuracy approached to 
100%. Predicting accuracy in cross validation continuously remained at a high level (over 
90%), showing that the model was not over-fitting (Additional file 1: Figure S7). The sam-
ples in TCGA cohort (containing 262 labeled samples) were used as training data, while 
the samples in Pri cohort (containing 42 unlabeled samples) as external testing data. 
TCGA cohort was labeled based on the result of hierarchical k-means clustering, which 
stratified the data into a short-term survival group (cluster = 1, n = 126) and a long-term 
survival group (cluster = 2, n = 136).

To validate the reliability of the deep learning model, we performed 300 random trials 
with each splitting the samples into training set and testing set at the ratio of six vs four. 
The two sets were extracted separately from short- and long-term survival group with 
the specific ratio, thus the training set contains 60% of cluster 1 samples (n = 76) and 
60% cluster 2 samples (n = 82). In each trial, the parameters learned in the training set 
were applied in the testing set. In 275 out of 300 trials, IDH wild-type GBMs in TCGA 
were successfully separated into two significantly different prognostic subgroups (p 
value < 0.05) (Fig. 3B left). The optimal parameter settings were determined and applied 
to randomly selected 60% of IDH wild-type GBMs in TCGA. In 299 of 300 randomly 
selected 60% of IDH wild-type GBMs in TCGA, our trained deep learning model suc-
cessfully separated patients into two subgroups with significantly different overall sur-
vival (Fig.  3B right), demonstrating the stability and reliability of our model. We then 
applied the trained model to stratify all IDH wild-type GBMs in TCGA into two prog-
nostic subgroups (AUC = 0.988, p value < 0.0001, Fig.  3C, Additional file  1: Table  S7). 
As an independent validation, we successfully applied the trained model to separate 
IDH wild-type GBMs in an independent data (Pri GBM cohort) into two prognostic 

Fig. 3  Deep learning model predicts survival of GBM. A Deep learning model diagram. B Left, p value 
distribution representing − log (p value) (x-axis) and times (y-axis) for 300 times in cross validation of TCGA. 
Right, Reliability verification of the trained model in 300 repeats with each randomly selecting 60% GBMs in 
TCGA. C, D Survival of GBMs stratified by the trained model in C TCGA cohort and D Pri cohort. Red line is the 
prediction label of 0, and blue line is 1. p value was from log-rank test. n is number of GBMs
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subgroups (p value = 0.037, Fig.  3D). We also successfully applied the trained model 
to divide patients into two different prognostic subgroups for GBM, IDH wildtype, 
Classical, Classical-like, Mesenchymal-like subtypes in TCGA pan-glioma cohort (p 
value < 0.05 for all subtypes) (Additional file 1: Figure S8). The flow chart of the neoDL 
model was visualized (Additional file 1: Figure S1).

The prognostic characteristics of 12 protective intrinsic features

To characterize the 12 protective intrinsic features in the molecular weight, molecu-
lar size of dipeptide, and molecular electrostatic potential of tripeptide, we compared 
their distributions in the short- and long-term survival IDH wild-type GBMs. Compared 
with the short-term survival GBMs, the long-term survival patients exhibited statisti-
cally significantly higher molecular weight of dipeptide at the site 3 and 4 (p value < 0.05; 
Fig. 4A; Additional file 1: Figure S9a), molecular size-related features (Kidera Factors 2, 
Z-scale 2, T-scale 1, protFP2, VHSE-sclae 2, VHSE-sclae 3, VHSE-sclae 6, ST-scale 1) (p 
value < 0.05; Fig. 4B; Additional file 1: Figure S9b) and the electrostatic potential related 
features (BLOSUM2 and MESHIM1) (p value < 0.05; Fig.  4C; Additional file  1: Figure 
S9c) in both TCGA and Pri-cohort.

