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Mechanobiology of Pulmonary
Diseases: A Review of
Engineering Tools to Understand
Lung Mechanotransduction
Cells within the lung micro-environment are continuously subjected to dynamic mechani-
cal stimuli which are converted into biochemical signaling events in a process known as
mechanotransduction. In pulmonary diseases, the abrogated mechanical conditions mod-
ify the homeostatic signaling which influences cellular phenotype and disease progres-
sion. The use of in vitro models has significantly expanded our understanding of lung
mechanotransduction mechanisms. However, our ability to match complex facets of the
lung including three-dimensionality, multicellular interactions, and multiple simultane-
ous forces is limited and it has proven difficult to replicate and control these factors
in vitro. The goal of this review is to (a) outline the anatomy of the pulmonary system and
the mechanical stimuli that reside therein, (b) describe how disease impacts the mechani-
cal micro-environment of the lung, and (c) summarize how existing in vitro models have
contributed to our current understanding of pulmonary mechanotransduction. We also
highlight critical needs in the pulmonary mechanotransduction field with an emphasis on
next-generation devices that can simulate the complex mechanical and cellular environ-
ment of the lung. This review provides a comprehensive basis for understanding the cur-
rent state of knowledge in pulmonary mechanotransduction and identifying the areas for
future research. [DOI: 10.1115/1.4051118]

1 Introduction

The lung is a complex mechanical organ and cells within the
respiratory system experience a range of complex and dynamic
mechanical forces. Although the heterogeneous mechanical forces
that occur within the lung in vivo are well understood, the use of
in vitro systems to recapitulate these complex physiological and
pathophysiological mechanical stresses has only recently been
appreciated. This review will provide a macro- and microscopic
overview of lung anatomy, identify the magnitude of mechanical
stimuli that cells experience within the pulmonary micro-
environment, summarize current in vitro models and mechano-
transduction findings, and discuss future directions for this field.
We will focus on the need for novel in vitro systems that not only
capture physiologically relevant mechanical conditions but also
incorporate heterogenous cell-types to account for multicellular
interactions. This review aims to introduce the complex micro-
environment of the lung and the current mechanotransduction
studies within this field to facilitate the development of new
systems that more accurately recapitulate the pulmonary
micro-environment.

1.1 Macroscopic Anatomy of the Lung. The respiratory sys-
tem extends from the nasal/oral passages, through the pharynx,
down the larynx, and into the trachea which splits into right and
left bronchi followed by five generations of branching. Airway
branching continues for 10–12 generations in humans, leading
into terminal bronchioles, which is the last unit of the lung’s con-
ducting zone where no gas exchange occurs (Fig. 1(a)). Air then
travels into the respiratory zone, denoted by the presence of
alveoli within the bronchioles (respiratory bronchioles), which ter-
minates into the alveolar duct, alveolar sac, and alveoli
(Figs. 1(b)–1(c)). The process of gas exchange occurs within the
alveoli lined by a thin layer of epithelial cells forming a tight,
single-celled membrane atop a basement membrane (1.66 l
60.128 l in normal lungs [1]) with direct connections to the endo-
thelial lining of the capillary network. The close positioning of the
air sac and blood flow across a thin epithelial-endothelial barrier
enables the diffusive exchange of carbon dioxide and oxygen. The
space between epithelial and endothelial linings is known as the
pulmonary interstitium and contains a variety of cells and extrac-
ellular matrix components that provide structure and support for
the lung. The visceral pleura is a thin membrane that lines the
entirety of the pleural cavity in one continuum and changes names
based on the structure it lines (mediastinal, diaphragmatic, costal,
cervical, and visceral pleura). The pleura maintains a negative
intrapleural pressure of �4 mm Hg and reduces friction at the
lung-wall interface during breathing.
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The main function of the lung is gas exchange. Inhalation is ini-
tiated through the contraction of the diaphragm and surrounding
chest muscles, pulling the chest wall outward. The resulting
reduction in intrapleural pressures draws the lung parenchyma
outward, increasing the volume of the alveoli. This movement
creates a negative or subambient pressure within the alveoli and
draws air into the lung until equilibrium is reached. Once chest
muscles and diaphragm contraction are relaxed, the elastic recoil
of the lung releases the chest wall inward and decreases alveolar
volumes. This decrease in volume compresses the air, increasing
its pressure and forcing it out of the lung, i.e., exhalation.

1.2 Microscopic Anatomy of the Lung. There are many dif-
ferent types of cells and structural supports within the respiratory
tract [2]. The trachea and primary generations of branching bron-
chi are supported by a cartilage superstructure along with smooth
muscle that dilates or constricts to regulate airflow [3,4]. Bronchi
are lined with primarily ciliated columnar epithelial cells that act
as physical barriers within the lung to remove inhaled debris [5]
or trap the debris in a mucus layer secreted by goblet cells [6] via
the mucociliary escalator. Basal cells residing beneath this epithe-
lial layer can differentiate and replace damaged cells as needed
[7]. As bronchi branching continues, the main cell type shifts
from ciliated epithelial to nonciliated club cells [7–9] which line
the respiratory bronchioles [5,10] before terminating in alveolar
ducts. Smooth muscle cells continue to support the airway tree

Fig. 1 Anatomy of the respiratory system. (a) In humans, the respiratory system includes
the mouth, nose, pharynx, and proximal trachea which branches into right and left lung
lobes and a pleural cavity that borders the thoracic wall. (b) The macro-environment of the
respiratory tree contains a conducting zone with bronchi located proximally leading into
bronchioles, and terminal bronchioles and a respiratory zone with respiratory bronchioles,
the alveolar duct, and alveolar sacs. (c) The micro-environment of the alveoli includes type 1
and type 2 pneumocytes/epithelial cells attached to a thin basement membrane, alveolar
macrophages, endothelial cells and fibroblasts, and interstitial macrophages within a colla-
gen and elastin ECM. Created with the link in a note.3
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down to the respiratory bronchioles [4]. The alveoli are lined with
type one and two pneumocytes (alveolar epithelial cells). Type
one pneumocytes are thin squamous cells that stretch to cover
large areas making up the majority (95%) of the alveolar surface
and participating in immune host defense [5]. This thin membrane
allows for diffusive gas exchange and prevents plasma fluid entry
into the alveoli. Type two pneumocytes are granular, cuboidal in
shape, and are responsible for surfactant secretion. Previous work
has demonstrated that type two pneumocytes replicate to replace
damaged or dying type one pneumocytes [5] and actively partici-
pate in immune defense via the expression of pathogen recogni-
tion receptors [11,12].

Although not a cellular component, pulmonary surfactant is a
crucial part of the respiratory system which acts to reduce the sur-
face tension at the air–liquid interface. Reduced surface tensions
in the alveoli stabilize the lung by preventing alveolar collapse
during exhalation, maintains low alveoli opening pressures,
ensures uniform alveoli inflation [13], and establishes a barrier to
prevent pathogen access to cell surfaces [14]. Pulmonary surfac-
tant constituents include lipids (90%) and proteins (10%) [15] and
an extensive breakdown of surfactant composition can be found in
the reviews by Perez-Gil [14,16].

