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Plasticity and Enzymatic
Degradation Coupled With
Volumetric Growth in Pulmonary
Hypertension Progression
Pulmonary hypertension (PH) is one of the least understood and highly elusive cardio-
vascular conditions associated with elevated pulmonary arterial pressure. Although the
disease mechanisms are not completely understood, evidence has accumulated from
human and animal studies that irreversible processes of pulmonary arterial wall damage,
compensated by stress-mediated growth, play critical roles in eliciting the mechanisms of
disease progression. The aim of this study is to develop a thermodynamic modeling struc-
ture of the pulmonary artery to consider coupled plastic-degradation-growth irreversible
processes to investigate the mechanical roles of the dissipative phenomena in the disease
progression. The proposed model performs a model parameter study of plastic deforma-
tion and degradation processes coupled with dissipative growth subjected to elevated
pulmonary arterial pressure and computationally generates in silico simulations of PH
progression using the clinical features of PH, found in human morphological and
mechanical data. The results show that considering plastic deformation can provide a
much better fitting of the ex vivo inflation tests than a widely used pure hyperelastic
model in higher pressure conditions. In addition, the parameter sensitivity study illus-
trates that arterial damage and growth cause the increased stiffness, and the full simula-
tion (combining elastic-plastic-degradation-growth models) reveals a key
postpathological recovery process of compensating vessel damage by vascular adapta-
tion by reducing the rate of vessel dilation and mediating vascular wall stress. Finally,
the simulation results of luminal enlargement, arterial thickening, and arterial stiffness
for an anisotropic growth are found to be close to the values from the literature.
[DOI: 10.1115/1.4051383]
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1 Introduction

Pulmonary hypertension (PH), which is associated with ele-
vated pulmonary arterial pressure, is a complex cardiovascular
disease characterized by progressive vascular remodeling [1].
Unlike in systemic hypertension for which patients have had
effective pharmacological management for decades, PH prognosis
remains poor with 15% mortality within 1 year even with current
access to modern clinical managements [2]. PH’s pathological
features are smooth muscle hypertrophy, endothelial dysfunction,
fragmented elastin, and deposition of collagen [3]. There have
been accumulating evidences from human and animal studies that
irreversible processes of pulmonary arterial wall damage, com-
pensated by stress-mediated growth, play critical roles in eliciting
the mechanisms of disease progression.

In studies on PH pathophysiology, increased activity of elasto-
lytic enzymes has been suggested to play an important role in
understanding the disease progression [3,4]. Particularly, via dis-
turbed balances of matrix metalloproteinases (MMPs), MMP-2,
MMP-7, and MMP-9, and tissue inhibition of MMPs (TIMPs), the
elastolytic activities/inhibitions contribute to the processes of vas-
cular damage (e.g., fragmentation of the internal elastic lamina)
and remodeling for the establishment of PH [5]. Tan et al. [6] sug-
gested that a high pulsatility of the pulse pressure/flow was corre-
lated to inflammatory cellular signaling, followed by pulmonary

arterial stiffening. Interestingly, animal models of PH have shown
that treatment with an elastase inhibitor, which halts the process
of wall damage, showed significant declines in pulmonary artery
pressure and reductions in medial hypertrophy [7,8].

On the other hand, adventitial layers of the arterial wall mainly
consist of collagen fibers, shown by the crystal structure of triple-
helical collagen-related peptides. Damage to load bearing colla-
gen is suggested to be responsible for the pathological conditions
through mechanisms such as stress-softening or material yielding
to the process [9–12]. A biomaterial study also found that inter-
molecular hydrogen bonds play a key role in determining the
resistance against slip via a mechanism of load transmission inside
collagen fibrils and fibers [13]. in vitro tests with pulmonary
arteries revealed that collagen fibers carry most of the load at high
pressure, while the elastic layer bears only the load in the low
blood pressure range [14]. Wang et al. [15] further illustrated plas-
tic yielding of the porcine pulmonary artery that was induced by
over-pressurization in an ex vivo inflation test, at which a narrow
range of blood pressure (50–60 mmHg) was consistently observed
for permanent damage.

While those dissipative processes (elastin degradation and col-
lagen damage) would be indispensable for modeling the disease
progression, collagen accumulation in PH should be another key
contributor to proximal pulmonary artery stiffening [16]. The
injury-sensing tissue, in response to the increased vascular stress
and arterial damage, activates a multitude of biological processes
of arterial growth and remodeling in PH [17]. In the course of the
disease progression, the mean pulmonary arterial pressure
(mPAH) is generally elevated, and the pulse pressure is linearly
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increased [18], whereby these changes, with other pathological
conditions, may induce potential damage to the arterial wall fol-
lowed by a compensatory mechanism of collagen accumulation.

The current understanding of PH, however, has largely been
obtained through animal models. Those animal models are not
able to fully reproduce the pathology of human PH [19], and
therefore, computational modeling can help provide physical
insights on dissipative and growth processes during PH disease
progression. In particular, continuum models have brought signifi-
cant contributions to understanding the mechanisms of inelastic
material behavior and biological tissue remodeling. Typical
inelastic models have long been used with the standard formula-
tion, which separates the total deformation gradient multiplica-
tively into elastic and inelastic parts [20]. Based on this theory,
volumetric growth models have been developed for two decades
by replacing the plastic deformation gradient with a growth defor-
mation gradient for biological tissues [21–23]. In the cardiovascu-
lar system, various growth models have been implemented in
studying vascular diseases [24–26] and cardiac diseases [27,28].
Most of the reported models have focused on the hyperelastic and
volumetric growth, but plastic deformation with enzymatic degra-
dation in the disease has been rarely studied.

The aim of this study is ultimately to investigate the mechanical
roles of dissipative processes that are coupled with vascular
growth in human PH progression. The first step of this study
aimed to formulate a thermodynamic solid model that considers
coupled plastic-growth-degradation dissipations for PH, to per-
form a model parameter study of the dissipative models, and to
computationally generate in silico simulations of PH progression
using the clinical features of PH, found in the morphological and
mechanical data from the literature. However, because a healthy
human pulmonary artery sample is generally not possible, we uti-
lized a mechanical ex vivo test of a large animal pulmonary artery
to obtain the hyperelastic material parameters. With the calibra-
tion, we present that a widely used pure hyperelastic model over-
estimates the pressure result compared to the experimental data
when the inflation pressure is over a critical point. This presents
the possibility of plastic dissipation in the artery during the infla-
tion and the elastic-plastic model fitting shows much better
results.