Fig. 4  Characteristics of prognostic features. A–C Comparison of feature values between long- and 
short-term survival IDH wild-type GBMs. A molecular weight of dipeptide composed with sites 3 and 4. B 
VHSE-scales2 of dipeptide composed with sites 3 and 4. C BLOSUM2 of tripeptide composed with sites 2 and 
4. The upper and the lower panels are TCGA cohort and Pri cohort, respectively. p value was from unpaired T 
test. D–G Comparison of the amino acid occurrence frequency for each position between the two groups. 
D Long- and E short-term survival patients in TCGA cohort. F Long- and G short-term survival patients in Pri 
cohort. The letter size is proportional with the occurrence
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Univariate and multi-variate Cox regression [37] analysis demonstrated that two of 
12 features (VHSE2 and protFP2) were associated with the overall survival in the two 
cohorts (Additional file 1: Table S1, Additional file 1: Table S2, Additional file 1: Table S3 
and Additional file  1: Table  S4). Kaplan Meier analysis demonstrated statistically sig-
nificantly different overall survival between the low-value (below mean) and high-
value (above mean) groups of IDH wild-type GBMs stratified by the two features. The 
patients with high-value (above mean) had a significantly longer overall survival (for 
protFP2: p value = 0.002 in TCGA cohort and p value = 0.03 in Pri cohort; for VHSE2: p 
value = 0.018 in TCGA cohort and p value = 0.11 in Pri cohort) (Additional file 1: Figure 
S10a–b). Furthermore, the two feature-based stratification of the IDH wild-type GBMs 
were found independent of age and mutational load. The two features also exhibited 
strong correlations (R = 0.87, p value < 2.2e−16 for TCGA; R = 0.91, p value < 2.2e−16 
for Pri Cohort) (Additional file 1: Figure S10c).

The distributions of amino acid residue for neoantigens between long- and short-term 
survival groups were examined, revealing that the ratios of amino acid residues at posi-
tions 3 and 4 were significantly different (Fig. 4D–G). At the site 3, the patients with neo-
antigens containing a lower frequency of L and S amino acids and a higher frequency of 
R amino acid survived longer than those with the opposite frequencies in both cohorts. 
The enrichment of residues R and S at site 4 of neoantigens were evident in the long-
term survival of IDH wild-type GBMs. The ratios of L and G at site 4 of neoantigens 
increased in the short-term survival patients.

Tumor purity and functional annotation of gene expression in GBM

We calculated the tumor purity, immune score, and stromal score using gene expres-
sion data for each patient in both TCGA and Pri cohorts. No significant differences were 
observed between long- and short-term survival of IDH wild-type GBMs (Fig.  5A, B 
for tumor purity, Additional file 1: Figure S11a for immune scores and S11b for stromal 
scores). No correlations were discovered between purity levels and mutational burden 
(Additional file 1: Figure S11C).

To understand the mechanisms in transcriptomic architecture, we conducted GSEA 
[38, 39], an algorithm for determining whether a set of genes differs between two bio-
logical states, between long- and short-term survival groups of IDH wild-type GBMs 
in both TCGA and Pri cohorts, respectively. Enrichment map analysis of deregulated 
GO terms in TCGA data demonstrated that GO terms related to development and cell 
cycle were enriched in long-term survival patients (Fig. 5C, Additional file 1: Table S5 
and Additional file 1: Table S6). In Pri cohort, the most significant biological processes 
enriched in longer-survived GBMs were development associated GO terms such as epi-
dermis development, cell cycle, which were also identified in TCGA cohort (Fig. 5D).

Conclusion
In this paper, we presented a prognostic prediction deep learning model based on 
neoantigen intrinsic features. Although several survival prediction models have been 
reported based on the expression of several genes [40–42] or medical images [43, 44], 
they are not related to neoantigens and immune response. As neoantigens are associated 
with tumor-specific T-cell responses and anti-tumor immune responses, the method we 
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provided can help predict the prognosis of IDH wild-type GBM patients who will likely 
benefit from neoantigen based personalized immunetherapy.