Since the lung is the largest internal organ with exposure to the
outside environment, it contains a robust immunological system
to distinguish pathogens from inert particles. It contains both
innate and adaptive immune cells and can be considered an immu-
nological organ [17]. Several macrophage subtypes exist within
the lung micro-environment including alveolar macrophages and
interstitial macrophages. Alveolar macrophages reside along the
airway in the epithelial lining fluid and are responsible for identi-
fying and phagocytosing inhaled microbes and/or particles and
clearing pulmonary surfactant [5]. Interstitial macrophages are
located within the lung tissue though their exact location is
debated as their clear isolation from other macrophage types is
complex [18]. They are able to phagocytose bacteria and particu-
late matter, express cytokines and act as immunoregulatory cells
[18]. There are also a variety of other immune cells that are

present in the lung during homeostasis such as lymphocytes, den-
dritic cells, and natural killer cells.

The lung also contains structural cells and proteins that play
important roles within the pulmonary micro-environment. The
lung parenchyma is composed of extracellular matrix (ECM) pro-
teins, connective tissues, and cells. Collagen and elastin are two
of the main proteins found within the ECM and this matrix com-
position provides important structural support for the lung micro-
environment during the active process of inhalation and avoids
collapse while maintaining prestress after exhalation [19]. Fibro-
blasts, long, spindle shaped cells that reside within the ECM, are
responsible for maintaining and repairing the ECM [20]. When an
injury occurs, fibroblasts can be activated and differentiated into
myofibroblasts, which express alpha-smooth muscle actin and
remodel or contract their surroundings to initiate the wound heal-
ing and repair response. A final component of the lung is the vis-
ceral pleura which are composed of five layers of cells and
connective tissues [21]. A detailed account of each layer and func-
tion can be found in Sevin and Light’s review [21]. The pleural
membranes secrete fluid into the pleural cavity, reducing friction
between the lungs and chest wall during respiration [22]. These
cellular and protein components work together allowing the lungs
to accomplish their essential task of gas exchange.

1.3 Mechanical Forces Within the Lung. In addition to the
matrix and cellular components of the lung, there are also a vari-
ety of mechanical forces which occur in the respiratory system.
Mechanotransduction is the process by which cells sense and
translate these mechanical forces into downstream signaling and
phenotypic changes. Within the scientific community, the impor-
tance of mechanotransduction has been recognized in a variety of
diseases and cell types such as cancer, where shear stress and
compression increases proliferation, chemoresistance, and pro-
gression [23–25], lung fibrosis where stiffness promotes fibrotic
buildup [26], and bone cell survival which is influenced by tension
[27]. Through the study of physiological mechanical forces in

Table 1 Mechanical properties of the lung in normal and diseased states

Parameter Magnitude in healthy lung Magnitude during pulmonary disease

Alveolar tissue strain (%) 4% normal tidal breathing [33–35] 12% deep sigh
(calculation from excised dog lungs) [36,37]

Inhomogeneity of the diseased lung
creates focal stressors that increase
alveolar strain [35,38,39]0–5% (Linear distension estimate

for normal tidal breathing) [33]
15–40% or higher (for functional residual capacity to TLC) [33]

Noncollagenous lung tissue
stiffness (kPa)

0.5 to >3 (mice saline treatment) [26] 3 to >15 (mice bleo treatment) [26]
1.96 6 0.13 (human lung tissue) [40] 16.52 6 2.25 (IPF human lung tissue) [40]
1.9137 rat lung parenchyma [41] 9-38.5 (IPF human lung tissue) [42]
3.7 6 1.3 (human lung tissue) [42] 2.9 6 0.8 (COPD GOLD IV human

lung tissue) [42]

Collagenous Bronchi Stiffness (kPa) Pseudo-elatic linear modulus in Pig [3]
Axial 30.31 6 3.1
Circumferential
-Small bronchi 12.5 6 1.9
-Trachea 6.0 6 0.6
-Large bronchi 6.6 6 0.9

Shear stress in alveoli (dyn/cm2) <15 [31] Several magnitudes higher in alveolar
reopening conditions [31]

Respiratory frequency (Hz) 0.20 (normal tidal breathing) 0.44 (cystic fibrosis (CF)) [43]
0.55 (heavy exercise) [44]
0.285 [43]

Tidal volume (mL) 410 [43]; 500 [44] 403 (CF) [43]
Surfactant based surface
tension (mN/m)

Minimum surface tension:
Inspiration� 20 ACB> 12 [45]
Expiration<2 [14] CF> 15 [46]
(near zero [15]) ARDS> 20 [15]
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specific micro-environments, the importance of a three-
dimensional (3D) micro-environment, compressive stimulus,
shear stress, and tension forces influence not only cellular pheno-
types but also proliferation, cell death, morphology, differentia-
tion, and response to drug treatments [25,28,29].

As evident from the large size change and continuous use of the
respiratory system, cells within the lung experience an ongoing
dynamic range of mechanical stresses. In the setting of normal
breathing, the lung parenchyma is prestressed at end expiration
and transmural pressure keeps alveoli open preventing collapse
[19]. During inhalation, the alveolar-capillary barrier, including
the epithelial cell layer, basement membrane, and endothelial cell
layer, is stretched in tension creating internal strain affecting all
cells within the micro-environment. During exhalation, the

elasticity of the lung contracts the parenchyma and alveoli, ini-
tially increasing the localized pressure within the alveolar sacs
and creating a momentary compressive force on the alveolar epi-
thelial lining. The continuous expansion and contraction of the
lung alveolar surfaces also create a shear force along the surface
epithelium [30–32]. Additionally, the lung also has viscoelastic
properties, meaning that it responds in a time-dependent manner
to applied forces dissipating some applied energy. The mechanism
by which this viscoelasticity impacts the cellular components and
their response to a mechanical stimulus is largely unknown and
will be discussed further in Sec. 3.5. Although these forces are
normal within a healthy lung micro-environment, in the setting of
disease or during mechanical ventilation these forces are signifi-
cantly altered in both magnitude and distribution [31]. Where

Fig. 2 Mechanical Forces within the lung. (a) Contraction of the diaphragm and chest
muscles during inhalation results in negative interpleural pressure that expands lung tissue,
stretches the alveoli, and increases lung volume driving air inflow. (b) Relaxation of the dia-
phragm and chest muscles during expiration allows for elastic recoil that reduces lung vol-
ume and air compression that drives air outflow. (c) In restrictive diseases, fibroblast-
mediated remodeling causes increased tissue stiffness which limits expansion capability
during inspiration. (d) In obstructive pulmonary disease, ECM degradation leads to hyperin-
flation and reduced elastic recoil inhibiting full exhalation. Created with the link in a note.3
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healthy lung tissue is primarily homogeneous in terms of mechan-
ical properties/forces, diseases introduce significant heterogeneity
and new or aberrant forces within the lung. A summary of physio-
logical force magnitudes experienced within the lung is provided
in Table 1.