For the numerical analysis, this work uses a thin-walled tube
simplification. Even though the plastic model and the thin-walled
tube are simple, it is enough to study the possibility of plastic
deformation coupled with the growth and degradation dissipa-
tions. By capturing the experimental data with discussions, this
paper presents the potential of the coupled analysis for a better
understanding of PH diseases. The structure of this paper is as fol-
lows: Section 2 presents the kinematics of the thermodynamics
for considering coupled plastic-growth-degradation dissipations,
and Sec. 3 derives the detailed constitutive equations and the
artery modeling. Sections 4 and 5 present the results and discus-
sions, respectively. The conclusion is given in Sec. 6. Finally,
Appendix presents the numerical algorithm of the presented
model to solve the arterial problem.

2 Thermodynamics and Modeling Considerations

Before deriving the detailed formulations, here is a brief sum-
mary of the overall modeling approach. A pulmonary artery is
assumed to be a nonlinear solid; a thermodynamic inequality leads
a condition for the homeostatic process for an isothermal process;
two dissipative models are implemented for elastic–plastic defor-
mation and material softening, and a growth model is used as a
compensatory mechanism from the arterial damage. Based on the
standard formulation of inelasticity [20], the total deformation
gradient can be multiplicatively separated into elastic and inelastic
parts. Moreover, in order to account for the coupled growth and
plastic dissipation with a degradation effect, the inelastic part of
the deformation gradient should be decomposed again into growth
and plastic deformation. In this process, while arbitrariness in the

selection of the intermediate and reference configurations affects
the inelastic solution, this work only focuses on the coupled effect
of growth, plasticity, and degradation by using commonly used
orthonormal material axes. For the structure of the coupled model-
ing, this work proposes a coupled dissipative function that con-
trols both the growth and plastic deformation. The role of the
coupled dissipative function is to define the direction of each plas-
tic and growth deformation while satisfying the inequality condi-
tion of the material dissipation. Because this role is very similar to
the plastic potential function [29,30] in plasticity theory, this work
calls this proposed function the inelastic potential function
accounting for both growth and plasticity. However, this method,
using a stress function to define the direction of the inelastic
deformation, has not been used in the modeling of living tissues.
General tissue models directly define the growth deformation gra-
dient based on assumed paths. Recently, Lee [31] showed that the
growth of living tissue also can be modeled by a potential func-
tion; however, this model also did not consider plastic deforma-
tion. In the inelastic potential modeling of this paper, for the
growth modeling, a stress-driven volumetric growth model is used
for the vascular adaptation, which considers an isotropic case and
a simple anisotropic case. Plastic modeling uses the J2 flow rule
based on the associated flow rule, which only considers isotropic
hardening, because the Bauschinger effect is mainly observed in
large cyclic plastic deformation [29,30].

2.1 Kinematics. In the theory of continuum mechanics, the
total deformation gradient (F) and the velocity gradient (L) lead
to the material time differential of the total deformation gradient
given as

_F ¼ LF where F ¼ @x

@X
and L ¼ @v

@x
(1)

Here X and x denote the position vectors in the reference (jR) and
deformed (jt) configurations, respectively, shown in Fig. 1. v rep-
resents the velocity vector in the deformed configuration ( _x ¼ v).
The Jacobian of F is denoted by J ¼ detðFÞ, and the time deriva-
tive of J gives

_J ¼ J D : Ið Þ where D ¼ 1

2
Lþ LTð Þ (2)

D and I represent the rate of the deformation tensor and identity
matrix, respectively. The operator “:” is an inner product between
two tensors. For example, two tensors A and B result in a scalar
value c ¼ A : B ¼ AijBij following the Einstein notation. Conse-
quently, D : I ¼ Dijdij ¼ D11 þ D22 þ D33 where dij is the Kro-
necker delta. F can be multiplicatively separated into the inelastic
(Fin) and elastic parts (Fe) as shown in Eq. (3) below:

Fig. 1 Kinematics of the material
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F ¼ FeFin and J ¼ JeJin where Fin ¼
@X0

@X
(3)

where Je ¼ detðFeÞ and Jin ¼ detðFinÞ. X0 denotes the position
vector in the intermediate configuration (j0) between the refer-
ence and deformed configurations. The evolution of the elastic
and inelastic deformation gradients is obtained by

_Fe ¼ ðL� LinÞFe where _Fe ¼ _FF�1
in þ F _F

�1

in (4)

_Fin ¼ KinFin where Lin ¼ FeKinF�1
e ¼ CinLin (5)

Lin denotes the inelastic velocity gradient, Lin means the direction
of the inelastic velocity gradient, and Cin is the inelastic deforma-
tion parameter to define the equivalent magnitude of the inelastic
deformation. In order to obtain Lin and Cin, inelastic constitutive
equations are defined in Sec. 3. The inelastic deformation rate is
then given by

Din ¼
1

2
Lin þ LT

in

� �
¼ CinDin where Din ¼

1

2
Lin þ L

T

in

� �
(6)

Din is the direction of the inelastic deformation rate. Next, the
elastic left and right Cauchy-Green deformation tensors (Be and
Ce) are given by

Be ¼ FeFT
e ; Ce ¼ FT

e Fe (7)

and the deviatoric parts of the tensor are presented by

Fe ¼
1

J
1=3
e

Fe; Be ¼ J�2=3
e Be ¼ FeF

T

e

Ce ¼ J�2=3
e Ce ¼ F

T

e Fe

(8)

Next, using the decomposition of the time derivative of J
( _J ¼ _JeJin þ Je

_J in), the evolution of the elastic dilatation is deter-
mined by

_Je ¼ Je D : I�
_J in

Jin

 !
(9)

During the disease progress, there is a complex process of arterial
damage and growth, which induces the total mass change. With
an interstitial mass change, the mass balance law gives a continu-
ity equation

dq
dt
þ q F�T : _Fð Þ ¼ g (10)

where q is the density and g is the rate of the interstitial produc-
tion/removal (e.g., growth/atrophy). In the arterial wall model, it
is typically assumed that the newly born tissue is produced with
the same density as the existing tissue [24] in the reference config-
uration, resulting in the same density as the reference (qR) and
intermediate configuration (q0): qR ¼ q0 ¼ constant. The mass
change rate g is caused by the pure inelastic volume change rate
resulting in

Din : I ¼
_J in

Jin

; where g ¼ q0Din : I (11)

By substituting the above relation, Eq. (9) can result in

_Je ¼ Je D : I� g

q0

� �
(12)

Under the incompressible condition of the artery (Je ¼ 1 and
_Je ¼ 0), volumetric change is caused by growth deformation.
(D : I ¼ g

q0
). The evolution equations of Fe and Ce are then given

by

_Fe ¼ ðL � LinÞFe (13)

_
Ce ¼ F

T

e ðL
T � L

T

inÞFe þ F
T

e ðL � LinÞFe (14)

where L ¼ L� 1
3
ðL : IÞI, and Lin ¼ Lin � 1

3
ðLin : IÞI.