Our model achieved good predictive performances in two independent data cohorts 
of IDH wild-type GBMs (KM: log rank p value < 0.0001 in TCGA cohort; 0.037 in Pri 
cohort) and even in some other high-grade glioma subtypes. Currently, the vast majority 
of deep learning models (such as DeepLearningModel [45] and PASNet [46]) are based 
on gene expression, clinical information and medical image data for learning modeling, 
and there are few predictions of GBM patient survival based on the nature of neoanti-
gens. We compared our neoDL with them and found that neoDL performed better than 
DeepLearningModel and PASNet (Additional file 1: Table S7). GBMs predicted by our 
model to have better survival enriched in development and cell cycle. Two correlated 
neoantigen features (VHSE2 and protFP2) were identified to stratify GBMs into a high- 
and low-value subgroup with significant different survival independent of other clinical 
and pathological characteristics.

Of 189 valid features, 12 protective features associated with survival in both cohorts 
were amino acid molecular weight, molecular size/volume, and electrostatic potential/
polarity, which were characterized by close relation with the amino acid properties 
at the positions 3 and 4 of the neoantigen, confirmed by the amino acid distributions 
between different survival groups. The features at the site 3 and 4 of the neoantigen may 
have potential effects on the survival of GBMs and immunotherapy response, and they 
are worthy of further investigation.

In this study, we focused on sequence structure in this study, but not on secondary and 
tertiary protein structure. More features may be integrated into the model to improve 

Fig. 5  Tumor Purity and enriched gene network in GBM. A, B Tumo purity between long- and short-term 
survival groups. A TCGA cohort. B Pri cohort. p value was from two-tailed student T test. C, D Enriched gene 
network in TCGA cohort (C) and Pri cohort (D). Nodes represent GO terms with size proportional to number 
of genes. Lines are the fraction of genes shared between groups
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predictive power, which shall be resolved in the future. The deep learning methods (such 
as DeepCoxPH [47] and FuzzyDeepCoxPH [48]) reported to be effective in other sce-
nario can also be used to augment the prognostic evaluation and improve decision-mak-
ing in glioma. To predict the patients’ outcome, more studies related to generalizability 
test are still in need.

Methods
Data description

Mutations and clinical information were from the ATLAS-TCGA pan-glioma study [49]. 
Gene expression data (G4502A) at level 3 were from TCGA Data portal. We termed the 
data from TCGA as TCGA cohort. Mutations, RNAseq data, and clinical information in 
Asian population were from a recently published cohort [50], designated as Pri cohort. 
The samples that not diagnosed as IDH wild-type GBM or have clinical information lost 
were removed, resulting in 268 and 46 samples in the two cohorts, respectively.

A neoepitope with strong affinity for MHC ( IC50 ≤ 500  nM) may be a more robust 
neoantigen candidate if the paired wild-type epitope has a poor affinity for MHC ( IC50 
> 500 nM) [51]. The neoantigens and their corresponding wild-type peptides for each 
sample in TCGA cohort and Pri cohort were from our previous study [15], which used 
missense mutations to generate all possible 9-mer peptides and defined the mutant 
9-mer peptides as neoantigens when the IC50 of mutant-type peptides was < 500 nM and 
the corresponding wild-type binder > 500 nM.

Feature calculation for neoantigens

262 (TCGA cohort) and 42 samples (Pri cohort) with detected neoantigens remained in 
the downstream analysis. 2928 features (Additional file 1: Table S8) were extracted from 
2263 neoantigens (2081for TCGA cohort; 182 for Pri cohort) using R: ‘Peptides’(v2.4.2) 
for 66 amino acid descriptors and 10 physical–chemical properties, aaComp for amino 
acid composition of neoantigens, and custom scripts for features from Shannon entropy 
(Additional file 1).