2 Respiratory Diseases

In general, pulmonary diseases are classified into two catego-
ries: restrictive, which involves a reduced lung expansion
capacity, or obstructive, which involves increased airway resist-
ance and limited airflow. Classification of restrictive or obstruc-
tive disease is based on clinical measurements including the ratio
of forced expired volume in one second to full forced vital
capacity (FEV1/FVC%) and total lung capacity percentage
(TLC%) [47]. The obstructive disease involves a low FEV1 (due
to obstructed airways) and a high TLC%. The restrictive disease
is characterized by a reduced TLC% and no change or an increase
in FEV1/FVC ratio as both measures are reduced simultaneously
or FEV1 is increased with reduced lung compliance. Restrictive
diseases such as pulmonary fibrosis (PF), interstitial lung disease,
and sarcoidosis often involve stiffening of the lung parenchyma
due to the buildup of ECM and scar-like tissue around the alveoli,
restricting the lung’s expansion capacity. Obstructive diseases,
such as asthma, bronchopulmonary dysplasia (BPD), bronchiolitis
obliterans (BO), and chronic obstructive pulmonary disease
(COPD), involve airway swelling and decreased matrix stiffness
and elasticity due to the degradation of the lung connective tissue
which reduces the lung retraction force and ability of the individ-
ual to fully exhale. Pulmonary diseases can also be classified as
either acute or chronic. Chronic and/or progressive conditions
such as asthma, COPD, and idiopathic pulmonary fibrosis (IPF)
can last up to a lifetime, and interestingly some acute conditions,
such as acute respiratory distress syndrome (ARDS) can lead to
chronic lung damage (i.e., fibrosis). During acute/chronic lung
disease, the complex mechanical environment of the lung is
altered, changing the cellular forces experienced within the tissue.
This section will focus on the mechanical stress changes associ-
ated with pulmonary diseases and the pathophysiological altera-
tions of the lung micro-environment.

2.1 Acute Respiratory Distress Syndrome. Acute respira-
tory distress syndrome is characterized by fluid buildup in the
lungs preventing gas exchange in the alveoli resulting in hypoxe-
mia. This acute disorder occurs rapidly and is thought to be a sec-
ondary response to an initial insult such as viral infection or injury
[48]. Unfortunately, the primary treatment for ARDS, protective
mechanical ventilation, provides essential oxygenation to the
body but also alters mechanical stress within the lungs resulting in
pathophysiological forces that further disrupt the alveolar-
capillary barrier resulting in edema. Previous work has demon-
strated that excess ECM deposition causes alveolar remodeling in
ARDS patients [49] contributing to the resistance of lung expan-
sion (Fig. 2(c)) [50]. Long-term effects for ARDS survivors
include: mild fibrosis (majority ventilation-induced), exercise lim-
itations, cognitive impairment, muscle weakness, diminished oxy-
gen transfer, and reduced mental health [51]. Additional effects of
ventilator-induced lung injury will be discussed in the ventilator-
induced lung injury section below.

2.2 Asthma. Asthma is a chronic disease characterized by
hyper-responsiveness of the airway to a stimulant that would nor-
mally not cause airway narrowing in a healthy patient [52].
Restricted breathing, caused by the contraction of airway smooth
muscle cells, is thought to be responsible for these hyperactive
responses [52,53]. Asthma encompasses a wide range of patho-
physiological mechanisms and subtypes including allergic and
nonallergic (obesity, viruses, etc.) stimulants. Patients experience
shortness of breath due to acute airway constriction, swelling, and

mucus production. This intense constriction induces extreme com-
pressive forces on the airway epithelium influencing cellular phe-
notypic responses [54,55]. Although airway constriction is an
acute response, repeated exposure induces chronic inflammation
leading to airway wall thickening, permanent loss of lung function
[56], mucus production, airway remodeling [56], enlargement of
the surrounding smooth muscles, and ECM structural changes
[57]. In addition, a variety of immune cells alter the cellular
makeup in the proximal airways [58] as well as the lung periphery
[59,60] contributing to airway remodeling and perpetuation of
the disease [61,62]. Asthmatic patients have increased and
irregular collagen deposition in both large and small airways, and
this effect on lung biomechanics requires future modeling
investigations [61].

2.3 Bronchiolitis Obliterans. Bronchiolitis obliterans is an
obstructive respiratory disease where inflammation and luminal
fibrosis are found in the respiratory bronchioles (Fig. 2(d)) [63,64]
as a result of lung or bone marrow transplant, toxin exposure, or
infections [65]. This scar tissue buildup blocks gas exchange in
the small airways and patients present with dry cough, shortness
of breath, and fatigue [66]. BO is a major complication of lung
transplantation representing chronic organ rejection with an
unknown cause [64] and is the leading cause of death after the first
year of transplantation [63]. It is characterized by air trapping in
the lungs during complete expiration, narrowing of the lumen
without alteration in the parenchyma, along with collagen deposi-
tion in the submucosa constricting the small airways sometimes
causing complete occlusion [65]. The alterations in lung biome-
chanics associated with this disease and how changes in force con-
tribute to BO progression are currently understudied.

2.4 Bronchopulmonary Dysplasia. Bronchopulmonary dys-
plasia is a chronic disease associated with premature infants that
receive oxygen and mechanical ventilation for respiratory distress
[67]. It is caused by injury to the developing lungs, either before
or after birth resulting in an abnormal healing response [68].
Advances in preterm neonatal care have greatly improved the sur-
vival rate for preterm infants [69]. Infants that survive BPD often
experience delayed lung development, reduced alveolarization,
and diminished generation of alveoli units as they age [70]. The
impact of altered mechanical forces on alveolarization remains
understudied. BPD survivors can also experience chronic pulmo-
nary issues in adulthood such as pulmonary dysfunction, altered
lung structure, obstructive lung functions, and exercise intolerance
alluding to a predisposition to pulmonary complications later in
life. The mechanisms that regulate this phenomenon are currently
unknown [70]. Additional research is needed to understand the
long-term effects of this early lung injury and how the altered
mechanical environment influences recovery and prolonged pul-
monary complications.

2.5 Chronic Obstructive Pulmonary Disease. Chronic
obstructive pulmonary disease is a chronic inflammatory disease
causing obstruction of the lower airways and is currently one of
the leading causes of death worldwide [71,72]. There are a variety
of causes for COPD with most patients having exposure to long-
term irritants or particulates, such as smoking. The acute progres-
sion of the disease has been observed with infection [73], but
patients diagnosed with COPD experience difficulty breathing due
to narrowing of the airways and inflammation-induced destruction
of the normal ECM [74]. The disruption of collagen IV [75] and
elastin degradation [76] within the lung results in reduced elastic
recoil during exhalation [76] and softening the lung tissue
(�30%). This parenchymal destruction leads to enlarged alveoli
and possibly emphysema (Fig. 2(d)) [77].

2.6 Pulmonary Fibrosis. Pulmonary fibrosis is a chronic,
restrictive lung disease with excessive collagen deposition from
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the buildup of scar tissue in the lung caused by pulmonary injury,
inflammation, and/or long-term exposure to toxins or particles. PF
patients experience a range of symptoms including shortness of
breath, cough, and fatigue. The most severe form of pulmonary
fibrosis is IPF which has an undetermined cause and a median sur-
vival of fewer than three years after diagnosis [78,79]. Unresolved
scar tissue in the lungs stiffens the lung parenchyma and restricts
lung expansion. Excessive matrix deposition occurs in the distal
airway structures, where fibroblastic foci are constructed from
excess collagen, fibrin, and other ECM components that fail to be
resolved and worsen over time [77]. The heterogeneous lung stiff-
ness creates foci of intensified stress and strains (stress raisers)
influencing cellular mechanotransduction and progression of the
disease (Fig. 2(c)) [80].