Then Kin (in Eq. (5)) can be defined by

Kin ¼ ðF�1
e LinFeÞCin (15)

Cin can be calculated by the inelastic constitutive equations for-
mulated in Sec. 3.

2.2 Irreversible Material Dissipation. We assume the free
energy w (energy per mass) of the pulmonary artery to be a func-
tion of

w ¼ wðJe;Ce; adÞ (16)

where ad is a degradation variable. In the thermodynamics, the
Clausius–Duhem inequality condition for an isothermal process
can be given by

T :D� q _w þ S � 0 (17)

where S denotes an external energy supply rate that necessitates
the homeostatic process to be sustained in the biological body
[23]. The time derivative of w gives

_w ¼ @w
@Je

_Je þ
@w

@Ce

: _
Ce þ

@w
@ad

_ad (18)

With Eqs. (15)–(18), the inequality becomes

T� 2qFe
@w

@Ce

F
T

e þ qJe
@w
@Je

I

� �� 	

: Dþ 2qFe
@w

@Ce

F
T

e þ qJe
@w
@Je

I

� �
: Din � q

@w
@ad

_ad þ S � 0

(19)

Because the material dissipation is non-negative, the below rela-
tions can be postulated

T ¼ 2qFe
@w

@Ce

F
T

e þ qJe
@w
@Je

I

� �
(20)

2qFe
@w

@Ce

F
T

e þ qJe
@w
@Je

I

� �
: Din þ S ¼ T : Din þ S � 0 (21)

and

�q
@w
@ad

_ad � 0 (22)

Constitutive relations should satisfy the inequality condition of
the inelastic dissipation in Eq. (21) and deterioration in Eq. (22).

3 Constitutive Equation

3.1 Free Energy Function. The free energy function uses the
model of Holzapfel et al. [32] given by
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w ¼ w Je;Ce; ad

� �
¼ k0

2
Je � 1ð Þ2 þ c1 1� adð Þ I1 � 3

� �
þ
X2

i¼1

k1

4k2

exp k2 I4 ið Þ � 1
� �2

h i
� 1

n o
(23)

where k0, c1, k1, and k2 are the material parameters. ad is a scalar
variable characterizing the damage effect in the material, where
ad ¼ ½0; 1�; ad ¼ 0 means no damage, and ad ¼ 1 means com-
plete damage. I1 ¼ trðCeÞ and I4ðiÞ are a variable of deviatoric
elastic stretch for the ith fiber family. The direction vector Ni of
the ith fiber family is defined as

Ni ¼ cos aiez þ sin aieh (24)

having angle ai with respect to the axial direction (ez) in the refer-
ence configuration. Next, I4 ið Þ is given by

I4ðiÞ ¼ Ce :Mi; where Mi ¼ Ni � Ni (25)

Mi is a second-order tensor based on Ni having angle ai with
respect to the axial direction (ez) in the reference configuration.
Note that Helfenstein et al. [33] showed that the invariant I4ðiÞ
produces an unphysical response in models for fiber-reinforced
hyperelastic materials, but the I4ðiÞ based free energy function in
Eq. (23) is still efficient in the numerical simulation of an artery.
Then, using Eq. (20), the Cauchy stress is given by

T ¼ qJek0 Je � 1ð ÞI� 2

3
c1 1� adð ÞqI1Iþ2c1 1� adð ÞqFeIF

T

e

� 2

3
q
X2

i¼1

AiI4 ið ÞIþ 2q
X2

i¼1

AiFeMiF
T

e (26)

where

Ai ¼
k1

4k2

exp k2 I4 ið Þ � 1
� �2

h i
� 1

n o
2k2 I4 ið Þ � 1
� �

:

Under the incompressible condition (Je ¼ 1) with an infinite value
of k0, qJek0ðJe � 1Þ becomes indeterminate and can be replaced
by a Lagrange multiplier (p), which is determined at the boundary
condition [�p ¼ qJek0ðJe � 1Þ]. Finally, the Cauchy stress is rear-
ranged by introducing a volumetric term (1

3
I
P2

i¼1 Ai) as shown
below:

T ¼ 1

3
tr Tð ÞIþ T0 (27)

where trðTÞ ¼ �3p� 2qc1ð1� adÞI1Iþ2qI
P2

i¼1 Ai, and

T0 ¼ 2q c1ð1� adÞ Be � 1
3

I1Þ þ
P2

i¼1 Ai FeMiF
T

e � 1
3

I

� �� ih
.

3.2 Inelastic Potential Function. It is assumed that the
inelastic deformation of the artery wall can be separated into inde-
pendent plastic and growth deformation vectors

Lin ¼ Lp þ Lg ¼ CpLp þ CgLg (28)

Lp ¼ Dp þWp and Lg ¼ Dg þWg (29)

Din ¼ DP þ Dg (30)

where DP ¼ 1
2
ðLp þ LT

p Þ ¼ CpDP and Dg ¼ 1
2
ðLg þ LT

g Þ ¼ CgDg.
Note that the zero dilatancy of the plasticity leads to Dp : I ¼ 0.

Cp and Cg are the plastic and growth parameters, respectively.
The inelastic spin tensor is skew-symmetric and can be specified

[34,35]. This work follows the assumption that the directions of
the material axes are fixed during the inelastic deformation path,
which makes the asymmetric inelastic spin be neglected, which is
given by:

Win ¼Wg þWp ¼ 0 (31)

For the growth tensors, this work is restricted to two cases of volu-
metric growth, the isotropic and radial dominant growth cases.
While the isotropic growth models have been widely used for vol-
umetric growth [36,37], there are observations of anisotropic
growth in the arterial wall [9,38–40]. Motivated by the previous
anisotropic models to make the radial dominant growth, we make
a simplification that the anisotropic growth occurs only in the
thickness direction. Below are the two examples of isotropic and
radial dominant growth given by

Dg ¼ CgDg (32)

where
Dg ¼ I for the isotropic and

Dg ¼
3 0 0

0 0 0

0 0 0

2
4

3
5 for the anisotropic growth for the radial

direction.

The two cases in Eq. (32) match the same magnitude of the vol-
ume change.