Prognostic feature selection

The features were calculated for all neoantigens and wild-type peptides, followed by 
averaging all feature values in each patient. Univariate Cox regression analysis was to 
predict the prognostic impact of each feature. 189 features with p value ≤ 0.05 were 
termed as valid features (Additional file 1: Table S9). Correlation matrix of the valid fea-
tures were visualized through heatmaps using R:‘pheatmap’.

Hierarchical k‑means clustering

Hierarchical k-means clustering was applied upon Z-Score-transformed valid features 
to stratify patients into two clusters using the "hkmeans" command of the R: ‘factoextra’ 
(version 1.0.7).

Deep‑learning model construction

The valid features in TCGA cohort were used to train deep learning model. The groups 
from hierarchical k-means clustering were used as labels. Z-Score-transformed were 
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applied upon feature values of valid features to avoid gradient disappearance problem. 
The LSTM (Long short-term memory) deep learning model was built with three hidden 
layers (two LSTM layers and one fully connected layer), with each containing 128, 32, 
and 8 nodes, respectively. We chose the Sigmoid function as neuron activation function 
for fully connected layer, since we wanted to map the original statistics to a single num-
ber with domain of 0–1 through learning, which refered to the final classification result. 
The original data were normalized using z-score, therefore no serious gradient vanishing 
problem would be caused when using Sigmoid fuction as activation function. For hyper-
parameters, we chose MSE as the loss function and Adam as the iterative optimizer with 
the number of iterations set as 1000. MSE is a commonly used loss function in regres-
sion problem, thus we utilized such function to calculate the preference of a sample. The 
initial connection weights and biases of each layer were randomly generated, and end up 
reaching stable parameters through training iterations.

Leave one out cross validation (LOOCV)

Cross validation was performed as follows. TCGA cohort was randomly separated 
into training and test sets at the ratio of six to four. To obtain the optimal model, the 
above randomizations were conducted 300 times. For each randomization trial, the 
model parameters were trained in the training sets. The trained model was applied to 
stratify the test set into two subgroups, followed by Kaplan–Meier survival analysis. p 
value ≤ 0.05 were regarded as statistically significant. The optimal parameter settings 
were determined from 300 randomization trials. To evaluate the reliability, the trained 
model were then applied to randomly selected 60% of IDH wild-type GBMs in TCGA, 
which were repeated 300 times.

Independent validation

Pri cohort was used as an external test data to test the performance of the trained model, 
which divided patients into long- and short-term survival clusters. Other glioma sub-
types from TCGA were also used to test the trained model, including Astrocytoma, 
Classical-like, Classical, Codel, Glioblastoma, G-CIMP-high, IDH-MT-codel, IDH-MT-
noncodel, IDH-MT, IDH-WT, Mesenchymal-like, Mesenchymal, Neural, Oligodendro-
glioma, Proneural and OligoAstrocytoma.

Tumor purity estimation

Tumor purities were estimated by ESTIMATE [52] using R: ‘estimate’(version 1.6.7). 
There were 242 (TCGA cohort) and 29 IDH wild-type GBMs (Pri cohort) with gene 
expression profiles available.

GO enrichment analysis

GO enrichment analysis was conducted using Gene Set Enrichment Analysis (GSEA 
4.0.3). The GO terms were from the Molecular Signatures Database (c5.all.v6.2.symbols.
gmt). Gene sets with FDR < 0.05 were considered as differentially expressed, and visual-
ized using Cytoscape [53]. The GSEA results were shown in Additional file 1: Table S5 
and Additional file 1: Table S6.
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Statistical analysis

Variables between groups were compared by the unpaired T test, a Parametric test 
method which compares two different subjects. Correlations were evaluated by Pearson 
correlations. Kaplan–Meier survival and Cox regression analyses were performed using 
R: survminer" and "survival". p value ≤ 0.05 was determined as significance in all tests. 
All analyses were conducted in R and Python.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04301-6.

Additional file 1. Description of neoDL and supplementary results.
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