2.7 Lymphangioleiomyomatosis. Lymphangioleiomyomatosis
(LAM) is a rare condition where patients exhibit cysts in the lungs
and lymphatics as well as abdominal tumors [81]. It primarily affects
females of childbearing age with initial symptoms of dyspnea, pneu-
mothorax, pleural effusions, ascites, abdominal hemorrhage, airway
hyperreactivity, or bloody cough [82]. There are two forms of LAM
including the sporadic form, which has an unknown cause, and the
familiar form which includes mutations of the tuberous sclerosis
complex (TSC) [83]. LAM cells, abnormal smooth muscle-like cells
with mutations in TSC1 or TSC2 genes, exhibit over activation of
the mTOR pathway [81,83], proliferate to form the lung and/or lym-
phatic infiltrating cysts that destroying the lung parenchyma. The
infiltration of the LAM cells cause vascular wall thickening, occlu-
sions in airways and veins, hemorrhage, lung degradation, and
hinder gas exchange and airflow in alveoli [83–86]. It is predicted
that changes in matrix-degrading enzymes, such as matrix metallo-
proteinases (MMPs), alter the lung structure and enable cyst forma-
tion in the lungs [85,86]. Lung degradation corresponds to cyst score
(proportion of lung occupied by cysts) and severity of the disease
but can be mitigated with sirolimus treatment [84]. The obstructive
behavior of this disease can cause air trapping, and the limited air-
flow restriction is believed to be mainly caused by increased airway
resistance not loss of elastic lung recoil (Fig. 2(d)) [86].

2.8 Sarcoidosis. Sarcoidosis is characterized by abnormal
inflammatory cell aggregates known as granulomas that form in a
variety of organs but most commonly in the lungs [87]. The cause
of sarcoidosis is unknown although some predisposition genes
have been identified [88]. In roughly two thirds of patients, sar-
coidosis resolves on its own, but for the remaining patients, the
disease results in a chronic condition with reduced pulmonary
function [89]. Sarcoidosis is often accompanied by fibrosis and
can be thought of as both a restrictive and obstructive disease
(Figs. 2(c) and 2(d)) [88,90] with some individuals displaying a
mixed ventilatory pattern (reduced FEV1/FVC and below normal
TLC) [47]. As the disease progresses, granulomas become more
fibrotic and form nodules with excessive collagen deposition, and
histology of end-stage disease resembles the fibrotic buildup
observed in IPF [88].

2.9 Ventilator Induced Lung Injury. The use of a ventilator
is critical for treatment in a variety of acute and chronic pulmo-
nary conditions; however, it can also be a source of further dam-
age to the lung tissue. During the application of positive pressure
to inflate the lungs, excessive pressure and stretch to accommo-
date the volume change can damage the alveolar lining. This
over-distention causes additional damage and inflammation ini-
tiating an acute response, which can also exacerbate a chronic
condition [91,92]. Mechanical ventilation can exacerbate damage
to lung tissue through several mechanisms. Volutrauma injures
the lung when high tidal volumes result in over-distension/
excessive stretch of the alveoli. Atelectrauma damages the lung
by shear/interfacial forces generated from repetitive opening/
closing of fluid occluded alveoli/airways. Finally, barotrauma

causes damage via elevated transmural pressure through the accu-
mulation of air in extra alveolar spaces often due to alveolar rup-
ture [93–95]. In addition to physical damage, these mechanical
forces can also lead to pro-inflammatory cytokine release that not
only exacerbates lung injury but can also cause distal organ dys-
function. Some of the acute injury induced by mechanical ventila-
tion can be avoided through the use of low tidal volumes [96],
although it is not entirely mitigated because ventilation can also
damage the lung through the repetitive opening and collapse of
fluid-filled alveoli at low lung volumes (atelectrauma) [92]. This
action induces damage through high-pressure gradients that are
generated by moving air–liquid interfaces [95,97] which can be
lessened by the use of positive end expiratory pressures to main-
tain an open lung and minimize recruitment/derecruitment of
alveoli [91,97]. However, the effectiveness of positive end expira-
tory pressures modulation currently remains ambiguous [94,98].

2.10 Viral Induced Lung Injury (Influenza and COVID-
19). The lungs are subjected to constant exposure to the pathogens
and irritants of the outside world in the air we breathe. To protect
against harmful infection the immune system monitors the airway
and alveolar spaces but in the setting of viral infection can become
overwhelmed and unable to contain and clear the infection. Viral
lung infections affect large portions of the population seasonally
and with the COVID-19 pandemic, more people than ever are
exposed to this form of lung injury. Viruses infiltrate the respira-
tory tract targeting the airway and alveolar epithelium resulting in
destruction of the epithelial lining and leakage of plasma fluid and
protein into the alveolar space. This resulting edema fluid within
the airspace significantly diminishes gas exchange [99]. Secondar-
ily, activation of the patient’s innate and adaptive immune
response, though necessary to clear the infection, can also further
injure the lungs by damaging the epithelium and endothelium
[100]. As a result, patients develop critical changes within the
lung micro-environment and severe infections can lead to the
development of ARDS and the necessity for mechanical
ventilation.

The cellular destruction and resulting fluid within alveoli com-
partments create tissue heterogeneity augmenting force distribution
throughout the lung and increasing the work required for normal
tidal breathing. Due to the increase in work, patients can also self-
inflict further injury within their lungs from respiratory contraction
without mechanical ventilation [100]. For example, increased
breathing effort concentrated in open as opposed to occluded lung
regions can lead to enhanced localized strain even with normal
overall tidal volume. In addition, increased diaphragm contraction
force causes increased pendelluft, tidal recruitment, and regional
strain [100]. Areas of enhanced strain in mouse models of over
inflation have preliminary shown elevated cell death and markers
of inflammation [100] which coincide with elevated strain models
in the whole lung [101]. Further study of the mechanism of lung
injury under viral load conditions is needed.

Although the lung has a robust repair mechanism, these repair
mechanisms, which include a wound healing/re-epithelization
response, can be extensively damaged by a viral infection and the
effect of viral infection on lung repair is not completely under-
stood [99]. Previous work has demonstrated that recovery from
severe viral infections can result in fibrosis and intimal thickening
[102] which would stiffen and restrict normal alveoli expansion.
Further studies on how these fibrotic changes influence disease
progression or resolution as well as the long-term functional
impacts on patients are needed specifically for those recovering
from COVID-19 [103].

3 In Vitro Lung Mechanotransduction Studies

Many investigators have developed in vitro systems to examine
how lung cells respond to mechanical forces. These models typi-
cally investigate how one type of mechanical force influences one
cell type, with little work combining multidimensional forces and
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multicellular models to accurately recapitulate the complex inter-
actions that occur in vivo. In this section, we review the current
literature on lung cell types and their responses to a mechanical
stimulus in vitro.

3.1 Epithelial Cells. Lung epithelial cells line pulmonary air-
ways and alveoli and are exposed to cyclic tension due to alveolar
expansion, low levels of shear stress from air flow in the proximal
lung, and the stiffness of the basement membrane. Minor levels of
tension occur from bronchodilation, shear stress via air, mucus, or
surfactant fluid flow, and compression from air pressures within
the lung. In the diseased state, epithelial cells are subjected to
higher levels of shear, altered tensile and stiffness profiles, and in
some conditions aberrant air–liquid interfacial flows in the deep
lung. Additionally, alveolar collapse during some conditions
can cause epithelial cells to undergo complex hydrodynamic
stresses during airway reopening [95]. The air–liquid interfacial
movement along with altered surfactant properties can influence
the mechanics of the entire lung [95]. The range and impact of
these mechanical stimuli can significantly modify epithelial
cell phenotypes, cellular metabolism, and gene expression
profiles.