The inelastic dissipation in Eq. (21) is then rewritten by

T0 þ 1

3
tr Tð ÞI

� �
: Dp þ Dgð Þ þ S

¼ T0 :Dp þ
1

3
tr Tð ÞI :Dp þ T0 :Dg þ

1

3
tr Tð ÞI :Dg þ S � 0

(33)

Due to the isochoric condition of the plasticity (I : Dp ¼ 0), the
above equation becomes

T0 :Dp þ
1

3
tr Tð ÞI :Dg þ S � 0 (34)

The isotropic growth automatically satisfies (T0 : Dg ¼ 0), and the
anisotropic case leads to that T0 : Dg is non-negative when atro-
phy is not allowed in this PH condition. The above dissipation is
satisfied when

T0 : Dp � 0 and
1

3
tr Tð Þ I : Dg þ S � 0 (35)

In order to reach the inequality of Eq. (35), this work proposes an
inelastic potential function uin, which is independent of the free
energy function w, that defines the constitutive relation of Dp and
Dg for satisfying the material dissipation as below:

uinðT0; trðTÞÞ ¼ upðT0Þ þ ugðtrðTÞÞ (36)

where up is the plastic potential and a function of the deviatoric
stress. ug denotes the growth potential and the function of trðTÞ.

3.3 Plasticity. It is assumed that the time differential of up is
the same as the hardening rate in this work given as

_up T0ð Þ ¼
@up

@T0
_T
0 ¼ HCp; where TY ¼ T0 þ

ð
HCPdt (37)

Here, TY is the flow stress, T0 is the initial yield stress, and H is
the hardening slope. Next, let the partial differential of up in the
above equation define the direction of the plastic deformation rate
given as
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DP ¼
@up

@T0
and DP :I ¼ 0 (38)

which denotes the normal vector to up at the stress state. If up is a
convex function, the normality rule guarantees T0 : Dp � 0 in the
material dissipation. To compete the non-negative plastic dissipa-
tion, a non-negative plastic deformation parameter Cp should be
defined. The stress change rate is

_T
0 ¼ @T0

@Je

_Je þ
@T0

@Ce

_
Ce (39)

Note that the artery is generally modeled as a cylindrical tube
without a rigid body rotation. The material axes of the axial (ez),
circumferential (eh), and radial (er) are aligned with the Cartesian
coordinate system. Consequently, the evolution equations of the
tensors including the Cauchy stress do not consider the rotation of
the frame in this work. Substituting Eq. (39) into Eq. (37) results
in

CP ¼
ŷ

y
l (40)

where

ŷ ¼
@up

@Je
JeIþ 2 Fe

@up

@Ce

F
T

e �
1

3
I

 !" #
: D� Dg½ � and

y ¼ 2Fe

@up

@Ce

F
T

e : DP þ H:

The parameter l is given by

l¼ 0 when upðT0Þ�TY < 0 or ½upðT0Þ�TY ¼ 0 and ŷ< 0�
(41)

and l ¼ 1 when [upðT0Þ � TY ¼ 0 and [ŷ � 0].
In order to define the specific form of the plastic potential, this

work uses the invariant of the J2 flow rule based function defined
by

up T0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
T0 :T0

r
: (42)

Next for the yield function, this paper uses the associated flow
rule with the widely used assumption that the yield function is
identical to the plastic potential. Then, the plastic flow is defined
perpendicular to the yield surface (31)–(33).

3.4 Growth. A recent work [31] showed that growth is also
able to be described by a potential function. But the function in
that paper did not consider the separated plastic behavior from the
growth. This paper proposes a new growth potential function to
model the volumetric growth and at the same time, the plastic
deformation as shown below:

ug tr Tð Þð Þ ¼ h

2
tr Tð Þ � tr Thð Þ
� �2

(43)

Th is the homeostatic stress and h is a non-negative material
parameter with a unit of 1/(Pa�s). Let the time differential of ug be
the volumetric growth rate

_ugðtrðTÞÞ ¼ hðtrðTÞ � trðThÞÞ ¼ CgDg :I (44)

Equation (44) is close to the growth form in Ref. [41]. Next, the
mass flow in Eq. (12) is given for both the isotropic and aniostopic
growth determined by

g ¼ q0CgDg :I (45)

and the growth parameter Cg is

Cg ¼
1

3

g

q0

(46)

The growth dissipation in Eq. (35) then becomes

1

3
tr Tð Þ g

q0

þ S � 0 (47)

Note that the effect of the external energy source S is enough to
satisfy the non-negative condition in the biology system [25,41].

If Th ¼ T0, the rate of growth can be given by

ug tr Tð Þð Þ ¼ h T� T0ð Þ :I ¼ 1

3

g

q0

I :I (48)

If the h variable is non-negative, the external energy term S can be
zero, which satisfies the inequality condition as shown below:

trðTÞI :Dg ¼ h½trðTÞ�2 � 0 (49)

The final form of the inelastic potential function is consequently
given by

uin T0; tr Tð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
T0 :T0

r
þ h

2
tr Tð Þ � tr Thð Þ
� �2

(50)

and it controls and connects the plasticity and growth
deformation.

3.5 Material Deterioration. The enzymatic degradation vari-
able ad in the free energy function is defined by

ad ¼ ½1� expð�Cdudðwmax;wmin;wavrÞÞ�
b

(51)

where Cd and b are material parameters and non-negative. wmax

and wmin are free energy functions at the systolic and diastolic
pressures of the cardiac cycle, respectively. Note that because this
work is based on an idealized thin-walled tube assumption, wmax

and wmin are considered maximum and minimum values of a
material point. wavr is the average value of wmax and wmin. This
work defines udðwmax;wmin;wavrÞ function as below

ud wmax;wmin;wavrð Þ ¼ 1

2

hwmax � wmini
wavr

� 	b

(52)

where hxi ¼ maxðx; 0Þ, which is the Macaulay bracket, and b is a
material parameter.

During the deterioration, it is usually assumed that the mass is
not changed for healthy subjects. Next, the satisfaction of the
deterioration dissipation is shown as

�q
@w
@ad

_ad¼qc1 I1�3
� �

exp �Cdud wmax;wmin;wavrð Þ½ �Cdbad _ud�0

(53)

Consequently, the material dissipation of the thermodynamics in
Eq. (17) is fully satisfied by the proposed constitutive equations.

