Skip to main content
. 2021 Jul 23;4(3):e329. doi: 10.1002/hsr2.329

TABLE 1.

Overview of the three most frequently identified risk stratification models with their characteristics and diagnostic properties for different outcomes

First author, year Adjusted Clinical Group (ACG) Charlson Comorbidity Index (CCI) Hierarchical Condition Categories (HCC)
Categories ACG categories (1‐93), Resource Utilization Bands (RUBs), Expended Diagnosis Clusters (EDC) count Six categories based on chronic condition count Score based on aggregated conditions (70 categories)
Total number of studies in which the model was applied n = 23 n = 19 n = 7
Diagnostic properties for different outcomes:
Hospitalization Haas 4 C = 0.73 C = 0.68 C = 0.67
Lemke 12 AUC = 0.80 AUC = 0.78
(Number of hospitalizations) Shadmi 16 R 2 = .24 R 2 = .11
(Unplanned hospitalizations) Maltenfort 11 AUC = 0.82
Inouye 20 C = 0.72
Ou 21 C = 0.61
Mosley 25 AUC = 0.64
Emergency department visits Haas 4 C = 0.67 C = 0.59 C = 0.58
Ou 21 C = 0.63
Wallace 22 C = 0.58
Costs
(Top 10% total costs) Haas 4 C = 0.76 C = 0.70 C = 0.70
(Total costs) Brilleman 14 R 2 = .41 R 2 = .34
(Pharmaceutical costs) Aguado 10 R 2 = .39
(Total costs) Sicras‐Mainar 13 R 2 = .37
(Total costs) Charlson 18 R 2 = .22
(Total costs) Charlson 19 R 2 = .20
(High total costs) Ou 21 C = 0.64
Utilization of different healthcare services
(GP visits) Brilleman 15 R 2 = .37 R 2 = .26
(Primary care visits) Shadmi 16 R 2 = .54 R 2 = .18
(Specialist visits) Shadmi 16 R 2 = .45 R 2 = .13
(Number of diagnostic imaging tests) Shadmi 16 R 2 = .37 R 2 = .15
(Visits) Sicras‐Mainar 13 R 2 = .42
(Number of diagnoses/reasons for visit) Sicras‐Mainar 13 R 2 = .77
(High outpatient visits) Ou 21 C = 0.63
Input data for the model Age, gender, diagnostic codes, pharmaceutical information, healthcare costs Presence or absence of chronic conditions based on diagnosis codes; weighted ICD‐9 of ICD‐10 diagnosis codes

Abbreviations: AUC, area under the ROC curve; C, C‐statistic; R2, R‐square.