Many studies have focused on the response of epithelial cells to
tensile stresses. Investigations of normal physiological conditions
include cyclical application of uniaxial or biaxial strain of �10%
and show that within this strain range alveolar epithelial cells
remain viable [104] with enhanced proliferation [105–107]. Some
controversy exists regarding the role of focal adhesion kinase
(FAK) in the mechanotransduction response to strain [105–107],
and this disparity may be attributed to differences in strain magni-
tude, e.g., 10% versus 20% which mimics lung over-distension
[105,106]. The involvement of FAK in regulating mechanotrans-
duction in the lung is based on previous work demonstrating its a
critical role in other diseases, such as cancer [108,109], and with
other cell types, such as endothelial cells [110]. Application of
20% strain induced an increase in reactive oxygen species (ROS
[111]) as well as generation and involvement of the p42/44 MAP
kinase pathway leading to increased proliferation [107]. Interest-
ingly, even at physiological cyclic stretch magnitudes of 10%,
Felder et al. Demonstrated impaired wound healing response
when compared to static culture [112]. The standard strain used
for over-distension in vitro is typically 20% or greater [113] and
this has repeatedly been shown to injure epithelial layers grown
on elastic membranes [113–115] with static stretch application
following these same trends in cell injury [119]. The recent work
of Arora et al. investigated ventilated mice lung strains using syn-
chrotron radiation microcomputed tomography. They found heter-
ogeneous deformations throughout the respiratory cycle with
strains ranging from 80 to 100% regionally and up to 150%
locally within the alveoli [121]. The ex vivo studies performed on
mouse and pig lungs using digital image correlation by Mariano
et al. found heterogeneous and anisotropic strains in the
parenchyma [122].

Work done by Tschumperlin et al. has demonstrated that cellu-
lar injury is proportional to the magnitude of deformation, seeding
density, and culture time [113]. Cellular response to strain occurs
quickly with 20% strain resulting in ROS induction within 15 min
[107,123] while the duration, magnitude, and type of cell stimu-
lated influences the specific response rate [124,125]. With heightened
stretch (10–20%) or the addition of asbestos fibers concurrent with
5% strain, IL-8 production is amplified [104,126,127] via mitogen-
activated protein kinase and p38 pathways [104]. The pro-
inflammatory response to lipopolysaccharide (LPS) stimulation was
shown by Rentzsch et al. to be reduced using variable stretch techni-
ques (random peak stretch 1–15% average 7.5%) compared to con-
stant peak stretch (7.5%) mediated through the extracellular
signaling regulated kinase (ERK) 1/2 pathway [128]. Additional
involvement of the ERK pathway [105,125,128], increases Naþ-Kþ-
ATPase activity [129], and enhanced intracellular adhesion

molecules (ICAM)-1 expression [125] have been associated with
cyclic mechanical loading of epithelial cells with duration, load mag-
nitude, and cell type all influencing the extent of pathway activity.

Shear stress exposure is often investigated using a microfluidic
device. When epithelial cells were exposed to low shear stresses in
the alveoli (0.69� 10�3 to 2.8� 10�3 dynes/cm2), Nalayanda et al.
observed that A549 cells exhibit decreased growth rates with
increased shear stress magnitude [130]. Interestingly, Mahto et al.
demonstrated that shear stress can differentially impact alveolar cells
depending on their source. The human cell line A549 had no change
in surfactant secretion below 8 dynes/cm2 and impaired secretion
above this level; whereas murine type 2 alveolar epithelial cells
(ATII) (murine lung epithelial (MLE)-12) cells showed enhanced
secretion with increasing stimulus [117]. Shear stress also impacts
mechanical properties by altering the keratin intermediate filament
(KIF) network in alveolar epithelial cells. Shear stress of 30 dynes/
cm2 induced KIF network disassembly (not under tensile stress) [131]
while a moderate stimulation, 7–15 dynes/cm2, lead to the strengthen-
ing of the KIF networks [132,133].

Complex interfacial forces affect the lung when repetitive air-
way/alveolar opening and closing are present. This occurs when
plasma fluid infiltration into the lungs alters the pulmonary surfac-
tant’s ability to maintain near zero surface tension in the alveoli.
The epithelial layers are subjected to a combination of tangential
shear and normal pressures that vary temporally and spatially dur-
ing airway/alveolar reopening and these forces cause significant
cell injury and barrier disruption [95]. Gaver and colleagues were
the first to show that increased spatial gradients in pressure are
responsible for elevated epithelial cell damage at slower reopen-
ing velocities and that repeated reopening events exacerbate cell
damage [134,135]. The impact of pressure gradients on cell dam-
age and death was confirmed by the work of Yalcin et al. who
showed reduced velocity and airway diameter and the resulting
elevated pressure gradient increased epithelial cell death [136].
These authors also demonstrated reduced cellular confluence and
repeated reopening events induced cell detachment and death
[136] and that “fluidization” of the actin cytoskeleton (decreased
stiffness with increased viscosity) leads to significantly less injury
during reopening [137]. Importantly, these authors also demon-
strated that pharmacological modulation of the cytoskeleton with
statins also reduces cell injury and inflammatory cytokine secre-
tion (IL-6, IL-8) [138]. A thorough review of the recent models
and studies investigating interfacial forces due to ARDS can be
found in the work by Viola et al. [139]. The chronic long-term
effects of interfacial forces are still unknown and better in vitro
models are needed to investigate the physiological response of all
cells in the lung micro-environment under extended force
stimulus.

Compression is the most understudied stimulus for pulmonary
epithelial cells as it is considered a minor component of the
micro-environment compared to tensile forces. Huang et al. dem-
onstrated that cyclic and static compression activates nuclear fac-
tor kappaB (NF-kB) in a magnitude-dependent fashion at low
frequencies [116]. Tschumperlin et al. demonstrated that compres-
sive stress activates phosphorylation of ERK and production of
heparin binding epidermal growth factor (HB-EGF) in bronchial
epithelial cells [140] and Chu et al. found that compression indu-
ces expression of epidermal growth factor receptor (EGFR)
ligands HB-EGF, epiregulin, and amphiregulin for sustained peri-
ods after 1–2 h of 30 cm H2O (2.9 kPa) of pressure [141]. Finally,
Savla and Waters demonstrated that compression slows wound
repair in epithelial cells [142]. For a detailed review of the impact
of mechanical compression on asthma airway response please see
the review by Veerati et al. [55].

The role of substrate stiffness on epithelial cell function has
some contradictory findings in the literature. Eisenberg et al.
demonstrated that substrate stiffness influences cellular morphol-
ogy, actin cytoskeleton, and focal adhesions but does not alter
epithelial-mesenchymal transition (EMT) or the differentiation of
ATII cells into ATI cell types in primary murine alveolar
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epithelial cells [143]. Conversely, Dysart et al. and Markowski
et al. found that increased substrate stiffness induced EMT, con-
tractile phenotypes, and activation of transforming growth factor
beta (TGF)-b via Rho/Rho associated coiled-coil containing pro-
tein kinase (ROCK) signaling [144] and that these responses could
be enhanced through exposure to particulate matter [145] in rat lung
epithelial T antigen negative cells. When combining the reopening
forces with varying substrate stiffness, Higuita-Castro et al. demon-
strated greater stiffness induced increased cell death but prevented
epithelial detachment and monolayer disruption along with
increased expression of FAK and phosphorylated paxillin [146].
Taken together, these studies highlight the importance of further
dissecting the role of mechanical forces in epithelial cells.