3.6 Modeling of the Artery. Consider an idealized cylindri-
cal tube in terms of a cylindrical polar coordinate fR, H, Zg for
the free stress configuration, whereby the tube may not be the full
circumference when the original traction-free vessel has residual
stress. The reference configuration is given by a fictitious
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geometry without the stress or physically releasing the residual
stress by a radial cut. The parameter ranges are defined by

Ri � R � Ro; 0 � H � 2p� a; 0 � Z � L (54)

where Ri, Ro, a, and L are the inner and outer radii, the opening
angle and the length of the undeformed tube. Then, the deformed
configuration is given as the coordinate fr, h, zg, and the parame-
ter ranges to

ri � r � ro; 0 � h � 2p; 0 � z � l (55)

where ri, ro, and l are the inner and outer radii and the length of
the deformed tube. The arterial wall is incompressible, and F is
given in terms of the cylindrical polar coordinates as

F ¼
kr 0 0

0 kh 0

0 0 kz

2
4

3
5 ¼

ht

Ht
0 0

0
r

R
0

0 0
z

Z

2
666664

3
777775 (56)

where the angle of the twist of the tube is assumed to be negligi-
ble. Ht and ht denote the initial and current thickness of the tube,
respectively. In order to get kr , kh, and kz at the nth time-step, the
equilibrium equation should be solved. In this work, the inflation
experiment was conducted with a fixed kz condition, and then, the
stress and external pressure equilibrium can be solved with respect
to considering the coupled elastic-plastic-degradation-growth
models. The nonlinear differential equations are solved by an iter-
ative numerical method written in the MATLAB program, and the
numerical algorithm is explained in Appendix.

3.7 Experimental Data for the Model Calibration. The
model should be calibrated by an experimental dataset from a por-
cine artery experiment. In the ex vivo inflation tests, pig pulmo-
nary arterial specimens were fixed with an axial stretch of 1.1, and
intramural pressure was applied inside the artery tube while meas-
uring the diameter of the artery. Three sets of pressure-diameter
data were obtained with respect to the pressure range; inflation of
0–30 mmHg pressure, 0–50 mmHg pressure, and 0–100 mmHg
pressure. The details of the experimental setup are explained in
Ref. [15], and we used the inflation test data from the reference to
extract the hyperelastic model parameters. The parameters c1, k1,
k2, and ai in the free energy function Eq. (23) were calibrated with
the inflation data of the pressure values from 0 to 30 mmHg,
assuming ad ¼ 0, only for the elastic deformation range. Note that
because this model is based on a two fiber family, the fiber angles
ai¼1;2 are assumed to have the same absolute value with the oppo-
site sign. In the calibration, the nonlinear regression function was
used by minimizing the error between the experimental transmural
pressure and the computed pressure. Although PH has tradition-
ally been defined by a mean pulmonary arterial pressure (mPAP)
of greater than 25 mmHg, later studies have suggested a lower
threshold of 20 mmHg [42]. A population-based study reported
that the mPAP range was 51–60 mmHg for a moderate group of
PH patients [43]. Based on this clinical data, we make the numeri-
cal setup for the first part of the parametric study and the second
part of the in silico simulation, for an independent variable of

mPAP, ranging from 20 to 60 mmHg. We also utilize a
population-based relationship between the systolic and diastolic
pulmonary arterial pressure by setting the systolic and diastolic
pressure, given as a linear function of mPAP [18].

4 Results

4.1 Plastic Deformation in the Inflation Test. The fitted
parameters of the elastic pulmonary arterial wall are summarized
in Table 1, and the diameter-pressure data were fitted with the
hyperelastic model, presented in Fig. 2(a). Note that k0 does not
affect the computation results because of the incompressible con-
dition. The pure elastic model calibrated by the 0–30 mmHg data
also fits the 0–50 mmHg data well shown in Fig. 2(b). In Fig. 2(c),
the elastic model presents the fitting of the 0–100 mmHg condition
without considering any irreversible dissipation. Unlike the 0–30
and 0–50 mmHg cases, the hyperelastic model fitting leads to
large over estimations compared to the experimental data after the
pressure is over 50 mmHg. This means that after some stress lev-
els, there is another dissipation phenomenon besides the growth
and degradation because the specimen in the experiment cannot
make the growth and long-term degradation dissipation. Even
though the plastic deformation has been rarely studied for the
artery, it is reasonable to infer that the ex vivo experimental test
shows that plastic yielding starts near the 50 mmHg pressure. For
this reason, the plastic parameters were calibrated by the inflation
data for the 0–100 mmHg pressure by using the elastic parameters
that fit against the 0–30 mmHg data. Figure 2(d) shows that the
elastic–plastic result is fitted well with the 0–100 mmHg inflation
data. The best/fit values of the yield stress and hardening variable
H are also summarized in Table 1. Based on Fig. 2, it can be con-
cluded that the model calibration for elastic–plastic deformation is
reasonable. However, because of the experimental limitation, the
growth and degradation parameters were not calibrated by the
inflation data here. A parametric study for the growth and degra-
dation was conducted and presented in Sec. 4.2. It investigated the
mechanical roles of the dissipative phenomena in the disease
progress.

4.2 Parametric Study for the Growth and Degradation. In
the parametric study, the internal pressure Pi is used as the input
variable of mPAP in the range of 20–60 mmHg, and the axial
stretch is fixed at 1.1 for all of the cases. Figure 3 shows the effect
of the degradation on the disease progress. Note the other inelastic
effects of the plasticity and growth were excluded in this degrada-
tion study. Figure 3(a) presents the degradation variable ad that
tends to increase with increases in mPAP with respect to the inter-
nal variable Cd; the internal variable Cd strongly affects the degra-
dation speed and value. To consider the degradation caused by the
systolic and diastolic pressures of the cardiac cycle, the systolic
and diastolic pressures were assumed to be a function of mPAP
where the systolic pressure Ps and the diastolic pressure Pd are
proportionally set as Ps¼ 1.49 mPAP and Pd ¼ 0.74 mPAP,
respectively [18]. Based on the ad tendency, Figs. 3(b) and 3(c)
show the diameter and thickness changes, respectively. An
increase of ad clearly leads to an increase of the diameter and a
decrease of the thickness. Figure 3(d) presents the linearized stiff-
ness of the artery with respect to the internal pressure and ad

parameters. The presented stiffness is the summation of the radial
stiffness and thickness stiffness in the figure, and the stiffness
increases with increasing ad . It is well known that the stiffness
increase is an important sign of disease progression.