3.2 Macrophages. Macrophages exist in all areas of the lung
and can be derived from either proliferation of tissue-resident
cells or via differentiation from circulating monocytes. Within dif-
ferent lung regions, macrophages experience a range of mechanical
stimuli which can alter their function. Macrophages can be acti-
vated or polarized into an M1, pro-inflammatory, classically acti-
vated phenotype, or M2, alternatively activated phenotype, and
these phenotypes are distinguished by the expression of a variety of
cell markers and production of cytokines/chemokines. Activation
states exist on a continuum and are not a result of terminal differen-
tiation but rather in response to their micro-environment; therefore,
understanding how macrophages respond to various mechanical
forces and how these mechanotransduction events govern macro-
phage phenotype has been an active area of research.

Macrophages exposed to cyclic strain increase various factors
in relation to the amount of strain and frequency of stretch. Pugin
et al. showed increased production of pro-inflammatory cytokines,
such as TNFa, IL-6, IL-8, MMP9, and NF-jB activation, in
human alveolar macrophages with 12% elongation of the culture
membrane [127]. A 20% strain in murine alveolar macrophages
induced IL-1b and IL-18 release, the latter dependent on caspase
1 and TLR4 signaling, along with inflammasome activation which
required ROS [147]. Using macrophages derived from primary
human peripheral blood mononuclear cells (PBMCs), Ballotta
et al. showed that 7% deformation polarized macrophages toward
an alternatively activated, M2 phenotype [148]. Mathesona et al.
validated the Flexcell cyclic strain system and demonstrated that
10% strain increased IL-6, esterase, and acid phosphatase activity
in the macrophage-like U937 cells and also led to an aligned and
lengthened morphology [149]. Pakshir et al. discovered that mac-
rophage attraction to sites of tissue repair was dependent on the
dynamic strain of fibular collagen produced by fibroblast remodel-
ing of the ECM and not the ECM structure itself [150]. The teth-
ered fibers transmitted movement over hundreds of micrometers
away and the macrophage mechanosensing was attributed to a2b1
integrin and stretch activated ion channels [150].

Varying the substrate stiffness on which macrophages are cul-
tured influences phenotypic and morphologic changes. Culturing
murine bone marrow derived macrophages (BMDMs) on a soft
matrix (2.55 kPa) was associated with the expression of M1
markers including increased CD86 expression, rounded shape,
and production of ROS, IL-1b, and TNFa [151]. However, macro-
phages cultured on stiff matrices (�34.8 kPa) exhibited an M2 or
alternatively activated phenotype as measured by elevated CD206
expression, diminished ROS production, elevated IL-4 and TGF-b
secretion, and spindle-shaped morphology [151]. The morphologi-
cal change associated with stiffness was confirmed by Fereol et al.
who demonstrated that transitions from rounded cells to flattened
cells accompanied an F-actin independent increase in cell stiffness
[152]. Interestingly, in THP-1 cells, Sridhara et al. found classical
activation or M1 phenotypes were associated with stiff culture
gels (323 kPa) and M2 characteristics were associated with softer
substrates (11 and 88 kPa) with M2 properties being ROCK
dependent [153]. Investigation of macrophage response to either
shear or compressive stimulus has been mostly limited to vascular
applications with little to no consideration for the lung micro-

environment. For a comprehensive review of macrophage
mechanical stimulus studies beyond the pulmonary micro-
environment please see Adams et al. [154].

3.3 Fibroblasts. Fibroblasts are located within the connective
tissue between alveoli (i.e., the pulmonary interstitium) and this
interstitial space is subjected to three-dimensional tension as well
as compression during respiration. Fibroblasts also experience
shear stress from the interstitial fluid flow that accompanies
dynamic changes in lung volume and fibroblasts can sense and
contribute to stiffness changes via secretion of ECM proteins.

Pulmonary fibroblasts subjected to strain have altered responses
depending on the strain magnitude and cell type. 5% strain has
been shown to inhibit proliferation and increase apoptosis in fetal
rat fibroblasts [155]. Interestingly, 20% strain on fetal human
fibroblasts, IMR-90 cells, increased type I collagen expression
[156] while the cells align perpendicular to the force [156] appli-
cation. However, 10% strain on adult human tracheal fibroblasts
increased proliferation [157], and cyclic strain reduced a-smooth
muscle actin and expression of tenascin C, collagen I, III, and V
[158]. A 30% strain increased the expression of inflammatory
markers, such as IL-8, MMPs, and collagens, in fibroblasts iso-
lated from asthmatic patients or normal, donor controls [159].

The influence of shear stress on pulmonary fibroblasts function
has been less thoroughly explored, specifically when accounting
for the 3D micro-environment. Under two-dimensional (2D) stim-
ulus in a parallel plate flow chamber, Lee et al. found the nuclear
movement in 3T3 cells was enhanced under shear flows and that
microtubule structure was responsible for nuclei rotation and trans-
location [160]. Ng and Swartz investigated interstitial fluid flow
effects on 3D human fibroblast (CCD1079sk) and concluded that
cells align perpendicular to the flow direction and become spindle-
like in shape [120]. Cell morphology has been implicated in pheno-
typic responses of cells including proliferation, apoptosis, migra-
tion, and mechanotransduction signaling [161].

Fibroblast response to matrix stiffness has been thoroughly
investigated and an increase in stiffness is associated with height-
ened proliferation, matrix synthesis, and contractile functions
[26,162,163]. The cell source, either diseased or normal lung tis-
sue, impacts fibroblast behavior although these tendencies can be
overcome by culturing diseased cells on soft substrates [162].
Additionally, Booth et al. demonstrated that decellularized matri-
ces of diseased lungs (�7.34 kPa stiffness) increase myofibroblast
differentiation from normal fibroblasts when compared to normal
lung matrices (�1.6 kPa stiffness) [40]. Taken together, these
studies indicate stiffness as a key component dictating the fibro-
blast function in both healthy and diseased lungs. The recent work
by Matera et al. found opposite trends in stiffness response in 2D
versus 3D, with less a-smooth muscle actin (myofibroblast indica-
tor) and Ki67 (proliferation marker) expression at higher stiff-
nesses in 3D [164]. They determined that it was fiber density that
drove myofibroblast differentiation, proliferation, and yes-associ-
ated protein (YAP) nuclear localization in 3D (functionalized dex-
tran) culture not the stiffness of the environment [164]. Across
studies, the key mechanotransduction pathways identified in
orchestrating substrate stiffness responses in fibroblasts include
YAP [164]/transcriptional co-activator with PDZ-binding motif
(TAZ) [165], Rho/ROCK via actin, and MKL1 [163], and PGE2

[26,162]. However, PGE2 signaling may not be required for fibro-
blast stiffness response [162]. Finally, amplified substrate stiffness
increases myofibroblast invasion of the basement membrane via
the mechanosensing molecule a6-integrin [166]. By contrast,
although fibroblasts experience compressive forces within the
lung micro-environment little is known about the response of lung
fibroblasts to compressive stimulus and is thus an opportunity for
future investigations [167].