Figure 4 presents the growth effect on the disease progress.
Note that the unit time of the growth was one year, and the time
increment of the growth was 0.02. Consequently, the growth con-
tinues for 40 months from 20 to 60 mmHg. The relevant time vari-
able was set based on a clinical study in which half of the patients
died within 3 years [44]. As shown in Figs. 4(a) and 4(b), as the h
parameter increases, the diameter and thickness both increase. If h

Table 1 Fitted material parameters (elastic and plastic
parameters)

Elastic parameters Plastic parameters

k0 c1 (kPa) k1 (kPa) k2 (kPa) ai (deg) T0 (kPa) H (kPa)

N/A 13.04 30.56 3.03 657.89 134.35 70
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has a very large value (h ¼ 1.0), the degree of thickening is accel-
erated shown in Fig. 4(b). This results in a continuous diameter
increase until the global equilibrium is reached, as shown in Eq.
(58), without deceleration of the diameter change in the case of a
large h. Figure 4(c) presents the effect of the growth on the linear-
ized stiffness. Larger growth deformations with larger values of h
lead to accelerating the disease progress. Figures 4(d) and 4(e)
compare three cases for growth with (h ¼ 0.5), growth with (h ¼
1.0), and growth with degradation (h ¼ 1.0 and Cd ¼ 0.5) on the
diameter and thickness, respectively. Note that the (h ¼ 1.0) case
without degradation is an extreme case for the parametric study,
and the degradation can relieve the extreme growth.

4.3 Disease In Silico Simulations. Based on the calibrated
results, numerical simulation of the disease progression was con-
ducted. The growth and degradation parameters used an assumed
value shown in Table 2 and the calibrated elastic–plastic parame-
ters in Table 1. Figure 5 shows the simulation results and
compares the inelastic mechanisms in the disease progress.
Figure 5(a) presents the diameter change of the pressure-induced
elastic, elastic–plastic, elastic-growth, elastic-degradation, and
elastic-plastic-growth-degradation (full) mechanisms. The pure
elastic, plastic, and degradation results have similar behaviors
compared to the growth and full mechanisms; the growth and full
cases lead to much larger diameter increases. Because only the
growth and full simulations can make a volume change, the others
should not alter the total volume. Hence, the incompressible con-
dition (Je ¼ 1) enables a volume change only when growth occurs

based on Eqs. (12) and (13). This condition leads to a thickness
decrease in the elastic, plastic, and degradation cases by isochoric
deformation shown in Fig. 5(b). However, the growth and the full
cases lead to a thickness increase with the diameter increasing due
to the growth volume change. If the full case is compared to the
growth model, the changes in the diameter and thickness are
smaller than the growth because the dissipation mechanisms
(growth, plastic, and degradation) can affect each other.

In order to clearly compare the elastic, plastic, and degradation
cases, Figs. 5(c) and 5(d) present enlarged curves of the diameter
and thickness changes. The elastic–plastic curves of the diameter
and thickness are almost the same to the elastic results until about
50 mmHg; afterward, the elastic–plastic deformation increases the
dimension changes because of the inelastic dissipation. The degra-
dation also magnifies the changes of the diameter and thickness
compared to the pure elastic behavior. Because the degradation
and growth values were not fixed, additional parametric studies
for the degradation and growth were conducted.

In Fig. 6, the anisotropic growth effect on the full model is dis-
cussed because some studies presented the anisotropic growth of
the artery [38,40] for the thickness direction. Here, the full model
with the isotropic growth and the full model with an anisotropic
growth are compared. In this case, the anisotropic growth simply
assumes that all of the growth is independently generated for only
the thickness direction. The simulation conditions are summarized
in Table 3, and the axial stretch is fixed at 1.1. Figures 6(a) and
6(b) show the anisotropic growth decreases in the diameter expan-
sion while increasing the thickness because the growth is gener-
ated only in the thickness direction. Similarly, studies [38,40]

Fig. 2 Model calibration of initial material parameters for elastic–plastic behavior with ex vivo test data: (a)
elastic modeling fitting (0–30 mmHg data), (b) elastic model fitting (0–50 mmHg data), (c) elastic modeling fitting
(0–100 mmHg data), and (d) elastic–plastic model fitting (0–100 mmHg data)
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have reported the radial direction-based anisotropic growth occurs
in the measurements.

Based on the presented results shown in Figs. 2–6, the full
model with the anisotropic growth is used to generate in silico
simulations (from 20 mmHg to 60 mmHg) for the arterial thicken-
ing, luminal enlargement, and arterial stiffening. However, those
values from the simulations are not perfectly matched to the clini-
cal data from the literature due to missing patient’s information or
conditions (e.g., mPAH, extent of severity). Instead, the generated
in silico simulations compute the ratios of the arterial thickening,
luminal enlargement, and arterial stiffening against the initial state
(at 20 mmHg), shown in Fig. 7. Then, this study compares the
changed ratios of the thickness, diameter, and stiffness between
the modeling and reference data. For the reference data, the ratios
are computed by the values of PH patients against those of healthy
subjects obtained from the Ref. [45] for arterial thickening, Ref.
[46] for luminal enlargement, and Ref. [45] for arterial stiffening.
For selecting parameters for the in silico simulation, the elastic
parameters (c1, k1, k2, and ai) and plastic parameters (T0 and H)
were calibrated by using the inflation experimental data shown in
Fig. 2. For the growth (trðThÞ and h) and degradation (Cd, b, and
b) parameters, the results of the parametric studies (in Figs. 3–6)
were used. In Fig. 3(a), Cd ¼ 1.0 (with b ¼ 2:0, and b ¼ 2:0) pro-
vided a smooth increase of the degradation while the other values
resulted in excessive or insufficient degradations. As a result, Cd

¼ 1.0 (with b ¼ 2:0 and b ¼ 2:0) was chosen for the in silico sim-
ulation. For the growth, trðThÞ used a fixed homeostatic value
given with an onset value at the early disease stage. In Fig. 3(a),
the isotropic growth case with h¼ 0.15 led to enough growth, and
in Fig. 7, h was assumed to be 0.15 slightly higher than 0.1. Based

on the discussion of Fig. 6, the full model with the anisotropic
growth was employed. The parameters that were used are sum-
marized in Table 3. Note that because this model is built based on
thin-wall tube modeling, the luminal enlargement is roughly cal-
culated using the mean radius and thickness. The results of the
anisotropic growth in the full model are close to the obtained
value from the previous studies for human PH, whereas luminal
enlargement (�1.22 times [46]), arterial thickening (�2.4 times
[47], and arterial stiffening (�4 times [45]) are prominent features
of PH.

The advantage of the full model is that the irreversible energy
dissipations caused by several effects (growth, plasticity, and deg-
radation) can be examined in the thermodynamically integrated
energy balance. So, the integrated model can describe that the
degradation irreversibility decelerates the stress-induced growth
and plastic dissipations. This decelerated growth caused by the
degradation effect is presented in Figs. 4(d) and 4(e). Figures 8(a)
and 8(b) present the pressure-diameter and pressure-thickness
curves of the plastic model according to a different value for the
degradation variable ad , and the figures clearly show that the ad

value affects the plastic deformation in the diameter and thick-
ness. This degradation effect on the plastic behavior is also
observed in other materials [48]. Moreover, if the growth affects
the stress state itself, the plastic behavior is also changed. In order
to explain the coupling effect, Fig. 9 presents the J2 deviatoric
stress invariant with respect to different growth variables, h, for
the isotropic growth. The J2 invariant is decreased as h increases
meaning that growth affects the stress state itself, and the onset of
plastic yielding is delayed with the increased growth effect which
shows a coupling effect between growth and plasticity. In

Fig. 3 Degradation effect on the disease progress: (a) degradation variable change according to the Cd param-
eter, (b) degradation effect on diameter, (c) degradation effect on thickness, and (d) degradation effect on the
linearized stiffness
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addition, as h increases, the speed of the J2 change becomes faster.
Consequently, in the full model shown in Fig. 5, plastic yielding
is decelerated by degradation and growth and starts near at about
60 mmHg. Even though the elastic-plastic fitting of the inflation

test makes the onset of yielding near 50 mmHg. The results of the
numerical study discuss the role of plastic behavior, degradation,
and growth in arterial disease. It shows the potential of the
coupled model considering the plastic deformation and degrada-
tion with the growth for a better understanding of PH diseases.

5 Discussions

There has been a question for a long time on PH as to why do
most types of PH have no cure, while pharmacological manage-
ment of systemic hypertension has been so effective for decades.
Various studies using animal models showed promises of new
pharmacological agents for PH intervention [49,50], but current

Fig. 4 Growth effect on the disease progress: (a) growth effect on diameter, (b) growth effect on thickness, (c)
growth effect on the linearized stiffness, (d) growth with degradation effect on diameter, and (e) growth with
degradation effect on thickness

Table 2 Growth and degradation parameters for the case
study

Degradation parameters Growth parameters

Cd b b trðThÞ (kPa) h (1/kPa� year)

1.0 2.0 2.0 4000 0.1

Journal of Biomechanical Engineering NOVEMBER 2021, Vol. 143 / 111012-9



human PH medications only delay disease progression and are not
curative [51]. In order to answer the question, computational mod-
els of PH have been developed to test multiple hypotheses on the
disease progression in the mechanics of the main pulmonary
arteries [45,52], pulmonary circulation [53,54] and cardiac growth

[55]. Recent computational studies suggest, in contrast to previous
studies, that the interaction between the right ventricle and the
pulmonary vasculature may be a key determinant of the clinical
course of PH [56]. Nonetheless, those previous computational
models were based on hyperelastic and volumetric growth, and

Fig. 5 Numerical analysis of the disease progress: (a) comparison of five mechanisms for diameter change
(elastic, plastic, growth, degradation, and full), (b) comparison of five mechanisms for thickness change (elas-
tic, plastic, growth, degradation, and full), (c) pressure-diameter of three cases for diameter change (elastic,
plastic, and degradation), and (d) pressure-diameter of three cases for thickness change (elastic, plastic, and
degradation)

Fig. 6 Anisotropic growth effect: (a) anisotropic growth effect on diameter and (b) anisotropic growth effect on
thickness
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few have investigated the role of dissipative changes, such as plas-
ticity and degradation, of the pulmonary arterial wall in PH
modeling.

This study presented the first mechanics-based modeling frame-
work of PH that captures the inelastic and vascular remodeling

behavior of the pulmonary artery in the presence of the pulsatile
cardia cycle. This modeling used the small-on-large (SoL) time-
scale theory approach [57], assuming that the cardiac cycle (short
time scale) only leads to a small deformation within the elastic
range while the accumulated cycling results in a large deformation
with growth in a long time scale. The model assumed that plastic-
ity is based on the J2 flow caused by the elevated systolic pulmo-
nary arterial pressure; degradation is magnified leading to
isotropic damage of elastin (fragmented elastin layers) via an ele-
vated pulse pressure, and growth is generated via stress-mediated
volumetric growth. The parametric study showed that degradation
enlarges the diameter and with an isochoric deformation,
decreases the thickness shown in Figs. 3(a)–3(d). Stiffness is also
increased as the disease progresses with degradation and growth
shown in Figs. 3(d) and 4(c). The stress-mediated volumetric
growth results in diameter increases and thicker walls when the
mean pulmonary arterial pressure is gradually elevated shown in
Fig. 4. Although the degradation ought to cause a softening of the
vascular matrix, this simulation, however, found the opposite to
be true. This was mainly due to a load transferring from a low-
stretched state to a higher stretched state via an elevated trans-
mural pressure during the time course of the disease progress. Fur-
thermore, the volumetric growth renders an increased arterial
stiffness during the course, both by increased intrinsic stiffening
and thickening. The elevated stress directly links to the volume
change; however, the growth also has an indirect, recovery mech-
anism by which pulmonary vascular remodeling is caused by the

Table 3 Growth and degradation parameters for the case study
with the anisotropic growth

Elastic parameters Plastic parameters

c1 (kPa) k1 (kPa) k2 (kPa) ai (deg) T0 (kPa) H (kPa)

13.04 30.56 3.03 657.89 134.35 70

Degradation parameters Growth parameters

Cd b b trðThÞ (kPa) h (1/kPa� year)

1.0 2.0 2.0 4000 0.15

Fig. 7 The ratios of the arterial thickening, luminal enlarge-
ment, and arterial stiffening against the initial state that are
computed from the generated in silico simulations. For the ref-
erence data, the ratios are computed by the values of PH
patients against those of healthy subjects obtained from the
references.

Fig. 8 Effect of degradation on the plastic behavior: (a) pressure-diameter curves of plastic model according
to the degradation variable and (b) pressure-thickness curves of plastic model according to the degradation
variable

Fig. 9 Effect of growth on J2 deviatoric stress invariant
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arterial damage, whereas smooth muscle hypertrophy and adventi-
tial thickening are well documented in animal models of PH [58].
It is also widely accepted that arterial stiffening plays an impor-
tant role both in systemic and pulmonary hypertension progres-
sion in clinics [59,60]. Nevertheless, although its parameter
sensitivity study clearly illustrated that arterial damage and
growth cause increased stiffness, the full simulation (combining
all) reveals a key postpathological recovery process of compensat-
ing for the vessel damage by vascular adaptation and reducing the
rate of vessel dilation and mediating vascular wall stress.