3.4 Pulmonary Endothelial Cells. Pulmonary endothelial
cells line blood vessel networks within the lung and are
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continuously exposed to fluid shear forces, ECM stiffness, cyclic
strain, and fluid pressure [168,169]. Many studies have investi-
gated the effect of physiologic and pathologic strains on pulmo-
nary endothelial cells and their contribution to ventilator-induced
lung injury. Physiologic strains (�5% cyclic strain) do not induce
a pro-inflammatory response [170,171] but can cause some reduc-
tion in endothelial barrier function [172] along with reduced fibro-
nectin secretion at 4.9% and 12.5% strains [173]. Higher strains
(�10%) activate ERK, c-JUN N-terminal kinase, and p38 path-
ways [168] and can induce endothelial cell alignment and actin
cytoskeletal remodeling with responses dependent on the magni-
tude of strain and type of mechanical stretch. The actin cytoskele-
ton and cell morphology reorienting in the direction of minimum
substrate deformation and is more reliant on magnitude than
deformation rate [174]. In multicellular models of physiologic
breathing, 10% strain enhanced response to particulate exposure
via ICAM-1 expression that was sufficient to attract circulating
neutrophils [118]. Interestingly, 10% stretch did not activate Ca2þ

channels but 20–30% strain resulted in activation of the actin
cytoskeleton and Ca2þ influx [175]. At 15% strain, Russo et al.
found reduced cellular migration and diminished capillary like
tube formation but increased expression of a variety of proteogly-
cans, adhesive proteins, and growth factors that contributed to
ECM remodeling and cell-matrix interactions [176]. Iwaki et al.
demonstrated that 20% strain induced IL-8, IL-6, monocyte che-
moattractant protein-1 production, and caused cellular alignment
perpendicular to the stretch orientation with actin polymerization
[170]. Tian et al. confirmed these inflammatory findings at 18%
cyclic strain along with increased ICAM1 and monolayer barrier
disruption via LPS [171]. Birukov et al. Confirmed endothelial
barrier disruption with 18% elongation but in the absence of con-
current LPS stimulation [172]. Overall, it is evident that endothe-
lial responses fluctuate with the magnitude of stretch becoming
more inflammatory and disruptive as strain increases.

The effects of endothelial cells under shear stress stimulus have
been thoroughly investigated by a variety of sources and we will
only provide a brief overview of shear stress stimulated mechano-
transduction responses in the pulmonary system. Shear stress is a
known influencer of endothelial cell morphology (elongation and
alignment in the direction of flow) [177], cytoskeletal remodeling
[178], and cytosolic Ca2þ levels [179–181] which is a major sig-
naling cascade in endothelial function [182]. Nitric oxide release
is one of the most important and well documented effects of shear
stress stimulation [183] contributing to the maintenance of vaso-
motor action, anti-inflammatory mechanisms, and anti-oxidant
capacity of plasma [184]. With the application of pulsatile shear
stress, endothelial cells upregulate their ACE2 expression which
contributes to NO production and a reduction of proliferation and
inflammation [185]. The recent work of Song et al. Demonstrated
increased ACE2 expression when endothelial cells were stimulated
in a Flexcell streamer [185]. As all mechanotransduction shear
stress, endothelial studies are beyond the scope of this review, read-
ers are referred to recent reviews for further details [186–188].

Compressive forces on endothelial cells are most commonly
applied in vitro using hydrostatic fluid pressure which results in
cell elongation and altered morphology via rearranged actin cyto-
skeleton [189,190], increased proliferation, and the formation of
multilayer cell stacks [189–193]. The results of these hydrostatic
pressure studies are remarkably consistent between research
groups and the mechanisms of these observed changes may include
the release of bFGF [191], av integrins [193], vascular endothelial
growth factor (VEGF)-C [194], and VE-cadherin [190]. Using pure
uniaxial compression, Wille et al. found that endothelial cells are
more responsive to stimulus magnitude not compression rate, and
that actin stress fibers are disrupted and reoriented along with the
cells long axes in response to the compression [195].

The majority of endothelial stiffness studies have been carried
out with pulmonary hypertension as the primary target for investiga-
tion; however, many of these findings are relevant to the aberrant
stiffness that pulmonary endothelial cells experience within a

diseased lung. At higher stiffnesses (�50 kPa), endothelial cells
increased proliferation and migration through mechanotransduction
pathways YAP/TAZ [196,197] and activate TGF-B, Toll-like recep-
tors, transient receptor potential channels, and NF-kB [197]. Focal
adhesions are increased on stiff substrates (10.3 kPa) [198] and het-
erogeneous matrix stiffness disrupts cellular connections [198]. Bar-
rier disruption and recovery following thrombin stimulus were
optimally regulated through the Rac/Rho signaling cascade when
cultured on substrates of physiological stiffness (8.6 kPa) as oppose
to stiffer (42 kPa) and softer (0.55 kPa) ranges [199]. Mambetsariev
et al. confirmed these stiffness responses on a 40 kPa substrate
which enhanced inflammatory response to LPS stimulus in the form
of ICAM-1, vascular cell adhesion molecule (VCAM)-1, fibronec-
tin, and guanine nucleotide factor (GEF)-H1 a Rho activator when
compared to a soft (1.5 or 2.8 kPa) culture substrate [200].

The mechanotransduction studies discussed here are summar-
ized in Table 2 for easy reference based on both cell type and
mechanical stimulus.

4 Discussion and Future Directions

The lung is a dynamic organ with a complex mechanical envi-
ronment at the microscale. As a result, mechanotransduction plays
a crucial role in both pulmonary health and disease. Over many
years of investigation, researchers have confirmed the influence of
mechanical forces on cellular proliferation, morphology, ECM
production and restructuring, gene regulation, and inflammatory
responses. While specific aspects of the lung mechanical environ-
ment have been investigated in isolation through various in vitro
systems, the compound effects of cellular diversity, concurrent
forces, and immune regulation have not been fully understood.
For example, in the setting of IPF, although it is known that stiff-
ening of the ECM regulates the functionality of fibroblasts, endo-
thelial cells, and epithelial cells, we do not have information on
how cell–cell interactions and communication alter the response
to a stiffening environment. Importantly, we also do not under-
stand how immune cells interact with other cell types and if these
interactions alter the mechanotransduction responses that perpetu-
ate disease conditions. Additionally, IPF alters the temporal and
spatial strain/stiffness gradients within the lung while the dynamic
remodeling of the ECM is ongoing, and these facets have yet to
be recapitulated using in vitro bioreactor systems.

Despite the wide array of mechanotransduction studies per-
formed in the field of pulmonary medicine, there remain large
gaps in our understanding of the influence and response of macro-
phages and fibroblasts to the lung micro-environment collective.
Where some work has explored the importance of tensile stress
and substrate stiffness on polarization and morphology of macro-
phages, little effort has been devoted to understanding the role of
shear stress, interfacial forces, and compressive stimulus in these
innate immune cells. Additionally, current literature has not taken
into account the various subtypes of macrophages present in the
lung micro-environment and therefore the effects of mechano-
transduction in regulating activation and functionality of intersti-
tial macrophages, alveolar macrophages, and recruited
macrophages remain unknown. The response of fibroblasts to
compressive forces is also neglected despite its clear relevance in
the contracting airways of asthmatics and shifting parenchyma
throughout the breathing cycle. Once the impact of these individ-
ual force and cell pairings are investigated, a more in-depth under-
standing of mechanotransduction in the lung can be developed.