6 Conclusion

In conclusion, this work confirms that the thermodynamics
model with the inelastic potential function of combining growth
and plastic behavior is capable of calibrating within the range of
clinical PH data. With more experimental data, such as pressure
dependency of yielding and anisotropic behavior and microstruc-
ture dependency [61–63], this potential function can be updated to
capture more complex behavior. In the future, the accumulation of
more data along with the continuous improvement of the model
will allow the model to serve as a tool that calibrates against
patient-specific data and help in the optimal treatment for patients,
such as elastase inhibitors [64].
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Appendix A

A.1 Numerical Process of the Global Equilibrium. This
section presents the numerical algorithm implemented in the MAT-

LAB program. The inflation experiment was conducted with a fixed
kz condition; then stress and external pressure equilibrium can be
solved for a thin wall at the given diameter in the two-
dimensional condition, as below:

Err ¼ Trr þ
Pi

2
¼ 0 and Ehh ¼ Thh �

r

ht
Pi ¼ 0 (A1)

where Err and Ehh are residual errors from the equilibrium in the
radial and circumferential directions, Pi denotes the internal wall
pressure in the inflated tube. Since r and ht are functions of kh and
kr , the nonlinear Eq. (A1) can be solved by the Newton–Raphson
method
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(A2)

The superscript i denotes the iteration number and Dt is the time

increment. The system Eq. (A2) is solved until
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

rr þ E2
hh

q
becomes smaller than the tolerance to get kh and kr by

kn
r ¼ kn�1

r þ
X

_krDt and kn
h ¼ kn�1

h þ
X

_khDt (A3)

During the iteration, ht and r should be updated by

r ¼ khR and ht ¼
R

r
Htkhkr (A4)

At each iteration, _krDt and _khDt denote the total stretch while the
stress components (Trr and Thh) in Eq. (A2) are affected by only
the elastic stretch. For this reason, the inelastic deformation
should also be considered. The numerical loop of the inelastic dis-
sipation is inside the global iteration of Eqs. (A2)–(A3), and the
details of the inelastic numerical procedure is explained in Secs.
A.2 and A.3. Next, the Lagrange multiplier p is also updated at
every iteration by using the equilibrium between the stress compo-
nents given by

@Trr

@r
þ Trr � Thh

r
¼ 0 (A5)

@Tzz

@z
¼ 0 (A6)

The stress components in the above equation are obtained after
the inelastic loop (see Sec. A.3), and the remaining stresses for the
incompressible material can be written as

Trr ¼ �pþ T rr (A7)

Thh ¼ �pþ T hh (A8)

Tzz ¼ �pþ Tzz (A9)

The internal pressure Pi is given for the inflated tube, and Trrðr ¼
riÞ ¼ �Pi and Trrðr ¼ roÞ ¼ 0 where ri and ro are in and out
radius for the tube. The integration of Eq. (A7) gives

Trr rð Þ ¼
ðro

ri

T rr � Thh

n
dn (A10)

Fz are given by integral forms as

p ¼ �
ðro

ri

T rr � T hh

r
dr (A11)

Fz ¼ �
ðro

ri

ð�pþ TzzÞð2prÞdr (A12)

The Lagrange multiplier p can be solved using Eqs. (A7) and
(A10), then (A12) becomes

Fz ¼ 2p
ðro

ri

ðro

ri

T rr � T hh

n
dn� T rr þ Tzz

 !
rdr (A13)
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Since
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r
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T rr � Thh

n
dndr ¼ pr2

i Pi þ
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2
T rr � T hh
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The Eq. (A13) results in

Fz ¼ 2p
ðro

ri

T zz �
T hh þ T rr

2

� �
rdr þ pr2

i Pi (A15)

If the vessel is assumed to be a thin membrane, the integrationÐ ro

ri
f ðrÞdr can be approximated by f ðrmÞ=ht where rm ¼ ðro þ riÞ=2

and ht ¼ ro � ri.
Hence

Pi ¼
h Thh � T rr

� �
rm

(A16)

Fz ¼ 2prmhðT zz � TrrÞ � pðr2
m � r2

i Þ (A17)

A.2 Numerical Process of the Growth. The inelastic loop is
inside the global iteration loop in Eq. (A2). In the ith global itera-
tion at nth time-step of numerical analysis, the total deformation
and elastic dilatation are given under the pure elastic deformation
assumption, as below:

½Fe�tn ¼ ½F�n and ½Je�tn ¼ ½Je�n�1ð1þ D :IÞ (A18)

The superscript t denotes the trial value and the subscript n means
the nth time-step, and D is given by integrating the rate of the
stretch tensor component through the global iteration of Eq. (A3)

D :I ¼
X
ð _kr þ _khÞ (A19)

The trial Cauchy stress is determined by Eq. (27), and then the
inelastic potential function uin

�
T0; trðTÞ

�
defines the inelastic

deformation. The increment of the growth potential can define a
g1 function

g1 ¼ _ugðtrðTÞÞDt� dugðtrðTÞÞ ¼ 0 (A20)

and be solved by the Newton–Raphson scheme as below:
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where k is the local iteration number in the growth loop and Dt is
the time increment. The growth deformation is determined by
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Then Fe is updated at each iteration as below:

½Fe�kn ¼ ½Fg��1½F�tn and ½Je�kn ¼ ½Je�tn � 3½Je�n�1Cg (A23)

Based on the incompressible condition, Eqs. (A21)–(A23) are
repeated until reaching the condition of ½Je�kn ¼ 1. Following Eqs.
(44) and (45), Fg is given by:

Fg ¼ ð3CgÞ1=3
I for isotropic; and (A24)

Fg ¼ 3CgA where A ¼
1 0 0

0 1=3Cg 0

0 0 1=3Cg

2
4

3
5 for anisotropic.

The trial stress is then updated by new ½Fe�tn and ½Je�n.

A.3 Numerical Process of the Plastic Deformation. If
upðT0tÞ � TY < 0, the trial stress becomes the Cauchy stress
(T ¼ Tt) at the ith global iterations. On the other hand,
upðT0tÞ � TY > 0, the plastic deformation is generated. Since the
rotational and shear deformation are neglected, the plastic spin
tensor is also neglected by

Wp12 ¼ Wp13 ¼ Wp23 ¼ 0 (A25)

and the direction of the plastic deformation is calculated by
neglecting the shear plastic deformation
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CP is then calculated

CP ¼
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CP in Eq. (A27) is accumulated until y3 ¼ upðT0Þ � TY reaches
the tolerance. Fe and Ce can be updated by
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Finally, the Cauchy stress of ith global iteration at the nth step is
determined by Eq. (27).
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