The mechanical profile of the lung needs to be better described
throughout the progression of the disease. With novel sensing and
imaging tools to characterize in vivo mechanics an accurate and
immediate readout would both assist researchers in accurately rec-
reating a physiological in vitro system and quantifying patient
conditions for improved diagnosis. Techniques such as magnetic
resonance elastography [205,206] and ultrasound elastography
(US-E) [207] are particularly promising for the ability to map
stiffnesses of body tissue. Combining these noninvasive imaging
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techniques with computational simulations would further quantify
and personalize fibrosis assessment ideally predicting and pre-
venting the progression of the disease. Additionally, the heteroge-
neous composition of the lung could be measured in vivo and
personalized medicine could be applied based on our understand-
ing of cell response to the degree of aberrant forces.

To achieve in vitro systems that recapitulate the complex physi-
ology of the lung, we need next generation bioreactors that
account for the innate complexity of the lung including cell–cell
interactions, 3D geometry, cell-based matrix remodeling, long
term cultures, and multiforce stimulants. No cell exists in isolation
and intercellular communications across cell types are ongoing
and continuously influence phenotypic responses. Better in vitro
models will capture the multicellular interactions between macro-
phages, fibroblasts, epithelial, and endothelial cells and are

necessary for a holistic view on the cooperative cellular responses.
In addition, these cells in vivo do not exist in 2D, and since
dimensionality has shown to drastically alter the phenotypic
response, careful consideration for culture conditions should be
made in the next generation devices. The 3D matrix in vivo expe-
riences ongoing modifications from its cell inhabitants and allow-
ing for cell mediated remodeling over long-term culture could
thus recapitulate disease progression in vitro. Incorporating pri-
mary cells into these systems would also improve accuracy in cul-
ture response compared to immortalized cell lines often used as
representative systems. Finally, the use of multiforce systems will
be a challenging but necessary development for the progression of
lung mechanotransduction in vitro research. To accomplish this,
the current bioreactor designs will grow in complexity and it will
be advantageous to independently control each force and confirm

Table 2 Current findings of pulmonary mechanical stimulation studies in vitro

Epithelial cells Macrophages Fibroblasts Endothelial cells

Strain Tsuda et al. [126] Pugin et al. [127] Breen [156] Gorfien et al. [173]
Savla and Waters [142] Sanchez-Esteban et al. [155] Kito et al. [168]
Tschumperlin et al. [113] Matheson et al. [149] Webb et al. [157] Wang et al. [174]
Waters et al. [129] Wu et al. [147] Blaauboerab et al. [158] Birukov et al. [172]
Chess et al. [106] Ballotta et al. [148] Manuyakorn et al. [159] Iwaki et al. [170]
Oswari et al. [114] Pakshir et al. [150] Ito et al. [175]
Oudin and Pugin [104] Huh et al. [118]
Chess et al. [123] Vion et al. [201]
Chapman et al. [124] Tian et al. [171]
Chess et al. [107] Russo et al. [176]
Chaturvedi et al. [105]
Hu et al. [125]
Felder et al. [119]
Rapalo et al. [115]
Rentzsch et al. [128]
Felder et al. [112]

Interfacial forces Bilek et al. [134] Area of need N/A N/A
Kay et al. [135]
Huh et al. [202]
Yalcin et al. [136]
Ghadiali and Gaver [95]
Ha et al. [203]
Yalcin et al. [137]
Tavana et al. [204]
Higuita-Castro et al. [146]
Higuita-Castro et al. [138]
Viola et al. [139]

Shear Ridge et al. [131] Area of need Ng and Swartz [120] Birukov et al. [178]
Nalayanda et al. [130] Lee et al. [160] Fisher et al. [188]
Sivaramakrishnan et al. [133] Yamamoto et al. [180]
Flitney et al. [132] Kumar et al. [183]
Mahto et al. [117] Tousoulis et al. [184]

Szulcek et al. [177]
Yamamoto et al. [181]
Charbonier et al. [186]
Wu and Birukov [187]
Song et al. [185]

Compression Savla and Waters [142] Area of need Area of need Acevedo et al. [191]
Tschumperlin et al. [140] Sumpio et al. [192]
Chu et al. [141] Salwen et al. [189]
Huang et al. [116] Schwartz et al. [193]
Veerati et al. [55] Shin et al. [194]

Wille et al. [195]
Ohashi et al. [190]

Stiffness Eisenberg et al. [143] Chen et al. [151] Liu et al. [26] Birukova et al. [199]
Markowski et al. [144] Fereol et al. [152] Huang et al. [163] Mambetsariev et al. [200]
Dysart et al. [145] Sridharan et al. [153] Booth et al. [40] Bertero et al. [196]

Marinkovic et al. [162] Lampi et al. [198]
Chen et al. [166] Thenappan et al. [197]
Noguchi et al. [165]
Matera et al. [164]
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cell response to known stimulus magnitudes. Therefore, the ability
to distinctly characterize the force fields within culture conditions
needs to be maintained, and a strong association between in vitro
modeling and computational models should be incorporated to
confirm mechanical conditions. Though the complete integration
of all these aspects may not be feasible initially, continual advan-
ces in the development of in vitro systems that recapitulate the
complex physiology of the lung micro-environment will greatly
expand our understanding of the mechanotransduction mecha-
nisms responsible for lung diseases. These next-generation devi-
ces would also be an enabling technology that could be used for
advanced drug screening and may help reduce the need for costly
animal studies.

As cellular interactions and experimental results become more
convoluted with the increasing complexity of in vitro systems, it
will be necessary to incorporate cross discipline expertise. Inte-
grating the work of molecular biologists, immunologists, physi-
cians, and engineers will allow for faster and more accurate
progress in this field. Identification of the signaling transduction
pathways initiated by the different mechanical forces may provide
specific targets to inhibit and possibly reverse changes that occur
in the lung micro-environment during chronic disease. Drawing
from these and other areas of research will give us a better avenue
to develop drugs and treatment options as well as physiological
in vitro high throughput screening mechanisms.

5 Conclusion

In conclusion, in the past several decades, scientists and engi-
neers have developed numerous in vitro systems that expose pul-
monary cells to specific mechanical conditions and these devices
have greatly expanded our knowledge of how these mechanical
factors contribute to disease pathogenesis. However, most of these
systems investigate how a single force influenced one specific cell
type and do not capture the complex multicellular, multiforce, and
multidimensional conditions that exist in the lung. Therefore, the
new goal within the pulmonary mechanotransduction field should
be the development and incorporation of next generation in vitro
models that more accurately simulate the lung micro-environment
and its complex physiology. Studying the combined effects of
these areas will build upon the established mechanotransduction
findings and provide a clearer picture of lung physiology and dis-
ease progression. With the help of these advanced in vitro systems
and collaboration across disciplines, researchers will be better
equipped to develop improved treatment options and ultimately
improved patient outcomes.
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